عرض بسيط للتسجيلة

المؤلفLatif, Siddique
المؤلفRana, Rajib
المؤلفKhalifa, Sara
المؤلفJurdak, Raja
المؤلفQadir, Junaid
المؤلفSchuller, Bjorn
تاريخ الإتاحة2025-07-08T03:58:09Z
تاريخ النشر2023
اسم المنشورIEEE Transactions on Affective Computing
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TAFFC.2021.3114365
الرقم المعياري الدولي للكتاب19493045
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66063
الملخصTraditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual effort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated deep representation learning where hierarchical representations are automatically learned in a data-driven manner. This article presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER.
اللغةen
الناشرIEEE
الموضوعdomain adaptation
multi task learning
representation learning
Speech emotion recognition
unsupervised learning
العنوانSurvey of Deep Representation Learning for Speech Emotion Recognition
النوعArticle
الصفحات1634-1654
رقم العدد2
رقم المجلد14
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة