عرض بسيط للتسجيلة

المؤلفYu, Kunjie
المؤلفSun, Shaoru
المؤلفLiang, Jing
المؤلفChen, Ke
المؤلفQu, Boyang
المؤلفYue, Caitong
المؤلفNagaratnam Suganthan, Ponnuthurai
تاريخ الإتاحة2025-11-25T09:17:03Z
تاريخ النشر2024
اسم المنشورIEEE Transactions on Systems Man and Cybernetics Systems
المعرّفhttp://dx.doi.org/10.1109/TSMC.2024.3450278
الاقتباسYu, K., Sun, S., Liang, J., Chen, K., Qu, B., Yue, C., & Suganthan, P. N. (2024). A space transformation-based multiform approach for multiobjective feature selection in high-dimensional classification. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
الرقم المعياري الدولي للكتاب2168-2216
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85209910771&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68790
الملخصImproving classification performance and reducing the number of selected features are two conflicting objectives of feature selection, which can be well solved by multiobjective algorithms. However, as the dimensionality of the data increases, the search space for feature selection will grow exponentially, which leads to high-computational costs. Additionally, the complex interaction among features makes the population prone to falling into local optimal. To address these issues, feature grouping can treat one dimension as a group of features instead of one feature, effectively transforming the high-dimensional search space into a lower-dimensional one. Since different grouping forms can be converted into different feature combination spaces, the search directions of the population also vary. Inspired by this, a multiform optimization approach based on space transformation (MOFS-MST) is proposed in this article. Specifically, two different grouping forms are set based on the ranking of features in different evaluation criteria to construct a multiform framework, thereby increasing the diversity of the population. During the evolutionary process, a knowledge transfer strategy based on feature groups is executed between the two forms of grouping in order to help each other escape local optima. Moreover, it can dynamically adjust the state of feature grouping to enhance the potential for feature interaction. Experimental results demonstrate that this method outperforms six other state-of-the-art multiobjective high-dimensional feature selection methods on 12 high-dimensional datasets.
راعي المشروع10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62176238, 62206255 and U23A20340) 10.13039/501100006407-Natural Science Foundation of Henan Province (Grant Number: 222300420088) Young Talents Lifting Project of Henan Association for Science and Technology (Grant Number: 2024HYTP023) Program for Science and Technology Innovation Talents in Universities of Henan Province (Grant Number: 23HASTIT023) Program for Science and Technology Innovation Teams in Universities of Henan Province (Grant Number: 23IRTSTHN010) Frontier Exploration Projects of Longmen Laboratory (Grant Number: LMQYTSKT031) National Key Research and Development Program of China (Grant Number: 2022YFD2001205)
اللغةen
الناشرInstitute of Electrical and Electronics Engineers (IEEE)
الموضوعFeature selection
high-dimensional classification
multiform optimization
multiobjective optimization
العنوانA Space Transformation-Based Multiform Approach for Multiobjective Feature Selection in High-Dimensional Classification
النوعArticle
رقم العدد12
رقم المجلد54
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة