• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical simulation of rotation dominated linear shallow water flows using finite volume methods and fourth order Adams scheme

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0045793012000813-main.pdf (598.9Kb)
    Date
    2012-06-15
    Author
    Beljadid, A.
    Mohammadian, A.
    Qiblawey, Hazim
    Metadata
    Show full item record
    Abstract
    In this paper, we study the performance of some finite volume schemes for linear shallow water equations on a rotating frame. It is shown here that some well-known upwind schemes, which perform well for gravity waves, lead to a high level of damping or numerical oscillation for Rossby waves. We present a modified five-point upwind finite volume scheme which leads to a low level of numerical diffusion and oscillation for Rossby waves. The method uses a high-order upwind method for the calculation of the numerical flux and a fourth-order Adams method for time integration of the equations and is considerably more efficient than the fourth-order Runge–Kutta method that is usually used for temporal integration of shallow water equations in the presence of the Coriolis term. In the method proposed here, the Coriolis term is treated analytically in two stages: before and after calculation of computational fluxes. It is shown that the energy dissipation of the proposed method is considerably less than other upwind methods that are widely used, such as the third-order upwind method.
    URI
    https://www.sciencedirect.com/science/article/pii/S0045793012000813
    DOI/handle
    http://dx.doi.org/10.1016/j.compfluid.2012.02.026
    http://hdl.handle.net/10576/69380
    Collections
    • Chemical Engineering [‎1312‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video