• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Advanced Materials
  • Center for Advanced Materials Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Physico-mechanical, dielectric, and piezoelectric properties of PVDF electrospun mats containing silver nanoparticles.

    Thumbnail
    View/Open
    LuytPaper-JCarbonRes3(2017)30.pdf (2.246Mb)
    Date
    2017
    Author
    Issa, Ahmed A.
    Al-Maadeed, Mariam A.
    Luyt, Adriaan S.
    Ponnamma, Deepalekshmi
    Hassan, Mohammad K.
    Metadata
    Show full item record
    Abstract
    Poly(vinylidene fluoride) (PVDF) is a piezoelectric material with outstanding physical and mechanical properties. The piezoelectric properties depend on the β-phase content of this polymer, while the physical and mechanical properties depend on the morphology and degree of crystallinity of the material. Silver has antibacterial effects, and silver nanoparticles (Ag-NPs) have large surface areas rich in electrons. In this paper, we produced electrospun PVDF fibrous mats that contained different contents of Ag-NPs between 0% and 1.0%. The β-content in PVDF was found to increase by about 8% for Ag-NPs content of 0.4–0.6%. The electrospun fiber mats had a higher β-crystalline content, nano-pores were visible on the fiber surfaces, and the tensile strength and thermal stability were improved. Dielectric analysis indicated weak interfacial adhesion between the PVDF and Ag-NPs. Good piezoelectric response was observed in the electrospun fibers containing 0.4% AgNPs, which shows a good correlation between the β-crystalline phase content of the composites and its energy-harvesting application
    DOI/handle
    http://dx.doi.org/10.3390/c3040030
    http://hdl.handle.net/10576/6792
    Collections
    • Center for Advanced Materials Research [‎1564‎ items ]
    • Materials Science & Technology [‎337‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video