• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EXPLORING THE POTENTIAL OMEGA-3 PUFA ENCAPSULATED NANOPARTICLES FOR ENHANCED ANTI-INFLAMMATORY AND ANTIMICROBIAL ACTIVITY

    View/Open
    Richa Gill_OGS Approved Thesis.pdf (5.619Mb)
    Date
    2025-06
    Author
    GILL, RICHA
    Metadata
    Show full item record
    Abstract
    Omega-3 polyunsaturated fatty acids (ɷ3-PUFAs) offer strong anti-inflammatory and antibacterial properties, but their clinical use is limited by instability, oxidation sensitivity, and low bioavailability. This study develops NanoMIL-89 functionalized with ω-3 PUFAs (Nano-ω3-PUFAs) to enhance stability, biocompatibility, and antimicrobial activity. Characterization via SEM, TEM, XRD, EDX, and FTIR confirmed the crystalline hexagonal structure of NanoMIL-89. Functionalization improved biocompatibility, with no cytotoxicity observed in endothelial cells, fibroblasts, or macrophages. At 100 μg/mL, Nano-ω3-PUFAs significantly reduced pro-inflammatory cytokines in a dose- and cell-type-dependent manner. They effectively inhibited Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis) more than Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and fungi (Candida albicans), suggesting a membrane-structure-dependent action, but still had weak inhibition. These findings highlight Nano-ω3-PUFAs as a promising anti-inflammatory and antifungal agent with potential applications in wound healing and drug delivery. Future research should focus on in vivo studies and mechanistic insights.
    DOI/handle
    http://hdl.handle.net/10576/66264
    Collections
    • Biological & Environmental Sciences [‎111‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video