• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Quartz crystal microbalance (QCM) study of electrochemical CO2 reduction on Sn electrocatalysts

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360319925008936-main.pdf (9.917Mb)
    Date
    2025-02-26
    Author
    Saad, Mohammed A.H.S.
    Al-Marri, Mohammed J.
    Kumar, Anand
    Yadav, V.S.K.
    Metadata
    Show full item record
    Abstract
    The extenuation of CO2 emissions using electrochemical CO2 reduction (ECR) is a promising approach. Electrochemical routes offer a number of benefits, including customizable layout, precise product modification, mild operational temperatures, and the ability to combine CO2 reduction with the production of renewable electricity. Nevertheless, the essential technique for reprocessing CO2 as a renewable resource is electrochemical CO2 reduction, yet CO2 adsorption/reduction on catalyst surfaces is challenging. To address these concerns, Mn3O4 and Sn were produced in this work at room temperature via an electrodeposition technique, which was combined with a quartz crystal microbalance (QCM) sensor suitable for room-temperature monitoring of ECR. QCM is a compelling technique for closely inspecting the responses of CO2 reduction in real time under various applied conditions. QCM was used for the first time to study the effects of Sn electrocatalysts for ECR research, and revealed the CO2 adsorption/reduction capabilities of diverse Sn catalysts. A broad investigation showed the CO2 reduction detecting ability of Sn coated QCM sensors at room temperature. The final results revealed that Sn catalysts' capacity to reduce CO2 was evident both with and without CO2 present in the solution of sodium bicarbonate electrolyte. For all the appropriate conditions, the effect of CO2 saturated electrolyte solution on the frequency and mass change with time along with applied potential were discussed in detail.
    URI
    https://www.sciencedirect.com/science/article/pii/S0360319925008936
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2025.02.315
    http://hdl.handle.net/10576/66675
    Collections
    • Chemical Engineering [‎1262‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video