عرض بسيط للتسجيلة

المؤلفSenouci, Ahmed B.
المؤلفAbdul-Salam, M. Ayman
تاريخ الإتاحة2009-11-25T13:04:40Z
تاريخ النشر1998
اسم المنشورEngineering Journal of Qatar University
الاقتباسEngineering Journal of Qatar University, 1998, Vol. 11, Pages 117-132.
معرّف المصادر الموحدhttp://hdl.handle.net/10576/7890
الملخصThis paper discusses the development and the implementation of a neural network for the depth prediction of singly-reinforced rectangular concrete beams. The procedure of the American Concrete Institute (ACI-318 1995) was used as the basis for the development of the proposed network. A training set of 56 cases was used to train the network. The network adequately learned the training examples with an average training error of 3.0 percent. A testing set of 19 cases was used to validate the network. The network was able to predict the correct beam depth with an average error of 6.8 percent. A case study, where 878 new design cases were considered, was conducted to demonstrate the system's generalization and fault-tolerance properties. The network showed good generalization and fault-tolerance properties since it was able to predict the correct beam depths with an average error of 9.2 percent
اللغةen
الناشرQatar University
الموضوعEngineering: Research Papers
العنوانPrediction Of Reinforced Concrete Beam Depth Using Neural Networks
النوعArticle
الصفحات117-132
رقم المجلد11
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة