• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A modelling study on the frosting characteristics of a novel dual-fan outdoor coil in an Air Source Heat Pump unit

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1359431122018634-main.pdf (2.957Mb)
    Date
    2023-03-05
    Author
    Xiaoxia, Bai
    Liu, Shengnan
    Deng, Shiming
    Zhang, Long
    Wei, Minchen
    Metadata
    Show full item record
    Abstract
    Uneven frosting along the airflow direction in a traditional outdoor coil in air source heat pumps (ASHPs) was inevitable due to a fixed one-way outdoor airflow direction, causing a rapid deterioration in heating performances of ASHPs. To alleviate this uneven frosting phenomenon, a novel dual-fan outdoor coil where air flow direction can be alternately reversed was proposed in a previous experimental study. To more effectively and comprehensively study the operating characteristics of ASHPs having the dual-fan outdoor coil at different fan operating modes, with different configurations and under different operating ambient conditions, a dynamic mathematical model for the experimental ASHP having the dual-fan outdoor coil was developed and experimentally validated. Then a follow-up modelling study for different operating modes of the two fans, fin pitches and operating ambient conditions was carried out using the validated model. The modelling results demonstrated that by optimizing fan operating mode, the difference in frost thickness between the windward and leeward sides of the dual-fan outdoor coil can be reduced by up to 77.3 %, the averaged output heating capacity and COP improved by up to 11.1 % and 12.7 %, respectively, and the number of switching operation of the two fans decreased by 55.6 %. Besides, the recommendations for using the dual-fan outdoor coil at different operating modes of the two fans, different fin pitches and operating ambient conditions were also made. The model can be used as a useful tool in helping achieve higher operating efficiency for ASHPs having the novel dual-fan outdoor coil.
    URI
    https://www.sciencedirect.com/science/article/pii/S1359431122018634
    DOI/handle
    http://dx.doi.org/10.1016/j.applthermaleng.2022.119933
    http://hdl.handle.net/10576/65930
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video