عرض بسيط للتسجيلة

المؤلفJia, Yanan
المؤلفGao, Kaizhou
المؤلفRen, Yaxian
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفSang, Hongyan
تاريخ الإتاحة2025-11-09T11:43:06Z
تاريخ النشر2025-10
اسم المنشورJournal of Industrial and Management Optimization
المعرّفhttp://dx.doi.org/10.3934/jimo.2025127
الاقتباسJia, Y., Gao, K., Ren, Y., Suganthan, P. N., & Sang, H. (2025). Two reinforcement learning strategies based meta-heuristics for scheduling partial reentrant distributed flow-shops. Journal of Industrial and Management Optimization, 21(10), 6167-6189.
الرقم المعياري الدولي للكتاب1547-5816
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105015738609&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68433
الملخصReentrant or partial reentrant widely exists in practical manufacturing scenarios, which is rarely considered in literature. This work investigates a distributed flow-shop scheduling problem with partial reentrant constraint (DFSP PR). The objective is to minimize the maximum completion time (makespan). First, a mathematical model for the DFSP PR is developed, which integrates the characteristics of partial reentrant and distributed manufacturing scenarios. Second, three meta-heuristics are employed and enhanced to solve the concerned problems. The Nawaz-Enscore-Ham (NEH) heuristic is used to initialize the population. Based on the nature of the DFSP PR, six local search strategies are designed to improve the convergence efficiency of meta-heuristics. Third, two cutting-edge reinforcement learning algorithms, Q-learning and state-action-reward-state’-action’ (SARSA), are integrated into the meta-heuristics to select the most effective local search strategy during iterations. Finally, comprehensive experiments on 48 benchmark instances with varying scales demonstrate the effectiveness of the proposed approaches, where Q-learning and SARSA significantly improving the performance of the meta-heuristics.
اللغةen
الناشرAmerican Institute of Mathematical Sciences
الموضوعDistributed scheduling
flow-shop
meta-heuristics
partial reentrant
Q-learning
SARSA
العنوانTwo reinforcement learning strategies based meta-heuristics for scheduling partial reentrant distributed flow-shops.
النوعArticle
الصفحات6167-6189
رقم العدد10
رقم المجلد21
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة