Enhanced coronary artery segmentation and stenosis detection: Leveraging novel deep learning techniques
| المؤلف | Sarmun, Rusab |
| المؤلف | Mushtak, Adam |
| المؤلف | Bin Mohamed Ali, Mohamed Sultan |
| المؤلف | Hasan, Anwarul |
| المؤلف | Suganthan, Ponnuthurai Nagaratnam |
| المؤلف | Chowdhury, Muhammad E.H. |
| المؤلف | Morshedul Abedin, Abu Jaffor |
| تاريخ الإتاحة | 2025-11-09T08:17:25Z |
| تاريخ النشر | 2025-05-12 |
| اسم المنشور | Biomedical Signal Processing and Control |
| المعرّف | http://dx.doi.org/10.1016/j.bspc.2025.108023 |
| الاقتباس | Abedin, A. J. M., Sarmun, R., Mushtak, A., Ali, M. S. B. M., Hasan, A., Suganthan, P. N., & Chowdhury, M. E. (2025). Enhanced coronary artery segmentation and stenosis detection: Leveraging novel deep learning techniques. Biomedical Signal Processing and Control, 109, 108023. |
| الرقم المعياري الدولي للكتاب | 1746-8094 |
| الملخص | Coronary artery disease (CAD) is a significant global health concern, emphasizing the need for reliable and automated diagnostic solutions. This study proposes a novel deep learning framework aimed at improving both full artery segmentation and stenosis localization by incorporating Self-Organizing Neural Networks (Self-ONN). The DenseSelfU-Net model leverages DenseNet121 as an encoder and a Self-ONN enhanced decoder within a U-Net based architecture to achieve robust feature extraction and precise full artery segmentation, achieving an IoU of 82.52% and a Dice score of 90.35% on the ARCADE Challenge dataset. For stenosis localization, Self-ONN is integrated into key components of the Multi-Scale Attention Network (MA-Net), which includes the Multi-Scale Fusion Attention Block (MFAB) and the Position-wise Attention Block (PAB), capturing complex vascular patterns through both local and global dependencies and resulting in the DenseSelfMA-Net model. The DenseSelfMA-Net achieves Dice scores of 60.59% and 60.36% and IoU scores of 46.09% and 45.36% for the MFAB and PAB configurations, respectively on the ARCADE challenge dataset. These results demonstrate the effectiveness of Self-ONN in enhancing diagnostic precision and facilitating early CAD diagnosis, with promising implications for clinical practice. |
| اللغة | en |
| الناشر | Elsevier |
| الموضوع | Coronary artery disease Automated segmentation Stenosis localization Medical image analysis Deep learning |
| النوع | Article |
| رقم المجلد | 109 |
| ESSN | 1746-8108 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2850 items ]


