• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating binary classification and clustering for multi-class dysarthria severity level classification: a two-stage approach

    Thumbnail
    View/Open
    s10586-024-04748-1.pdf (1.863Mb)
    Date
    2025
    Author
    Al-Ali, Afnan S.
    Haris, Raseena M.
    Akbari, Younes
    Saleh, Moutaz
    Al-Maadeed, Somaya
    Rajesh Kumar, M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Dysarthria, a motor speech disorder, poses challenges in accurate severity assessment. Recent research has excelled in classifying dysarthria based on severity levels, primarily utilizing annotated datasets and achieving high accuracies. However, these classification-based approaches may not readily translate to real-world scenarios without predefined labels. This study follows a different path by proposing a two-stage approach leveraging binary classification and clustering to comprehensively analyze and classify dysarthria severity levels. We begin by employing binary classification to differentiate control from dysarthric cases by experiencing eight different feature extraction techniques and two classifiers in order to support the largest amount of dysarthric cases to the second stage, where k-means clustering uncovers hidden patterns and boundaries within dysarthria severity levels, enabling a more nuanced understanding of the disorder. We applied our methodology to the TORGO dataset, a benchmark in dysarthria research, and evaluated it on the UA Speech dataset. After optimizing the number of clusters, our approach achieved an accuracy of 91% with sentence-based features and 85% with word-based features in clustering. This research extends previous studies by exploring unsupervised clustering to differentiate severity levels in unannotated cases, bridging the gap between controlled datasets and practical applications. Our findings highlight the effectiveness of clustering-driven two-stage analysis in improving dysarthria severity-level classification, with implications for real-world clinical settings.
    DOI/handle
    http://dx.doi.org/10.1007/s10586-024-04748-1
    http://hdl.handle.net/10576/68979
    Collections
    • Computer Science & Engineering [‎2520‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video