عرض بسيط للتسجيلة

المؤلفDikshit, Chauhan
المؤلفShivani
المؤلفSuganthan, Ponnuthurai N.
تاريخ الإتاحة2025-11-09T09:46:34Z
تاريخ النشر2025-07-22
اسم المنشورSwarm and Evolutionary Computation
المعرّفhttp://dx.doi.org/10.1016/j.swevo.2025.102048
الاقتباسChauhan, D., & Suganthan, P. N. (2025). Learning Strategies in Particle Swarm Optimizer: A Critical Review and Performance Analysis. arXiv preprint arXiv:2504.11812.
الرقم المعياري الدولي للكتاب2210-6502
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2210650225002068
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68426
الملخصNature has long inspired the development of swarm intelligence (SI), a key branch of artificial intelligence that models collective behaviors observed in biological systems for solving complex optimization problems. Particle swarm optimization (PSO) is widely adopted among SI algorithms due to its simplicity and efficiency. Despite numerous learning strategies proposed to enhance PSO’s performance in terms of convergence speed, robustness, and adaptability, no comprehensive and systematic analysis of these strategies exists. We review and classify various learning strategies to address this gap, assessing their impact on optimization performance. Additionally, a comparative experimental evaluation is conducted to examine how these strategies influence PSO’s search dynamics. Our analysis reveals that multi-swarm strategies consistently outperform other PSO strategies in high-dimensional and multimodal problems, offering better exploration and convergence trade-offs. Finally, we discuss open challenges and future directions, emphasizing the need for self-adaptive, intelligent PSO variants capable of addressing increasingly complex real-world problems. This survey not only synthesizes the current landscape of learning-enhanced PSO but also provides actionable insights for future research and algorithmic design.
راعي المشروعThis project was supported by the National University of Singapore and Dr B R Ambedkar National Institute of Technology Jalandhar, Punjab, India.
اللغةen
الناشرElsevier
الموضوعOptimization
Evolutionary computation
Particle swarm optimizer
Learning strategies
Performance evaluation
العنوانLearning strategies for particle swarm optimizer: A critical review and performance analysis
النوعArticle
رقم المجلد98
ESSN2210-6510
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة