• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Con-Detect: Detecting adversarially perturbed natural language inputs to deep classifiers through holistic analysis

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0167404823002778-main.pdf (4.527Mb)
    Date
    2023-09-30
    Author
    Hassan, Ali
    Khan, Muhammad Suleman
    AlGhadhban, Amer
    Alazmi, Meshari
    Alzamil, Ahmed
    Al-utaibi, Khaled
    Qadir, Junaid
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Deep Learning (DL) algorithms have shown wonders in many Natural Language Processing (NLP) tasks such as language-to-language translation, spam filtering, fake-news detection, and comprehension understanding. However, research has shown that the adversarial vulnerabilities of deep learning networks manifest themselves when DL is used for NLP tasks. Most mitigation techniques proposed to date are supervised—relying on adversarial retraining to improve the robustness—which is impractical. This work introduces a novel, unsupervised detection methodology for detecting adversarial inputs to NLP classifiers. In summary, we note that minimally perturbing an input to change a model’s output—a major strength of adversarial attacks—is a weakness that leaves unique statistical marks reflected in the cumulative contribution scores of the input. Particularly, we show that the cumulative contribution score, called CF-score, of adversarial inputs is generally greater than that of the clean inputs. We thus propose Con-Detect—a Contribution based Detection method—for detecting adversarial attacks against NLP classifiers. Con-Detect can be deployed with any classifier without having to retrain it. We experiment with multiple attackers—Text-bugger, Text-fooler, PWWS—on several architectures—MLP, CNN, LSTM, Hybrid CNN-RNN, BERT—trained for different classification tasks—IMDB sentiment classification, fake-news classification, AG news topic classification—under different threat models—Con-Detect-blind attacks, Con-Detect-aware attacks, and Con-Detect-adaptive attacks—and show that Con-Detect can reduce the attack success rate (ASR) of different attacks from 100% to as low as 0% for the best cases and ≈70% for the worst case. Even in the worst case, we note a 100% increase in the required number of queries and a 50% increase in the number of words perturbed, suggesting that Con-Detect is hard to evade.
    URI
    https://www.sciencedirect.com/science/article/pii/S0167404823002778
    DOI/handle
    http://dx.doi.org/10.1016/j.cose.2023.103367
    http://hdl.handle.net/10576/65987
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video