عرض بسيط للتسجيلة

المؤلفSarmun, Rusab
المؤلفMushtak, Adam
المؤلفBin Mohamed Ali, Mohamed Sultan
المؤلفHasan, Anwarul
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفChowdhury, Muhammad E.H.
المؤلفMorshedul Abedin, Abu Jaffor
تاريخ الإتاحة2025-11-09T08:17:25Z
تاريخ النشر2025-05-12
اسم المنشورBiomedical Signal Processing and Control
المعرّفhttp://dx.doi.org/10.1016/j.bspc.2025.108023
الاقتباسAbedin, A. J. M., Sarmun, R., Mushtak, A., Ali, M. S. B. M., Hasan, A., Suganthan, P. N., & Chowdhury, M. E. (2025). Enhanced coronary artery segmentation and stenosis detection: Leveraging novel deep learning techniques. Biomedical Signal Processing and Control, 109, 108023.
الرقم المعياري الدولي للكتاب1746-8094
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S1746809425005348
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68416
الملخصCoronary artery disease (CAD) is a significant global health concern, emphasizing the need for reliable and automated diagnostic solutions. This study proposes a novel deep learning framework aimed at improving both full artery segmentation and stenosis localization by incorporating Self-Organizing Neural Networks (Self-ONN). The DenseSelfU-Net model leverages DenseNet121 as an encoder and a Self-ONN enhanced decoder within a U-Net based architecture to achieve robust feature extraction and precise full artery segmentation, achieving an IoU of 82.52% and a Dice score of 90.35% on the ARCADE Challenge dataset. For stenosis localization, Self-ONN is integrated into key components of the Multi-Scale Attention Network (MA-Net), which includes the Multi-Scale Fusion Attention Block (MFAB) and the Position-wise Attention Block (PAB), capturing complex vascular patterns through both local and global dependencies and resulting in the DenseSelfMA-Net model. The DenseSelfMA-Net achieves Dice scores of 60.59% and 60.36% and IoU scores of 46.09% and 45.36% for the MFAB and PAB configurations, respectively on the ARCADE challenge dataset. These results demonstrate the effectiveness of Self-ONN in enhancing diagnostic precision and facilitating early CAD diagnosis, with promising implications for clinical practice.
اللغةen
الناشرElsevier
الموضوعCoronary artery disease
Automated segmentation
Stenosis localization
Medical image analysis
Deep learning
العنوانEnhanced coronary artery segmentation and stenosis detection: Leveraging novel deep learning techniques
النوعArticle
رقم المجلد109
ESSN1746-8108
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة