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ABSTRACT 

In this paper, we are interested in the problem of evaluation of the classical multicolor Ramsey number 

R(3,3,3). We first convert it successfully into asystem of clauses of 3-literals each, i.e., a 3-SAT instance. 

We then describe the algebraic method of Greenwood and Gleason [2], which is based on the finite field 

F
16

, that constructs a monochromatic triangle-free edge-coloring with three colors of the Ramsey graph 

K
16 

associated with the number R(3,3,3). We propose a simple and new coloring method, completely dif­

ferent from that of Greenwood and Gleason, which colors the edges of the Ramsey graph K16 with three 

colors without any monochromatic triangle. 
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1. Introduction 

The classical multicolor Ramsey number R(3,3,3) is the smallest n such that in each 3-coloring of the edges 

of the complete graph Kn with three colors, there is a monochromatic K
3 

(i.e., a monochromatic triangle join­

ing three vertices). In 1955, Greenwood and Gleason [2] has proven that this number R(3,3,3) is equal to 17, 

and this is the only non-trivial multicolor known Ramsey number [12]. In [6, 7] we have proposed a sto­

chastic optimization algorithm that constructs a good 3-coloring of the edges of K
16 

with three colors with­

out any monochromatic K.J. Other construction techniques have also been proposed in [2, 3, 8, 9]. 

In this paper, we show how the problem of evaluation of the classical multicolor Ramsey number 

R(3,3,3) can be converted into a satisfiability system having 2160 clauses of 3-literals each and 360 vari­

ables (i.e., a 3-SAT instance). We describe the algebraic method of Greenwood and Gleason [2], which is 

based on the finite field F16, that constructs a monochromatic K
3
-free edge-coloring with three colors of 

the Ramsey graph K16 associated with the number R(3,3,3). We then propose a simple and new coloring 

method, completely different from that of Greenwood and Gleason, which colors the edges of the Ramsey 

graph K
16 

with three colors without producing any monochromatic triangle. 

2. Ramsey Number R(3,3,3) Upper Bound 

In this section, we prove that the classical multicolor Ramsey number R(3,3,3) is less than or equal to 

17. This turns out to prove that any coloring of the edges of the complete graph of 17 vertices, K
17

, with 

three colors, must contain at least one monochromatic K
3 

(i.e., one monochromatic triangle). 

Theorem 1: The classical multicolor Ramsey number R(3,3,3) is less than or equal to 17. In other 

words, no good 3 -colorings exist for the edges of K
17 

without any monochromatic K
3

. 

Proof: Let v
0 

be a vertex of K
17

, and let the 16 edges incident with it be colored with three different col­

ors a, {3, and y. So there are at least r¥1 = 6 monochromatic edges of color a incident with v 
0 

and join it 

with the vertices vi' ... , v
6

• The edges between v
1
, ... , v

6 
should be colored with f3 and yonly, in order to 

avoid the appearance of a monochromatic K
3 

of color a with the vertex v
0

• Following the same previous 

reasoning, there are at least rtl = 3 monochromatic edges of color f3 incident with the vertex VI. Let these 

edges be {v1, v2}, {v1, v3}, and {vi' v
4
}. In order to avoid a monochromatic K

3 
of color f3 between the ver­

tices vi' v2 and v3, the edge {v
2

, v
3

} should be colored withy. Also, to avoid a monochromatic K
3 

of color 

{3, with the vertices v1, v
3 

and v
4

, the edge {v
3

, v
4

} should be colored withy. Now, ifthe edge {v
2

, v
4

} is 

colored with {3, we get a monochromatic K
3 

of color ybetween the vertices vi' v
2 

and v
4

; and if it is col­

ored withY, we get a monochromatic K
3 

of color ybetween the vertices v
2

, v
3 

and v
4

• Thus, no good 3-col­

orings exist for K
17 

without any monochromatic triangle. 

3. Converting Ramsey Number to 3-SAT 

In this section, we show how the problem of evaluation of the multicolor Ramsey number R(3,3,3) can 

be converted into a satisfiability system of 2160 clauses of 3-literals each and 360 variables (i.e., a 3-SAT 

instance). 

The satisfiability problem, SAT, is a fundamental problem in mathematical logic, inference, automated 

reasoning and computing theory. This problem is known to be NP-complete problem [ 1, 11]. It is also con-
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sidered as a typical case of a large family of computationally intractable problems. The problem can be 

presented as follows: 
n 

Letfbe a booleanfunction,f= {0, 1} ~ {0,1}. So,fcan be expressed in a Conjunctive Normal Form 

(CNF) as follows: f(x) = cl (x) 1\ c2 (x) 1\ .. . I\ ci (x) with ci (x) =xi,] v xi,2 v ... xiJ, andj, i E IN. Each 

Cis called a clause and each x .. is called a literal that can be set to True or False. The negation of x .. is 
l l,j l,] 

denoted by_, x . .. A set of clauses is satisfiable if there exists a solution that satisfies all clauses. A clause 
l,j 

is satisfied if at least one of its literals is set to True. Thus, a solution is an assignment of truth values to 

the literals that satisfies all clauses [ 1, 11]. We denote by k-SAT the set of clauses in CNF form having 

exactly k literals in each clause. 

Constructing a good 3-coloring of the edges of K
16 

without any monochromatic K
3

, turns out to satisfy 

a 3-SAT instance F having 360 variables (x
1
,
2

, x
1
,
3

, ••• , x
15

,
16

, with color c = a, {3, iJ and a system of 2160 

clauses in CNF where the variable X.. represents an edge of K
16 

of color c joining two different vertices v. 
y l 

and v .. These clauses are as follows: 
J 

1. 120 clauses to say that each edge has at least one color, either a or f3 or y. These clauses are of the 

following form: x .. v f.. vi..), V. j=l, ... , 16 with i <j. 
l,] l,j l,j l, 

2. 120 x 3 = 360 clauses to say that an edge cannot have two different colors i.e., each edge has only 

one color. These clauses are ofthe following form:(_, X. .v_, 1. .), ( _, x .v-, 1. .), (_, 1. .v_, l. .), \1. j = 1, ... , 
l,) l,j l,] l,j l,j l,) l, 

with i <j. 

3. 560 x 3 = 1680 clauses to say that no three edges joining three different vertices are of the same color 

(i.e., no monochromatic KJ Note that, the number of K
3 

in K
16 

is equal to ( 1
3
6

) = 560. These clauses are 

of the following form: 

(_,.X. v_, xk v_, x. k), (_, 1.. v_, l.kv_, 1. k), (_, l.. v_, I.k v_, l.k), v i,J,k = 1, ... 16 with i < k). 
l,j ], l, l,] l, l, l,j ], l, 

Thus, the system of clauses F is the following (i,j,k = 1, ... 16 with i <j < k): 

a f3 y 

x,.1VXi,Jv x,.1 
a f3 

---.xi,j---,v xi.} 

a y 
---.xi,j v---.xi,j 

F= 
f3 r 

---.xi,j v---.x,,1 
a a a 

---.x i,j v ---.x j,k v ---.x i,k 
f3 f3 f3 

---.x,.j v---.x j.k v---.x,.k 
y y y 

---.x,,j v---.x;.k v---.x,.k 

Constructing a good 3-coloring of the edges of K
16 

consists of satisfying the above system of clauses F. 

We mention that F is really a hard 3-SAT instance and cannot be solved with the complete resolution meth­

ods of Davis-Putnam [4] and Duboi et al. [5]. However, the incomplete algorithms of Selman et al. [13] 

and Minton et al. [10] are currently the most appropriate methods to solve F. 
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4. Greenwood and Gleason Coloring Method 

In this section we describe the algebraic method of Greenwood and Gleason [2] based on the finite field 

F 16 that constructs a good 3-coloring of the edges K
16 

without any monochromatic K
3

• 

Let F 16 be a finite field of 16 elements that can be generated from the polynomial P(x) = x 4 + x + 1 which 

is based on a field of only two elements 0 and 1 (with 1 + 1 = 0). These 16 elements of the polynomial P(x) 

are the following: 0, 1, x, x
2

, x3
, x4

, ••• , x 14 and can be determined as shown in the following table by doing 

some algebraic calculations: 

0 7 
=x

3 
+ x + 1 X 

8 =x2 
+ 1 X 

9 
=x

3 +x X X 
2 10 =x2 

+ x + 1 X X 
3 11 

=x
3 +x2 +x+ 1 X X 

x4=x+1 
12 =x3 +x2 +x+ 1 X 

X5=X2 +X x 13 =i +i + 1 

x6= x3 + x2 14 =i+ 1 X 

These 16 elements are used as labels of the 16 vertices of the complete graph K
16

• Thus, each edge of 

K 16 is colored according to the sum of its two vertices, which belongs to only one of the following class­

es: a= x
3
k, f3 = x

3
k+I, Y = x3k+2

, (with a, {3 and yclasses representing the three different colors). For exam­

ple the edge joining the two vertices x6 and x9 is of color Ybecause the sum of x6 and x9 is x3 + x2 + x3 + x 

= 2x
3 

+ x
2 

+ x = x5 (with 2x
3 = 0, because our field has only two elements 0 and 1) which is of the form 

x
3
k+

2
. Also, the edge joining the vertices x5 and x8 is of color {3 because their sum is equal to x4 which is of 

the formik+I, and so on. We notice that the classes are as follows: a= {1, x3
, x6

, x9
, x12

}, {3= {x, x4
, x7

, x10
, x13}, 

y= {x
2

, x
5

, x
8

, xu, x14
}, and the sum of two elements of a given class is notin the class as shown in the fol­

lowing tables: 

Elements of the class a sum in different classes [3 or r 
3 14 

-----
1+x =x 

Elements of the class [3 sum in different classes a or r 
4 

___ __.__ 

x+x = 1 
-- --

1+x 
6 I 13 =x x+x 7 14 =x 

1 +x9 7 =x 
f--·-· 

-~ 

1+x 
12 11 =x 

x3+x 6 2 =x 

x3+x 
9 

=x 
3 12 =x 10 x+x 

f--------~-~ f----

x+x 10 
I 

8 =x r-----

I 
x+x 13 12 =x 

f-------

x4+x7 I 3 

I 

=x 
--

x4+x 
10 2 =x 

f---- -- --

x4+ x 13 
I =x 11 

x6+ x9 j-
5 =x 

x6+ x12 4 =x 
-~ 

x9+ x12 

I 
8 =x 

------
X7 + X10 

I 

6 =x 

x7 + x13 5 =x 
---

xw+ x13 9 =x 
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Elements of the class y sum in different classes a or {3 
x2 +xs =x 

x2 +x8 
~ 

I =1 

x2 + xll 9 =x 

x2 + x14 13 =x 

xs + x8 4 =x 
--

11 
x5+x =x 3 

x5+x 12 =x12 

x8+ xll 7 =x 

x8+ x14 6 =x 

xll + x14 =x1o 

Thus no monochromatic K
3 

exists in such coloring (i.e, a, f3, and ypartition). 

5. Our Coloring Method 

In this section, we present our new method of constructing a good 3-coloring of the edges of K
16 

with­

out any monochromatic K3. The vertices of Kl6' are denoted by v0, ... , v15 and the 3 colors are denoted 

by a, f3 and r. We write vi ~ vk to indicate that the edge connecting vi and vk in K
16 

is of color a. 
Definition 1 LetS be a set of vertices of K

16
, S = {v1, v2, ... , vm}. The distanced between two different 

vertices vi and vj of Sis d = lvi- vjl· We denote by Da {dl' d2, ... , d) the set of all possible distances of the 

vertices ofS of color a. 

Our coloring technique consists of splitting K
16 

into three different K
5 

(plus the first vertex v
0
) and to 

color each one separately and correctly as follows: 

(1) Coloring the first K
5 

of vertices vi' ... , v5. 

This coloring is denoted by Cf3,a (v1, ... , v5) and defined by D
13
{1,4J and Da{2.3r 

(2) Coloring the second K
5 

of vertices v
6

, ••• , v10. 

This coloring is denoted by C (v6, ... , v 10) and defined by Da{I 4l and Dr{23l. 
a,y ' ' 

(3) Coloring the third K
5 

of vertices v 11 , ... , v 15. 

This coloring is denoted by Cr./3 (v11 , ... , v 15) and defined by Dr{I,4l and D
13
{2.3r 

We then color the edges connecting (J) and (3); (J) and (2); and (2) and (3) in the following manner: 

I. Coloring (J) and (3). This coloring is denoted by X f.l (v1, ... , v5, v 1I' ... , v 15) and defined by 
J3 a a,p,y r 

C/3. a(vl, ... , vs) and Cr. pCvii' ... , vis) and D {Io} , D {7,8,12,13l' D {6,9,11,14}' 

2.Coloring (J) and (2). This coloring is denoted by X f.l (vi' ... , v5, v
6

, ... , v 10) and defined by 
j3y, a, ~-' 

c/3. a(vl, ... , v5) and ca. yCv6, ... , VIO) and Dr{2,3,7,8}' D {1,4,6,9}' and Dr{5}' Note that, the distances are 

calculated only between the vertices (vi' ... , v5) and (v6, ... , v 10). 

3.Coloring (2) and (3). This coloring is denoted by Xf.l (v6, ... , v 15) and defined by C (v6, ... , v 10) 
j3 p,y,a a,y 

and Cr. 13 (v11 , ... , v 15) and Da{I,4.6.9l, andD {2.3.7.8}, and Dr{sr Also, the distances are calculated only-

between the vertices (v6, ... , v 10) and (v11 , ... , v 15). 
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Finally, we color the edges connecting the first vertex v
0 

with all other vertices vi' ... , v15) as follows: 

1. y f3 (vi, ... , vs): 
a, 'y 

xa, {3. y (vi' ... , v5, vll, ... , vl5) and 

Xy, a, f3 (vi' ... , v5, v6, ... , v10) and 

x
13
, r, a (v6, ... , v15) with v

6 
-4 (v1, ... , v5) and v

0 
4 (v6, ... , v10) and v

0 
~ (v11 , ... , v15). 

Figure 1 represents a good edge-coloring monochromatic K
3
-free of the Ramsey graph K

16 
with three col­

ors constructed by our method. 

0 

12 

4 

Figure 1: A good 3-coloring triangle-free of the edges of K16 associated with the 
Ramsey number R(3,3,3) with three colors constructed by our method. 
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6. Conclusion 

We have shown how the Ramsey graph coloring problem associated with the multicolor Ramsey num­

ber R(3,3,3) can be converted easily into a 3-SAT instance of 2160 clauses and 360 variables. Thus, it can 

be solved using the incomplete stochastic algorithms proposed in [ 6, 7, 10, 13]. This conversion technique 

may be generalized and applied on all Ramsey graphs associated with the classical Ramsey numbers 

R (kl' k
2

, ••• , kJ We have described the algebraic method of Greenwood and Gleason, which is based on 

the finite field F
16

, that constructs a good 3-coloring of the edges of k
16 

without any monochromatic k
3

• We 

have also proposed a simple and new coloring method of the edges of the Ramsey graph k
16 

associated 

with the number R (3,3,3) without any monochromatic triangle. 
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