عرض بسيط للتسجيلة

المؤلفCheng, Ruke
المؤلفGao, Ruobin
المؤلفHu, Minghui
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفYuen, Kum Fai
تاريخ الإتاحة2025-11-25T09:34:40Z
تاريخ النشر2024-07
اسم المنشورProceedings of the International Joint Conference on Neural Networks
المعرّفhttp://dx.doi.org/10.1109/IJCNN60899.2024.10650817
الاقتباسCheng, R., Gao, R., Hu, M., Suganthan, P. N., & Yuen, K. F. (2024, June). Wind Speed Forecasting Using an Ensemble Deep Random Vector Functional Link Neural Network Based on Parsimonious Channel Mixing. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
الترقيم الدولي الموحد للكتاب 979-8-3503-5932-9
الرقم المعياري الدولي للكتاب21614393
الرقم المعياري الدولي للكتاب2161-4393
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85204972646&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68800
الملخصThe electricity generation through wind energy is rapidly expanding, primarily due to its priorities of lower carbon emissions and sustainability. Precise wind speed forecasting is essential for renewable energy conversions as it mitigates the randomness of wind power, therefore aiding in more effective control and strategic planning for power system dispatch. However, the inherent fluctuation of wind speed challenges accurate and consistent time series forecasting. In this paper, we develop a novel parsimonious channel mixing ensemble deep random vector functional link (pcm-edRVFL) network to anticipate future wind speeds. The ensemble deep random vector functional link network (edRVFL) utilizes deep feature extraction and ensemble learning to improve forecasting performance. We refined the standard edRVFL model by incorporating a parsimonious channel mixing selection approach for input data, focusing on crucial historical observations, and strengthening the representation of each explanatory variable. We conduct extensive evaluations on four wind speed datasets using the proposed model, and the comparative experiment results demonstrate its superiority over other baseline models. Our proposed pcm-edRVFL network provides a practical approach for precise and efficient wind speed forecasting, proving to be an instrumental resource in wind energy design and operation systems.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers (IEEE)
الموضوعDeep Learning
Random Vector Functional Link
Time Series Forecasting
Wind Speed
العنوانWind Speed Forecasting Using an Ensemble Deep Random Vector Functional Link Neural Network Based on Parsimonious Channel Mixing
النوعConference
الصفحات1-8
ESSN2161-4407
الترقيم الدولي الموحد للكتاب (إلكتروني) 979-8-3503-5931-2
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة