• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Drone on-demand delivery routing problem considering order splitting and battery swapping

    Icon
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360835225005340-main.pdf (5.100Mb)
    Date
    2025-07-13
    Author
    Shuxuan, Li
    Liao, Tianjun
    Wu, Guohua
    Wang, Yalin
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    The use of drone delivery has catalyzed technological innovation within the logistics industry. This delivery mode can reduce on-demand delivery times by up to 50 %, while also significantly lowering labor costs and mitigating safety hazards associated with traffic congestion. In response to the characteristics of payload and mileage limitations in the participation of drones in on-demand delivery, a mathematical model for optimizing drone on-demand delivery paths with minimization of drone delivery cost, energy cost, and time penalty cost is established based on considering order splitting and battery swapping for drones. A dynamic optimization framework based on the rolling horizon method is designed to solve this problem. This framework primarily consists of two components: dynamic order collection and dynamic order scheduling. The order collection employs the rolling horizon method to establish three distinct strategies for dynamically collecting orders, which subsequently serve as the basis for dynamic scheduling. Order scheduling encompasses both order allocation and drone path planning. For order allocation, we utilize a method that combines k-means++ clustering with an allocation rule that takes into account the current status of drones. Based on the current allocation results, we apply an adaptive large neighborhood search algorithm to optimize drone paths, ultimately determining the order scheduling plan. By conducting numerical simulation experiments with different scales of cases, the applicability of the clustering strategies and dynamic order collection strategies proposed in this paper has been verified. At the same time, the effectiveness of the model and algorithm proposed in this paper has also been validated.
    URI
    https://www.sciencedirect.com/science/article/pii/S0360835225005340
    DOI/handle
    http://dx.doi.org/10.1016/j.cie.2025.111388
    http://hdl.handle.net/10576/68427
    Collections
    • Interdisciplinary & Smart Design [‎38‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video