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ABSTRACT

In this paper, we are interested in the problem of evaluation of the classical multicolor Ramsey number
R(3,3,3). We first convert it successfully into a'system of clauses of 3-literals each, i.e., a 3-SAT instance.
We then describe the algebraic method of Greenwood and Gleason [2], which is based on the finite field
F, that constructs a monochromatic triangle-free edge-coloring with three colors of the Ramsey graph
K associated with the number R(3,3,3). We propose a simple and new coloring method, completely dif-
ferent from that of Greenwood and Gleason, which colors the edges of the Ramsey graph K , with three

colors without any monochromatic triangle.
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1. Introduction

The classical multicolor Ramsey number R(3,3,3) is the smallest n such that in each 3-coloring of the edges
of the complete graph K with three colors, there is a monochromatic X, (i.e., a monochromatic triangle join-
ing three vertices). In 1955, Greenwood and Gleason [2] has proven that this number R(3,3,3) is equal to 17,
and this is the only non-trivial multicolor known Ramsey number [12]. In [6, 7] we have proposed a sto-
chastic optimization algorithm that constructs a good 3-coloring of the edges of K, with three colors with-
out any monochromatic Ks. Other construction techniques have also been proposed in [2, 3, 8, 9].

In this paper, we show how the problem of evaluation of the classical multicolor Ramsey number
R(3,3,3) can be converted into a satisfiability system having 2160 clauses of 3-literals each and 360 vari-
ables (i.e., a 3-SAT instance). We describe the algebraic method of Greenwood and Gleason [2], which is
based on the finite field F16, that constructs a monochromatic K,-free edge-coloring with three colors of
the Ramsey graph K, . associated with the number R(3,3,3). We then propose a simple and new coloring
method, completely different from that of Greenwood and Gleason, which colors the edges of the Ramsey

graph K| with three colors without producing any monochromatic triangle.

2. Ramsey Number R(3,3,3) Upper Bound

In this section, we prove that the classical multicolor Ramsey number R(3,3,3) is less than or equal to
17. This turns out to prove that any coloring of the edges of the complete graph of 17 vertices, K., with
three colors, must contain at least one monochromatic K, (i.e., one monochromatic triangle).

Theorem 1: The classical multicolor Ramsey number R(3,3,3) is less than or equal to 17. In other
words, no good 3-colorings exist for the edges of K ., without any monochromatic K,.

Proof: Let v, be a vertex of K, and let the 16 edges incident with it be colored with three different col-
ors @, 3, and ¥. So there are at least [¥| = 6 monochromatic edges of color a incident with v, and join it
with the vertices v,, ..., v.. The edges between v, ..., v, should be colored with 8 and y only, in order to
avoid the appearance of a monochromatic K, of color o with the vertex v,. Following the same previous
reasoning, there are at least [5| = 3 monochromatic edges of color f incident with the vertex v,. Let these
edges be {v,, v,}, {v|, v,}, and {v,, v,}. In order to avoid a monochromatic K, of color 8 between the ver-
tices v,, v, and v,, the edge {v,, v,} should be colored with y. Also, to avoid a monochromatic K, of color
B, with the vertices v, v, and v,, the edge {v,, v,} should be colored with y. Now, if the edge {v,, v,} is
colored with f3, we get a monochromatic K, of color ybetween the vertices v, V,and v o and if it is col-
ored with 7, we get a monochromatic K, of color ybetween the vertices v., v, and v,. Thus, no good 3-col-
orings exist for K . without any monochromatic triangle.

3. Converting Ramsey Number to 3-SAT

In this section, we show how the problem of evaluation of the multicolor Ramsey number R(3,3,3) can
be converted into a satisfiability system of 2160 clauses of 3-literals each and 360 variables (i.c., a 3-SAT
instance).

The satisfiability problem, SAT, is a fundamental problem in mathematical logic, inference, automated

reasoning and computing theory. This problem is known to be NP-complete problem [1, 11]. It is also con-
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sidered as a typical case of a large family of computationally intractable problems. The problem can be
presented as follows:

Let fbe a boolean function, f= {0, 1}n — {0,1}. So, f'can be expressed in a Conjunctive Normal Form
(CNF) as follows: f(x) = C, (x) AC,(x)A ..A C.(x) with C,(x) = X VX,V X and j, i € IN. Each
C. 1s called a clause and each x,. 1s called a literal that can be set to True or False. The negation of x,  is
denoted by — X, A set of clauses is satisfiable if there exists a solution that satisfies all clauses. A clause
1s satisfied if at least one of its literals is set to True. Thus, a solution is an assignment of truth values to
the literals that satisfies all clauses [1, 11]. We denote by A-SAT the set of clauses in CNF form having
exactly £ literals in each clause.

Constructing a good 3-coloring of the edges of K|, without any monochromatic K, turns out to satisfy

5

a 3-SAT instance F having 360 variables (x,,, X, ., ..., X, .,

clauses in CNF where the variable )fl.j represents an edge of K of color ¢ joining two different vertices v,

with color ¢ = &, 3, ) and a system of 2160

and V. These clauses are as follows:

1. 120 clauses to say that each edge has at least one color, either « or 8 or ¥. These clauses are of the
following form: X, v ¥, V¥, ), ¥, j=1, ..., 16 with i <}.

2. 120 x 3 = 360 clauses to say that an edge cannot have two different colors i.e., each edge has only
one color. These clauses are of the following form: (— )’fl.’j v )ézj), (— )?l,J, v )@l,’j), — )?U a )giJ), V.i=1 ..,
with i <j.

3. 560 x 3 = 1680 clauses to say that no three edges joining three different vertices are of the same color
(i.e., no monochromatic K;). Note that, the number of K, in K  is equal to (¥) = 560. These clauses are
of the following form:

CENVE V) CE VK v R, (X v d v ), Vi k=1, .16 with § < k).

Thus, the system of clauses F is the following (i, j,k =1, ...16 with | <j <k):

o B Y
Xi;,VXi;VX:;

o B
_I.xi,j_lv.xi,j
Y
—L)uéz,j\/—sz‘,j
B Y
F =9 —1x,-,,~V—|x,-,,-
[24 [ o
_in,jv_—lxj,kv_in,k
B B B
—X:,; V—X  V—Xix
Y Y 14
_in,j\/—ij,k\/—OC,-,k

Constructing a good 3-coloring of the edges of K, consists of satisfying the above system of clauses F.
We mention that F is really a hard 3-SAT instance and cannot be solved with the complete resolution meth-
ods of Davis-Putnam [4] and Duboi et al. [5]. However, the incomplete algorithms of Selman et al. [13]

and Minton et al. [10] are currently the most appropriate methods to solve F.

39




On The Classical Multicolor Ramsey Number R(3,3,3)

4. Greenwood and Gleason Coloring Method ,

In this section we describe the algebraic method of Greenwood and Gleason [2] based on the finite field
F, that constructs a good 3-coloring of the edges K, without any monochromatic K.

Let F be a finite field of 16 elements that can be generated from the pblynomial P(x)=x*+x+ 1 which
is based on a field of only two elements 0 and 1 (with 1 +1 = 0). These 16 elements of the polynomial P(x)
are the following: 0, 1, x, x°, x°, x*, ..., x'* and can be determined as shown in the following table by doing
some algebraic calculations:

0 X=X +x+1

1 X=x+1

X x9=x3+x

2 U ST

© L B B S
xt=x+1 =+ x+1
e tx I B
O=x+ 2 =1

These 16 elements are used as labels of the 16 vertices of the complete graph K. Thus, each edge of
K 1s colored according to the sum of its two vertices, which belongs to only one of the following class-
es: a=x", B=x"" V= x¥2 (with o, B and 7y classes representing the three different colors). For exam-
ple the edge joining the two vertices x° and x° is of color ¥ because the sum of x° and x° is x> + x> + x° + x

=2+t +x=x (with 2x’ = 0, because our field has only two elements 0 and 1) which is of the form
3k+2

x”". Also, the edge joining the vertices x° and x* is of color B because their sum is equal to x* which is of

the form x**"!

. 3 :6 12 4 7 _10 _13
, and so on. We notice that the classes are as follows: a= {1, x’, x°, x’, x'*}, B= {x, x*, x", x'°, x }s

7= {10, x5, 1, x'*}, and the sum of two elements of a given class is not in the class as shown in the fol-

lowing tables:
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Elements of the class o | sum in different classes S or y Elements of the class | sum in different classes ot or y
1+x° =x" x+ x4 =1
1+x° =x" ] x+x =x"
1+x =x' x+x' =x

B 1+x" =x" | x+x? =x"
X+ x° =x X =x
x3+ x9 =X x4+ xlo —x2

i JENNT = 10 NE T
K+ =x 4 10 =0
$0+ x12 =5 o+ 3 =x
L+ x2 =5 ¥104 413 =x
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Elements of the class v |sum in different classes o or B
X+ =X
X +x =1
24 =
[T E
X+ =x'
x5 + x11 = x3
Or 2 =
x8 + x11 _ x7
K54 14 — x6
L 1 — x10

Thus no monochromatic K, exists in such coloring (i.e, &, §, and y partition).

5. Our Coloring Method
In this section, we present our new method of constructing a good 3-coloring of the edges of K with-
out any monochromatic K. The vertices of K| ¢ are denoted by v, . . ., v, and the 3 colors are denoted

by a, B and 7. We write v, — v, to indicate that the edge connecting v, and v, In K  is of color o.
Definition 1 Let S be a set of vertices of K, S= {v,, v,, ..., v_}. The distance d between two different
vertices v, and v, of Sisd=1|v, - vj|. We denote by D°{ 4> @ - ) the set of all possible distances of the
vertices of S of color o.
Our coloring technique consists of splitting K into three different K, (plus the first vertex v ) and to

color each one separately and correctly as follows:

(1) Coloring the first K, of vertices v, ..., v..

This coloring is denoted by C B (v} --., v5) and defined by Dﬁ{], ,, and Dam}.
(2) Coloring the second K of vertices v, ..., v .

This coloring is denoted by Ca’y (Ve ---» v,,) and defined by Da{l, " and Dy{m}.
(3) Coloring the third K, of vertices v, ..., v .. ) ,
This coloring is denoted by C% 5 (v, ---» v,5) and defined by D (1.4) and D 2.3}

We then color the edges connecting (/) and (3); (1) and (2); and (2) and (3) in the following manner:
1.Coloring (/) and (3). This coloring is denoted by X by (V> +oes Vg Vi1 -ens V) and defined by
o 4

Cﬂ,a(vl’ ..., V) and C%B(vu, oo V15) and D (101 2 D (7.812,13) D (69.11,14}"
2.Coloring (1) and (2). This coloring is denoted by X% o B (Vs s Vg Vo --v5 V) and defined by

¥ ¥ .
CB, Vs oo V) and Ca, y(vé, cees Vi) angj D (237,87 D (14.69)° and D 5y Note that, the distances are

calculated only between the vertices (v, ..., v)) and (v, ..., v, ).

3.Coloring (2) and (3). This coloring is denoted by XB, o (Ve ---» v,5) and defined by C, y("@ R

o B Y .
and C% ﬁ(vn, ..-» V;5) and D (14,697 and D 23.7.8) and D 5y Also, the distances are calculated only-

between the vertices (v, ..., v ) and (v, ..., v,
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Finally, we color the edges connecting the first vertex v, with all other vertices v, ..., v ;) as follows:
l.Ya’ 5 7/(vl, cees V)
Xa’ ﬁ’y(vl, coes Vs Vips oo vls) and
X% o p (Vv cees Vs Vs s le) and

X Vg oo Vi) With v, 55 (v, ..., vy and v, 5 (v

ﬂ,%a(ﬁ, v vand vy S (v, ., Vi)

6> 117 "7 715

Figure 1 represents a good edge-coloring monochromatic K,-free of the Ramsey graph K with three col-

ors constructed by our method.

12
13 11

Figure 1: A good 3-coloring triangle-free of the edges of K4 associated with the
Ramsey number R(3,3,3) with three colors constructed by our method.
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6. Conclusion

We have shown how the Ramsey graph coloring problem associated with the multicolor Ramsey num-
ber R(3,3,3) can be converted easily into a 3-SAT instance of 2160 clauses and 360 variables. Thus, it can
be solved using the incomplete stochastic algorithms proposed in [6, 7, 10, 13]. This conversion technique
may be generalized and applied on all Ramsey graphs associated with the classical Ramsey numbers
Rk, k,, ..., k). We have described the algebraic method of Greenwood and Gleason, which is based on
the finite field 7,

have also proposed a simple and new coloring method of the edges of the Ramsey graph k associated

that constructs a good 3-coloring of the edges of k,, without any monochromatic k,. We
with the number R (3,3,3) without any monochromatic triangle.
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