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ABSTRACT 

The self-gravitating instability of a radiating gas cloud possessing variable streams is investigated. The self-gravitating force 

is destabilizing according to restrictions. the radiation has a strong stabilizing influence for all short and long perturbation wave­

lengths. 

In the presence of radiation, the uniform streaming has no influence at all on the instability of the model and the radiation 

overcomes the self-gravitating instability of gas cloud. Such study has correlation with a stellar cluster formation from frag­

mentation of interstellar matter. 
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INTRODUCTION 

The oscillation of a homogeneous fluid under the effect 

of its pressure gradient force only was elaborated by 

Rayleigh (1945). Chandrasekhar and Fermi (1953) stud­

ied the instability of fluid medium under the influence of 

the self-gravitating force in addition to the fluid pressure 

gradient force. 

The Nobel prize winner (1986), Chandrasekhar (1981) 

made several classical modifications. Moreover, he 

reviewed most of the published works in this domain, for 

related topics, see also Chandrasekhar (1957). The gravi­

tational instability of a streaming fluid medium was dis­

cussed by Sengar (1981 ). Radwan and Elazab (1988) 

examined the effect of Lorentz force on the gravitational 

instability results obtained by Sengar (1981). Radwan 

(1996) investigated the capillary-instability of a liquid jet 

under the influence of the self-gravitating force. 

It is well known that if a fluid medium is unstable under 

any kind of condition, it will be due to that the acting 

external forces are predominant over the fluid pressure 

gradient force. However, Shih-i, Pai (1966) proved, for 

Earth's atmosphere, that the pressure effect due to radia­

tion cannot be neglected in comparison with that of gas 
4 

pressure even at temperature about $1 0 K, see also 

Vranjes and Cadez. 

In this present work the effect of radiation on the self­

gravitating instability of a gas cloud with streams of vari­

abies velocity distribution function of coordinate is dis­

cussed. 

FORMULATION OF THE PROBLEM 

Consider an unbounded gas cloud under the combined 

effect of self-gravitating variable inertia, gas pressure gra­

dient and radiation forces. The gas medium is assumed to 

be homogeneous, inviscid and compressible. We are 

interested here to identify the inertia and radiation forces 

behaviors on the self-gravitational instability of the 

model. 

The exchange instability principle occurs as the tem­

perature is decreasing function of coordinate. So we may 

assume that the temperature of the gas medium in the 

unperturbed state is constant to ovoid the exchange insta­

bility principle. For the problem at hand, the governing 

equations are as follows. 

The vector equation of motion: 

r(~~ =u.Du) = -DP -rD</J (1) 

Equation of continuity: 
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~ + 11 (pu) = 0 
(2) 

Newtonian self-gravitating equation: 

,')/ =</J =4 p G p (3) 

Radiating equation of state: 

ar ap p (- - (T -11) T- = 0 at at 
(4) 

Here p is the gas cloud mass density, 1!. the velocity 

vector, T the temperature at time t, <1> the self-graviting 

potential, G the gravitational constant and P ( = Pg + Pr) 

the total pressure which is the sum of the gas kinetic pres­

sure Pg and pressure Pr due to radiation: 

Pg =R p T 
(5) 

_] 4 
Pr -JaR T (6) 

where aR is the Boltzmann constant and R is the gener­

al constant of gas. Here equation (3) takes the form ..12 ¢ 

= 0 for empty space. Equation (4) is the equation of state 

that indicates adiabatic changes in an inclosure containing 

matter and radiation. For more details concerning equa­

tion ( 4) we may refer to Chandrasekhar (1957), where we 

find: 

(7) 

with 

T1 -b =[b +12(y-1)(1 -b)] =(y-1) (4 -3b)2 (8) 

(9) 

where y is the ratio of the specific heats. In the absence 

of radiation 

Therefore, 

b = 1 

T = T1 =y 

(10) 

(11) 

(12) 

However, if the radiation is taken into account such that 

its pressure Pr is much greater than the gas pressure Pg 

(i.e. pr > > pg), we have 

T -T _ _± 
- 1 -3 (13) 



Let the gas cloud medium in the unperturbed state (i) 

possess streams moving in the x-direction with speeds 

U(z) varying along the z-direction of the Cartesian coor­

dinates (x, y, z) (ii) be with constant T and constant tem­

perature To and (iii) be optically thick and the black-body 

radiation condition be assumed. 

H =Ho + H 1 + ........ . (14) 

where H stands for any one of r, u, p,., Pg P, T and l/J. 

Quantities with subscript "0" indicate their values in the 

unperturbed state while those with subscript "1" indicate 

their values in the perturbed state. 
For small departure from the streaming unperturbed 

state, every physical quantity H(x,y,z;t) may be expressed, 

up to second order, in the form 

By inserting expansions (14) into the basic equations 

(1 )-( 6), the linearized perturbation equations relevant to 

the present problem are given by 

(15) 

av av ap I ar I a<I>I 
Po (at + U ax) + RT0 ay + Rp0 ( 1 +4Q) (}y +Po (}y = 0 (16) 

( aw uaw)+RTaPI R (1 4QJari ()q>l o 
Po at + ax o az + Po + az +Po az = (17) 

(api +Uapi) +p au +cw +aw) =O 
at ax 0 ax ay az (18) 

a2A a2A a2A 
_or_I + _or_I + _or_I = 4nG p 
ax2 ay2 az2 I 

(19) 

a a _ a a 
Po (at + U ax ) TI - ( r -1) To ( di + U dx) pI (20) 

Here D = d/dz, (u, v, w) are the components of the veloc­

ity in perturbed state while pi, TJ and l/Jl are, respective­

ly, perturbations in density, temperature and self gravitat­

ing potential of the gas cloud. The factor is Q ~ /tfl R l 
Jpt}l. 

EIGENVALUE RELATION 

As it is usual for the stability problems, and based on 

the linearized theory of perturbation technique, we 

assume that the time space dependence of the wave prop­

agation in the perturbation state is in the form 

the ratio of the unperturbed radiation and gas pressure, 

viz, 

with 

Q =Pro 
Pgo 

(21) 

(22) 

(23) 

where kx, ky and kz are (any real values) the wave num­

bers in the three space directin of the Cartesian coordi­

nates (x, y, z) whiles is the oscillation frequency. By uti­

lizing the space-time dependence (24) for the relevant 

perturbation equations (15)- (20), we get 

p 0 Su +ip0 wDU +RTokxPI +(1 +4Q)kxTI +p0kx¢I =0 

p 0 Su + RT0kyPI +Rpi (1 +4Q)kyTI +pokyifJI =0 

Spi+Po(kxu +kyv +kzw) =0 

(25) 

(26) 

(27) 

k
2

¢JI +41t G PI =0 

PoT I - (r -1) ToP I = 0 

p0 TI-(r -1)ToPI =0 

S =U(z)kx-s 
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(28) 

(29) 

(30) 

(31) 



where 

s 0 -iDU(z) 

0 s 0 

0 0 s 
kxro kyro kzo 

0 0 0 

(32) 

Akx 

Aky 

Akz 

s 
4nG 

is the net wave number of the wave propagation. By 

simplifying the system of equations (25)-(30), we obtain 

the following set of linear homogeneous equations 

kx u 

ky v 

kz w =0 (33) 

0 rl 

~ cfJJ 

where A =( ~T )[1 + cr - 1) o + 4Q)l, 
0 

DU(z) 
dU(z) 
dZ 

(34) 

It is worthwhile to mention here that the set of linear 

homogeneous equations (33) in the absence of radiation, 

coincide with those given by Radwan (1988 eqs. (29) as 

we neglect the magnetic field influence there) and with 

In order to transform this complex equation to a real 

one, let us write 

those given by Sengar ( 1981 eqs. (8) there). 

Now, for non-trivial solution setting the determinant of 

the equations (33) equal to zero, following eigenvalue 

relation is obtained 

(35) 

S =is =ia(z}kx -is =s +ia(z}kx (36) 

with 

Then equation (35) becomes 

DISCUSSIONS 

Equation (38) is the desired eigenvalue relation of radi­

ating self-gravitating gas cloud possessing variable 

streams as function of the coordinate z. It relates the oscil­

lation frequency or rather the growth rate with the differ-

Relation (39) shows that the gas medium is stable for all 

short and long wavelengths, and is true in the real situa­

tion. 

s = - ia 
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(37) 

(38) 

ent parameters of the problem. The relation (38) is a gen­

eral eigenvalue relation from which we could deduce 

other published works under appropriate simplification. 

If the homogeneous and non streaming gas medium is 

perturbed in the absence of self-gravitating and radiating 

forces, relation (38) becomes 

(39) 

If the gas cloud is not radiating and non-streaming in 

the unperturbed state, i.e. $A=O$, $U(z)=O$, the disper­

sion relation (38) reduces to 

(40) 



This relation coincides with that derived by 

Chandrasekhar (1981). The discussions of equation (40) 

called Jean's wave number, with 

C =(gPgol Po) 112, 

In the absence of radiation force, while the gas medium 

streams uniformly (with velocity !&.0 = (U,O,O)$ i.e. 

(DU=O) and acted upon by the combined effect of the 

This relation shows that the streaming has strong desta­

bilizing effect. This means that the inertia force increases 

the self-gravitating unstable domains and does enlarge 

Jean's critical wave number. 

Ifthe non-streaming gas cloud medium is acted upon by 

the combined effect of the self-gravitating, gas pressure 

gradient and radiating pressure gradient forces, relation 

(38) reduces to 

2 2 s - PoAk + 4nGp0 = 0 (44) 

Based on the time dependence given by equation (24), 

the radiating self-gravitating gas cloud is stable as 

(45) 

In view of equation (44), nothing that k - 2n , 
r 

I'A4,C
2 -yRT0 =gpgo/ p0,'Aj -nc; (p0G) 

restriction ( 45) reveals that the radiation wave number kr 

satisfies the condition 

kr ~ (l.r [ 1 + (r -1) (1 +4Q)}) 112kj (46) 

This condition leads to a very important result in the 

theory of stability that the radiation has strong stabilizing 

effect and could suppress completely the self-gravitating 

instability of the gas cloud. 

As the radiating self-gravitating gas cloud streams uni­

formly with velocity l&.O = (U,O,O) the general eigenvalue 

relation (38) becomes 

2 2 2 2 s -2Uk;xS +(U kx +4nGp0 -poAk) = 0 (47) 

This quadratic equation ( 4 7) has imaginary roots iff 

( -2Uk;xS) 2 -4(U2k~ +4nGp0 -poAk2
) < 0 (48) 

from which we obtain 

(49) 
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reveal that the gas medium becomes unstable for all per­

turbations of wave number less than a critical value 

(41) 

r =g, (42) 

self-gravitating and gas pressure gradient forces, relation 

(38) yields 

(43) 

The restriction ( 49) for streaming gas cloud is exactly 

the same as that which could be obtained from (44) for 

non-streaming gas cloud. Therefore, we conclude that the 

inertia force due to uniformly streaming gas cloud has no 

influence, at all, on the instability of a self-gravitating gas 

cloud in the presence of radiation. 

Now, let us return to the general eigenvalue relation 

(38), which gives the stability criteria for radiating self­

gravitating gas cloud possessing variable streams as func­

tion of coordinate z in x-direction. By using Cardan's 

method ( cf. Abramowitz and Stegum 1970) for solving 

algebraic cubic equation, it is found that equation (38) 

gives, at least, one positive real root. Therefore, a is real 

positive showing that the medium is unstable. 

Consequently, we deduce that the variable stream has 

strong destabilizing influence, which overpowers the sta­

bilizing effect of the radiation. If the streaming effect 

together with that of the self gravitation is equivalent to 

the radiating stabilizing effect, then the model will be 

marginally stable. 
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