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ABSTRACT 

A variety of shrinkage methods have been proposed for estimation of some unknown 
parameter by considering estimators based on a prior guess of the value of the 
parameter. We compare some of the shrunken estimators for the parameters)! and 6 
of the exponential distribution through simulation. 

INTRODUCTION 

In the estimation of an unknown parameter there often exists some form of prior 

knowledge about the parameter which one would like to utilize in order to get a 

better estimate. Thompson ( 1968 ) described a shrinkage technique for estimating 

the mean of a population. Mehta and Srinivasan ( 1971 ) proposed another class of 

shrunken estimator for the mean of a population and have shown that this class has 

better performance than that of Thompson ( 1968 ) in terms of mean squared error. 

Pandey and Singh ( 1977 ) and Pandey ( 1979 ) described shrinkage techniques for 

estimating the variance of a normal population. Lemmer ( 1981 ) considered a 

shrunken estimator for the parameter of the binomial distribution. His estimator is 

similar to the Pandey ( 1979 ) estimator for the variance of a normal distribution. 

We consider a variety of shrinkage methods for estimating the parameters 

u and 0 of the exponential distribution. These estimators are compared through 

simulation. 

ESTIMATORS CONSIDERED 

Let the length oflife X of a certain system be distributed as 

1 f( X, 6, Jl) =a exp [- (X-)1) I 6 ], 0 ~ ,u ~x. 
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A random sample of n such systems is subjected to test and the test terminated as 

soon as the first r ( ~ n ) items fail. Let x = { x ) < ... , < x ( ) } be the first r 
~ ( 1 r 

ordered failure times. It is well known from Epstein and Sobel ( I954) that 

and 

- r 

e = [i ~ x ( i ) + ( n - r ) x ( r) - nx ( 1 ) ] I ( r- I ), r > I 

"=X -91n 
..- ( 1) ' 

are the minimum variance unbiased estimators of e and u respectively. The 

variances of these estimators age given by 

(see Bain (1978 ), p-I63 ). 

var (e) = e2 I ( r- I ) 

var(.~) = r92 1n2 (r-I) 

The first estimator considered is : 
v 
J.lT = ).l +C(J.l-).l ) 0 ~ c~ I (2.I) 

0 0 

where J.l is the guessed value of J.l. vJ.l is the actual Thompson-type estimator. o T 

Thompson suggested to determine C from 

v o MSE(uT) 

=0, 
~c 

v 2 v 
with MSE ( ).lT ) = E ( ).lT-Jl) , the mean squared error of pT. It follows that 

C = (J.l-].1 )
2

1[().1-).l )2 +var(~)] (2.2) 
0 0 

In practice C in ( 2.2 ) is estimated by replacing the unknown parameters by their 

sample estimates. Substituting the estimated value ofC in ( 2.I ) we have 

( 2.3) 

Secondly, we consider the Mehta and Srinivasan-type estimator ( cf. Mehta and 

Srinivasan ( I97I )for Jl : 
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~ =~-a(~-J.l) exp [-bn2 (r-1)(~-}l )lrS2
], (2.4) 

M o o 

where a and b are suitably chosen positive constants a < b. No general guidance 

has been given on how a and b should be chosen. 

Now we consider the Pandey-type estimator ofp: 
v 
)lp = a [ K)l + ( 1 - K) }l 

0 
] , 0 ~ K ~ 1 ( 2.5) 

with K a constant specified by the experimentor according to his belief in )1 and a 
0 

is determined from .aMSE (p P) /'oa = 0. It follows that a = d 1 }1
2 

I [ K2 var (p) + d )12 ] where d = K + ( 1- K ))1 I )l. Usually a is estimated by 
1 I o 

replacing the unknown parameters by their sample estimates. 

Substituting the estimated value of a in ( 2.5) we obtain 
- -:l. - -2- -
)l = d p31[d p 2 +K2 dPin2 (r-1)] 

P 1 I 
( 2.6) 

with 

Finally, we consider Lemmer-type estimator ( cf. Lemmer ( 1981 ) ) for ).1: 

)1 = K)l+( 1-K))l 
L o 

( 2.7) 

-
which follows from ( 2.5) if a = 1. Of all estimators considered, )lL is the simplest. 

-
As }l P and )l L depend on K, different values of K have been considered. 

All the above approaches can be used to define variety of shrunken estimators for 

the parameter e. We present all the estimators considered in the following table. 

COMPARISON OF ESTIMATORS 

Simulation experiments are used to estimate the mean squared errors for the five 

estimators ofp and e. The procedure is described below : 
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Table 1 
Shrunken Estimators For u and 9 

Parameter Type of Estimator 
Estimator 

Location Thompson ji =u +(P-)1 )3 /[(p-)1 )2 +rS2 1{n2 (r-I)}] 
T ' o o o 

Parameter Mehta-Srinivasan Ji =p-a(p-)1) exp [-{bn2 (r-I)(~-p )lre2 }] 
M o o 

Jl Pandey )i = ~P }i3 1 [d2 }i2 +K2re2 ln2 (r-I )] p I 
~ ~ 

Lemmer )lL = K)l+( I-K))1
0 

Scale Thompson 6 T = e + (S- e )3 I [ ( e- 9 )2 + e 2 I ( r- I ) ] 
0 0 0 

parameter Mehta-Sirivasan eM= 9-a(e-e ) exp [-{b(r-l)(S-9 )IS2
}] 

0 0 

e Pandey e =d2
)1

3 /[d2 S2 +K2 e2 1(r-I)] 
p 2 2 

Lemmer aL = Ke+< I-K)9
0 

~ - - -
d 

1 
= K + ( I - K) )1 

0 
I )l, d2 = K + ( I - K) e 

0 
I e, K is a known constant between zero and one, a and b are 

positive constants a < b,)l and 9 are the guessed values for )1 and 9 respectively. 
0 0 

i 

i 

I 

I 

I 

0 
;: 

"' c 
~ 

"' 'S-.... ;:;· 

{ 
~ 
;: 
z· 
;;:: 
~ 



M.A. Q. YOUSEF, M.S. ABU-SALIH and M.A. ALI 

We generate a random sample of size n from a two-patameter exponential 

distribution, 

f( x, a,p) = ~ exp [- (X-)1) I 9 ], 0 ~}l ~X, 

with )1 = 80, and 9 = 7 .0. The vector 

.! = {x(l) < x(2) < ... < x(r)} 

of the first r-ordered observation is recorded. Then the minimum variance 

- -
unbiased estimators )1 and e of )1 and e respectively are computed using the 

following formulas. 

and 
- r e = [ ! X . + ( n - r ) X - nx ] I ( r- I ). 

i=l (1) (r) (1) 

For a known constant K between zero and one and for specific values of)l and 9 , 
0 0 

the quantities 

- - -
are obtained. Then the estimators )lT' )1M' )lp and )lL of u are computed using the 

- - -
relations ( 2.3 ), ( 2.4 ), ( 2.6) and ( 2.7 ). Similarly, the estimators aT, eM, ep and 

e L of e are obtained using the formulas shown in Table- 1. 

Monte Carlo experiments are repeated 500 times. The average of the 500 sample 

values of each squared error, e.g. (p-)1 )2, is taken as an estimate of the 

corresponding mean squared error which is denoted by MSE ( . ). 

The estimates of the mean squared errors of the various estimators of )l and e and 

the relative efficiencies, e.g. 
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are calculated for n = 30, r = 10, 20, 30, K = 0.20, 0.70, a = 1, 5, b = 20, 50, 

)l = 80, e = 7.0,)1 = 70, and e = 5.0. 
0 0 

Results of the simulation experiments are given in Table 2-3. 

CONCLUSION 

Although the results derived above apply strictly to only very limited cases, they 

are suggestive of some general conclusions regarding the relative efficiencies of the 

various methods. Note from Tables 2 that the MSE of ).IT are always smaller than 

that of other estimators. It is obvious that )IT' )lM' and )lL have smaller mean 

squared error than the minimum variance unbiased estimator Jl· 

The mean squared error of Jlp is always higher than the MSE ofp. The advantages 

ofpT and JlL are most marked when r is small. 

~ 

Further, the comparison statistics in Table- 3 show that the MSE ofOT, eM, and 
~ 

e L are always smaller than the MSE of e, the minimum variance unbiased 
~ ~ 

estimator. The mean squared error ofOP is always greater than the MSE of e. The 

MSE of Thompson-type estimator is smaller than those of the remaining 

estimators. 
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No. of Average of 

failures M.V.U.E. 

r of )l 

10 79.871 

20 80.349 

30 79.841 

Table 2 

Relative Efficiencies of Various Shrunken Estimators of )l 

Sample size n = 30, )l = 80, e = 7.0, )l = 70, e = 5.0 
0 0 

~ ~ 

R (JJ.rl)l) a=l, b=20 a=5, b=50 K=0.20 K=0.50 

~ 
~ ~ 

R (,uM/JI) R (.Upi.U) 

4.43 X 10-4 6.54 X 1 ..:-2 0.544 3.707 3.258 

2.52 X 10-J 0.226 0.998 3.788 2.076 

1.18 X 10-2 0.016 0.012 4.004 2.736 

K=0.20 K=0.50 

~ ~ 

R (,uL/,u) 

2.49 X 10-2 0.249 

2.50 X 10-2 0.255 

2.48 x to-2 0.245 

"' N 



w 
0 

No. of 

failures 

10 

20 

30 

Average of 

M.V.U.E. 

7.358 

7.338 

7.207 

Table 3 

Relative Efficiencies ofVarious Shrunken Estimators of9 

Sample size n = 30, )l = 80, 9 = 7.0, 9 = 5.0 
0 

-
R (9T/9) a=l, b=20 a=5, b=50 K=0.20 K=0.70 

- - - -
R (9M/9) R (9p/9) 

9.34 X 10-3 0.066 0.769 1.150 1.270 

1.48 X 10-2 0.645 1.0 3.965 1.435 

4.13 X 10-2 0.876 1.0 3.978 1.753 

K=0.20 K=0.70 

- -
R (9L/9) 

2.33 X 10-3 0.095 

2.53 X 10-2 0.223 

2.50 X 10-2 0.256 
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