• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel polysulfone ultrafiltration membranes incorporating polydopamine functionalized graphene oxide with enhanced flux and fouling resistance

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0376738820314757-main.pdf (10.56Mb)
    Date
    2021-02-15
    Author
    Alkhouzaam, Abedalkader
    Qiblawey, Hazim
    Metadata
    Show full item record
    Abstract
    Novel PSF composite UF membranes incorporating low loadings of polydopamine-functionalized graphene oxide particles (rGO-PDA) were fabricated and investigated. The functionalization was confirmed using FTIR-UATR, Raman spectra, XPS, and SEM. Pristine PSF, PSF/GO, and PSF/rGO-PDA MMMs were then prepared using the phase inversion technique and analysed using FTIR, SEM, AFM, and contact angle (CA). The cross-section SEM images showed better distribution of rGO-PDA particles in the pores and polymer wall whereas the pristine GO particles aggregate and partially block the pores. Thus, the pure water flux increased with the addition of rGO-PDA without affecting the rejection properties, while the flux decreased with the embedding of pristine GO particles. The highest pure water permeability (PWP) was obtained with PSF/rGO-PDA-0.1 to be approximately twice that of the pristine PSF and PSF/GO-0.1. All membranes exhibited complete rejection of BSA and HA, and showed almost similar performance against different dyes. The FRRs of the pristine PSF after three fouling cycles (FRR3) against BSA and HA were recorded to be 57.8% and 70.7% respectively. FRR3 was enhanced by around 30% with PSF/rGO-PDA composites. The MMMs prepared in this work are expected to have great potential on ultrafiltration and similar studies on other membrane processes.
    URI
    https://www.sciencedirect.com/science/article/pii/S0376738820314757
    DOI/handle
    http://dx.doi.org/10.1016/j.memsci.2020.118900
    http://hdl.handle.net/10576/69373
    Collections
    • Chemical Engineering [‎1312‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video