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ABSTRACT 

A piecewise approximation method is described for planar curves. The order of 
classical piecewise approximations is improved. The method exploits the freedom in the 

choice of the parametrization and rises the approximation order up to 4m where m ~ 6 
3 ' 

is the degree of the approximating polynomial parametrization. For the case of m = 5, a 
quintic polynomial curve is constructed which approximates with order 8. Moreover, we 
show for a class of curves of non-zero measure that the optimal rate 2m is achieved. 

INTRODUCTION 

Parametric polynomials are used in CAGD for 
approximation and interpolation purposes or, more 
generally, for geometric modelling applications. 

The question to approximate curves and surfaces 
within a certain tolerance by polynomials and splines 
arises often in working with CAGD, various error 
estimations have been obtained, see [1, 6, 11]. In this 
paper we describe a piecewise approximation procedure 
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for planar curves which significantly rises the standard 
piecewise approximation rate up to order 2m, where m 
is the degree of the approximating polynomial. A 
quintic piecewise approximant is described in section 4. 
The quintic approximant has approximation order of 8 
and a third order contact at each knot of the segment. 
The improvement of the Hermite approximation to 

order of 4m where m ;:::: 6 is the degree of the 
3 , 

approximating segment, is given in section 2 with 
proof. In section 3, the highest possible approximation 
order of 2m is achieved for a class of curves of non-zero 
measure. 

Let 

be a regular smooth planar curve. We want to 
approximate C in the interval [t

0
, t

1
];t

0
, t

1 
E R; h = t1-

- to, using information at the end points to and t1 by a 
polynomial curve 

P . t ~ (X(t) \ 
· Y(t) } 

where X(t) and Y(t) are polynomials of degree m. 

If we choose for X(t) and Y(t) piecewise 
approximation polynomials of degree m, then, as known 
r approximates C with order m + l, i.e. 

{j(t)- X(t)}= O(hm+l ), {g(t)- Y(t)} = O(hm+l ). 

The improvement over the standard order m + l is 
possible because the parametrization of a curve is not 
unique. The first improvement was obtained in [3] by 
interpolating the position, the tangent, and the 
curvature at each knot. This construction yields a 6th 
order of accuracy. In [14] and [15] approximation 
methods are described for planar curves which improve 
the standard rate obtained by local classical 
approximation and achieve the order 4m . The methods 

3 

give not only quantitative improvements but also 
qualitative improvements over the Taylor 
approximations. 

Without loss of generality we may assume that 

to= 0, t1 = 1, (f(O), g(O) = (0,0), (f\0), g1(0) = (1, 0), 

so that for small t we can parametrize C in the form 

c : t ~ X(t) ~ (:g~(t)))' t E R. 
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p approximates C with order a.1 + a.2; a.1 , a.2 EN, iff 

i.e. iff 

(d)' . dt {(b(X(t))- Y(t)}i,~o =O,J = 0,1, ... ,a1 -1, 

(d)' . dt {(b(X(t))- Y(t)}i,~o =O,J = 0,1, ... ,a2 -1, (1) 

and 

X (1) = 1, X(O) = 0. 

If one normalizes the polynomial approximation by 
choosing x'(O) = 1, then the polynomial approximation 

is determined by 2m - l free parameters. 

Conjecture: A smooth regular planar curve can at two 
points, in general, be approximated by a polynomial 
parametrization of degree s m with order 2m. 

This conjecture is illustrated in [15] by constructing a 
cubic polynomial curve r, which approximates the curve 
C with order 6. They have a second order of contact. 

Improvement of the order of Hermite approximation 

Theorem 1 improves the standard order of Hermite 

approximation by m . By an approximate choice of the 
3 

parameters X, 4m equations of (l) are solved. 
3 

Theorem 1: Form> 5, define 

[m+2] [m+n,] n, = ~3- andn 2 =m+n1 - -

2
-

Then, for almost all <<PI' q,2, .... , "' ) E R m+n, there 
'f'm+n1 

is a solution for the first n2 equations at t = 0 and the 
first m + n1 equations at t = 1 in (1). 

Proof of Theorem 1 

For the proof, the following formula for the 
derivatives of <(J(X(t)), will be needed: 

(:J {91(X(t))}l,~o,l= ~ c(l, lpl, ... ,p;)91;,X PI ... xp, 

P 1+ ... + P; =I 

(2) 

For l = 1, 2, ... , m, where <Pi and Xi are the ith 
derivatives of <P and X at t = 0 or t = 1 as indicated and 
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c(/, il P1 •... , Pi) = c(/, i) are strictly positive constants 
which depend on i, PI. ... , Pi and I. 

To simplify the proof, we take m = 6 k + 1; it is easy 
to prove the other cases, only with a change of the 
indices. To prove Theorem 1, (1) must be solved for j = 
1, ... , 4k at the left side of interpolation; i.e. t = 0 and 
for j = 0, 1, ... , 4k at the right side of interpolation; i.e t 
= 1. We proceed as follows: (1) is solved at the left side 
for Yi(O) fori = 1, ... , 4k and substituted into (1) at the 
right side for j = 0, 1, ... , 4k and then solve it for Yj(O) 
for j = 4k +1, ... , 6k + 1 and for Xj(O) withj = 4k + 1, 
... , 6k + 1. 

To simplify the arguments of the proof, the following 
notations are used 

X2= X1(0), ... , X2k(O), 

X~ = Xzk+J(O), ... , Xtk(O), 
0 " YL = Y1(0), ... , Y2k(O), 

Y~ = Y2k+I(O), ... , Y4k(O), 

X~ = X1(1), ... , X2k(l), 

X I . 
R = Xzk+J(l), ... , Xtk(1), 

Y: = Y1(1), ... , Y2k(1), 

Y~= Yzk+I(l), ... , Y4k(l). 

Choosing for the left side of interpolation 

and assuming that 

~~ (0), ... , ~4k(0) "# 0. 

Substituting (3) into (1) one gets 

0 
Y L = Co(<i>r.) 

and 

(3) 

where Co(<i>r.) and CI(<i>r.) are vectors, and Cz(<i>r.) is a 
matrix which contains only derivatives of~ at t = 0. 
There are only terms of this form. Suppose there exists 
a term of the other form 

cXr,. (O)Xr, (0); 

r1 + rz s4k which contradicts r1, r2 > 2k. 

Choosing for the right side 
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X1(1) = 1, X2 (1) = ... = X2k (1) = 0 

and assuming that 

~1(1), .... , 4>4k(1) "# 0. 

Substituting ( 4) into ( 1) yields 

0 
Y R = Bo (4>R) 

and 

(4) 

(5) 

where Bo( 4>R) and B1 ( 4>R) are vectors, and Bz( 4>R) is a 
matrix which contains only derivatives of 4> at t = 1. 

The interpolation problem is uniquely determined by 
4k + 1 Hermite points at the left side and 2k + 1 points 
at the right side of interpolation, i.e. 

yl 
R 

Substituting this into (5) yields 

Because 

gives 

B2(4>R)X~ + B1(4>R)- C(~)- AzCz(<i>r.){DoX~ + D1X~ 
I + D2XR} = 0 

i.e. 

The matrix of coefficients of X~ has only elements 

oftheform 

{
ei,J; j>i }· 

M;_1 = e;,1 +d(i,jM-j+1 ; j~i ,;=L. .. ,2k,J=l, ... ,2k, 

where ei,j are independent from the derivatives of ~ at t 
= 1 and d (ij) are positive constants. 

The determinant of this matrix has the form 
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2k 

f1 d(i, i) }t/Jizk (l) + c¢12k-J (l) + ... 
i:;::;} 

This polynomial of <1>1 is not identically zero, because 

the coefficient of <P ~k (1) is not equal to zero, and the 

other terms contain <jl1 ( 1) only with lower degree than 
2k, which completes the proof of Theorem 1. 

Optimal order for a special case 

We cannot prove the conjecture, in general. Here the 
conjecture is confirmed for a special case, by finding a 
set of coefficients (<j>J, ... , <P2m-J) of non-zero measure, for 
which the optimal piecewise approximation of order 2m 
is attained. To this end, equations 1, 2, ... , m-1 in (1) at 
t = 1 are viewed as a non-linear system 

F(¢,V) = ( ~ J {¢(X(t)- Y(t)} 1,~ 1 = 0,/ = 1,2, ... ,m -1 

with 

V= (Xm-1(1), ... , XI(1)) 

and 

<D = (<j>J(O), ... , <i>m-1(0), <jl(l), <i>I(1), ... , <l>m-1 (1)). 

We show that this system is solvable in a 
neighbourhood of a particular solution ( <P*, X*). 

Theorem 2 If 

X1(0) = 1, X~ (1) = 0, <P; (0) = 0, for j = 1, ... , m- 1 

* 1 = • =<{lforj=~ 
<P ( ) 0 and <P J (1) - 0 otherw1se 

then (<jl*, X*) is a solution ofF(<D, V) = 0, where 

X*= (X:_1 (1), ... ,X~ (1) 

and 

* * * * <D = (<jl 1 (0), ... , <Pm-1(0), <jl*(1), <jl 1 (1), ... , <P m (1)). 

Moreover, there exists a neighbourhood of <D* such 
that the non-linear system ( 1) is uniquely solvable. 

Proof of Theorem 2 

The implicit function theorem will be applied for the 
proof of Theorem 2. First, it is verified that ( <P*, X*) is 
a particular solution of F ( <jl, V) = 0 and show that the 
Jacobi matrix Fv ( <P*, X*) is invertible. Hence, X could 
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be written as a function of <D in the neighbourhood of 
<D = <D*. 

Recall that 

,h • (0) 0 . 1 d ,h * {1 for j = 1 
'I'] = ,J = ' ... ,man 'I' j (1) = 0 otheTWise (6) 

Substituting (6) into (2) fort= 0 for l = 1, 2, ... , m-1, 
the sum involves only zero terms_ Substituting (6) into 
(1) fort= 0 for 1 = 1, 2, ... , m- 1, gives Yi(O) = 0 fori = 
1, ... , m - 1. Further substituting these in (1) fort = 1 
for l = 0, gives Y m(O) = 0, and substituting this and (6) 
into (2) for t = 1 for l = 1, 2, ... , m - 1, the F derivative 
involves only terms of the form 

<i>I(1) Xz(l) = 0. 

Therefore, from ( 1) we get the system 

F (<D*, V) = AV= 0, 

where 

This system has the solution V = X* with 

* * • X 1 (1) = X 2 (1) = ... = Xm-I (1) = 0. 

To verifY the hypotheses of the implicit function 
theorem, the Jacobian is computed at the points 

* * * * * <D = (<jl 1 (0), ... , <P m-1 (0), <jl*(l), <P 1 (1), ... , <P m-1 (1)) 

and 

* - * * X -(Xm_1(1), ... ,X 1(1)) 

with 

* Xi (1) = 0, for j = 1, ... , m- 1 

* . • {ol <Pi (0) = O,J = 1, ... , m and <Pi (1) = 

Since 

F(<D*, V) = A<D*, V). V 

then 

for j = 1 
otherwise 
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Fv(<l>*, V) = Av(<l>*, V).V + A(<l>*,V). 

So the Jacobi matrix is 

Fv( <l>*, X*)= A( <l>*, X*) 

r 

0 0 
0 0 

0 0 . 

= ~ ;,'(!) .:. 
;,(!) 0 ... 

0 "'(1)1 "'(!) 0 

0 0 

0 0 
0 0 

which is trivially invertible. Hence, the hypotheses of 
the implicit function theorem are satisfied at the (<l>*, 
X*), which completes the proofofTheorem 2. 

Example 

We shall illustrate this method by constructing a 
polynomial curve of degree 5. To illustrate the 
conjecture and achieve the high order approximation of 
10 for quintic polynomial approximation, we will set a.1 
= a.2 = 4 in (1) then we get 

X(O) = 0, 
Y(O) = <j>(O) = 0, 
<j>1(0) X,(O)- Y,(O) = 0, 

MO)X (0) + <j>,(O) X2(0)- Y2(0) = 0, 

<j>3(0)X (0)+3<j>2(0) .X,{O)X2(0)+ <j>,(O) X3(0)- Y3(0) = 0, 

<j>4(0)X (0)+6<j>3(0)X X2(0)+3MO)X (0) 

+ 4<j>4(0)X,(O)X3(0)+ <j>,(O)X4(0}-Y4(0) = 0, 

X(l) = 1, 
<j>(1}-Y(l) = 0, 
<j> 1(1) X1(1}-Y1(1) = 0, 

M1)X (1) + <jJ,(1) X2(1)- Y2(1) = 0, 

<j>3(1 )X (1 )+ 3<j>2( 1) X,( 1 )X2(1 )+ <j>,(l) X3(1)- Y 3(1) = 0, 

<j>4( 1 )X ( 1 )+6<j>3(1 )X X2(1 )+3M 1 )X ( 1) 

+ 4<j>4(1 )X,(l)X3(1)+ <j>,(l )X4(1 }-Y4(1) = 0. 

We write Xi, Yi and <l>i for the ith derivatives of X(t), 
Y(t) and <j>(t) at the associated point 0 or 1. The first two 
conditions determine the constants ao and b0 in the 
quintic polynomials 

5 5 

X(t)=,La;t; andY(t)=,LbJ;,ai. biER 
z=O i=O 

Because the lOth equation is quadratic in X1(1), it is 
not possible to solve it explicitly in one of the derivaties 
of X. To solve this system, an offering of some 
information must be made. Setting X1(0) = X1(1) = 1 
will make this system easier to be solved. Which means 
that the information from the 6th and the 12th equations 
are lost and there is a contact of order 3 at both end 
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points. Setting X1(0) = X1(1) = 1, the equations of the 
above system are reduced to 

<j>,(O)- Y,(O) = 0, 
MO) + <j>,(O)X2(0)- Y2(0) = 0, 
<j>3(0) +3<j>~(O) X2(0) + <j>,(O)X3(0)- Y3(0) = 0, 

X(l) = 1, 
<j>(1)- Y(l) = 0, 
<j>,(1)-Y1(1)=0, 
<j>2(1) + <j>,(l)X2(1)- Y2(1) = 0, 
<j>l1) + 3M1) X2(1) + <j>,(l)X3(1)- Y3(1) = o. 

Now, there is only a linear system of equations. 
which can be solved for the remaining derivatives of 
X(t) and Y(t); i.e. X3(t), ~(t), Xs(t), and Y,(t), Y2(t), 
Y3(t), Y4(t), Y5(t). Numerical examples are given. The 
approximations of parts of the circle are done using this 
method. 

(a) Setting X1(0) = X1(1) = .66195 and approximating 
at the points (- 0.3826834325, 0.9238795325) and 
(.9238795325, .3826834325) one gets 

X(t) =- 0.055565392892994131094 
+ 1.0237201933943977493 t 
+ 0.3672432488642681268 e 
- o.229105291052o6oo38889 e 
- 0.105089335530651 73344 t4 

-0.033546157929339175331 t5
. 

Y(t) = 0.9981865622770127167 
+ 0.0554729957065407223534t 
-0.50631948157512544842 t2 

- o.35172645562901384456 e 
+ 0.06199384710527158041 t4 

- o.oo35417702429852274387 e. 
(b) Setting X1(0) = X1(1) = .965 and approximating at 
the points (-0.3826834325, 0.9238795325) and 
(.270598050, 0.962692420) one gets 

X(t) = 0.0010527489711903119357 
+ 1.0157489230526967376 t 
- o.o29434032687318459829 e 
-0.16214269909393404985 e 
+ 0.0096732854611436198324 t4 

+ 0.0011885985329860970733 t5
. 

Y(t) = 1.0000004594258282467 
- 0.0010728371329699749934 t 
-0.51587409330536665867 t2 

+ o.o29584805871826387828 e 
+ 0.0316097336029446706612 t4 

+ o.ooo41202431625218416644 e. 
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(c) Setting X1(0) = X1(1) = 0.9665 and approximating 
at the points (-.3826834325. .9238795325) and 
(.270598050, . 962692420) one gets 

X(t) = 0.0010202622176091443005 
+ 1.0150337285916156277 t 
-0.028373809106483280041 t2 

-0.15469569302896395223 e 
+ 0.010167009562341893909 t4 

-0.00016835774738197016347 t5
. 

(d) Setting X1(0) X1(1) .9895041 and 
approximating at the points (-.3826834325, 
.9238795325) and (-.0560426913, .9984283734) one 
gets 

X(t) =- 0.00090892306252014866828 
+ 0.97752823829615332313 t 
-0.12094111658644028232 e 
- o.t6498095444518701443 e 
+ 0.035997331744010975799 t4 

- o.ooo33765637776034683642 e. 

Y(t) = 0.99999958632476606015 
+ 0.()0088844204299832907671 t 
- 0.47789331926964423838 t2 

+ 0.11846026754612611498 e 
+ 0.039347337459467338029 t4 

- o.oooo92565709995766803576 e. 

Fig. 1 shows the errors of approximating the circle 
given in (a) multiplied with 10-3

• in (b) mult. with 10·5• 

in {c) mult with 10-7
• and in (d) mult. with 10" 

Error 

Fig. 1: Errors ofapp. circle at 4, 8, 8. 16 pts x 10-3, w·'. 
10'7, 10'7 resp. 

To calculate the order of approximation. we set the 
error of approximating the circle at n points e., = ~n"­
where a can be estimated from the consecutive errors 
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In( en) -In( em) 
a = -:--~-:--~ 

ln(n) -ln(m) 

We use this formula and information from Fig. 1 to 
construct Table l. 

Table 1 
Rate of quintic approximation 

No. of points Error Rate 

4 .52E-3 

8 .11E-5 -8.9 

16 .42E-8 -8.1 

Fig. 2 shows the error of approximating the circle given 
in (c) for all t E (-2, 2.9). 

0. 005 

-2 

-0.005 

-0.01 

Fig. 2: Error of app. circle in (c) \;f t E: (-2. 2.9) 

Fig. 3 shows the curvature of approximating the circle 
given in (c). 

Fig. 3: The curvature ofapp. circle in (c) 
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Remark: The error of approximation depends on the 
choice of X1(0) and X1(1). Tltis fact can be used to 
improve the order of approximation. It is possible to get 
better approximation order by choosing suitable values 
for X1(0), XI(1), for example by choosing X1(0) = X1(1) 
= .9665 in the case (c) one gets 

eg = .4 X 10-7 

which gives an approximation order 

a=-13.7 

which means that the error is multiplied with 

(1)13 1 
2 = 8192 
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