عرض بسيط للتسجيلة

المؤلفAlKhater, Rozah
المؤلفAl-maadeed, Somaya
تاريخ الإتاحة2025-12-03T05:08:03Z
تاريخ النشر2025
اسم المنشورCommunications in Computer and Information Science
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/978-3-031-82156-1_18
الاقتباسAlKhater, R., Al-maadeed, S. (2025). Cancer Classification in Breast Imaging via Enhanced CNN Deep Learning Architecture. In: Bennour, A., Bouridane, A., Almaadeed, S., Bouaziz, B., Edirisinghe, E. (eds) Intelligent Systems and Pattern Recognition. ISPR 2024. Communications in Computer and Information Science, vol 2305. Springer, Cham. https://doi.org/10.1007/978-3-031-82156-1_18
الترقيم الدولي الموحد للكتاب 978-303182155-4
الرقم المعياري الدولي للكتاب18650929
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68985
الملخصA major factor in determining the future probability of breast cancer is the early and precise identification of breast abnormalities, which includes differentiating between malignancy, normal tissues, and suspected cancer. The mortality rate can be reduced if the condition is detected early. It takes a lot of time for doctors and radiologists to examine histopathological images for breast cancer manually. The use of deep learning algorithms for medical imaging issues has garnered much interest due to its rapid progress. This paper introduces a novel customized 20-layered Convolutional Neural Network (CNN) architecture to avoid manual analysis and streamline the classification process. The customized proposed CNN is compared with the ResNet50 model, in which the initial layers are freezed, and the last layers are modified and fine-tuned to achieve the optimized model. Among the two models, the highest training and testing accuracy of 99.03% and 92.90%, respectively, is achieved by the proposed CNN model. The proposed model outperforms the benchmarked models on the same dataset.
راعي المشروعResearch reported in this publication was supported by the Qatar Research Development and Innovation Council [ARG01\u20130513-230141]. The con tent is solely the responsibility of the authors and does not necessarily represent the official views of Qatar Research Development and Innovation Council.
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعAI
CNN
deep learning
medical imaging
ResNet
transfer learning
العنوانCancer Classification in Breast Imaging via Enhanced CNN Deep Learning Architecture
النوعConference
الصفحات227-239
رقم المجلد2305 CCIS
dc.accessType abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة