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ABSTRACT: 

In this work we constrQct the relation between the category R-filt (G(R)-gr) and the category Q~ -Filt(Q~ -Gr). 

The quantum (ungraded) version of this result can be obtained by restricting to parts of zero degree. Geometrically, we 
summarize geometrical properties for the affine scheme specg G(R). Finally, in the language of formal affine schemes 

we obtain the relation between R-filt (G(R)-gr) and the category Q~ - Filt(Q~ - Gr). The results have a special 

meaning for sheaves of rings of differential operators. 

INTRODUCTION 

For a long time after its introduction by Jerary, sheaftheory 
was mainly applied successfully to the theory of functions of 
several complex variables and to algebraic geometry, until it 
became a basic tool for almost all mathematics, and cohomo­
logy a natural language for many people. 

In recent years new topological methods, especially the 
theory of sheaves founded by Jerary, have been applied 
successfully to algebraic geometry. In the study of micro-

structure sheaves Q~ of filtered rings with Zariskian 

filtration, the author observed that, in order to find the regular 

and holonomic solutions of Q~ (we come back to this later), 

it is necessary first to study the application in section 3. Using 

the filtered micro-structure sheaves Q~ and its associated 

graded sheaves G(Q~), [1], [9], it is possible to introduce the 

relation (commutative and non-commutative cases are · 
considered) between the category of filtered (graded) affine 

schemes (X;Q~ )((X, G(Q~ ))g) with filtered geometric space 

morphism and the category of Zariski filtered rings with 
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filtered ring morphisms. Geometrically, we summarize 
geometrical properties for X = Specg G(R) in section 2. 
Finally, in section 4, in the language of formal affine schemes 
we obtain the relation between R-filt (G(R)-gr) and the 

category Q~ -Filt(Q~ -Gr). 

We can obtain the ungraded and quantum versions of our 
results, in sections 3 and 4, by restricting to the parts of zero 
degree. So far, this is the micro, formal and quantum versions 
of that application introduced in [5] as commutative case or 
that in [8] as non-commutative case. 

1- PRELIMINARIES 

We recall some basic notions here but for full details we have 
to refer to the references. Basic facts concerning schemes, 
affine schemes, coherent sheaves and formal completion may 
be found in [5]. Full detail on Zariskian filtration, filtrations 
and gradations on modules and micro-localizations of filtered 
modules may be found in [6], [7], [4]. For micro-structure 

sheaves Q~ and quantum sections F0Q~ over projective 

(affine) schemes, coherent sheaves over Q~ and formal 

schemes and quantum sections over projective (affine) 
schemes one may use [9], [1], [2]. Finally on Zariskian 
filtrations on sheaves we have to refer to [3]. 

In the sequel we assume that FR is a Zariski filtration such 
that the associated graded ring 

is a commutative (Noetherian because of the Zariski 
hypothesis) strongly graded domain, this situation is general in 
the sense that it allows application of the results to most of the 
important examples; enveloping Algebras of Lie Algebras, 
Weyl Algebras, many rings of differential operators as well as 
the classical commutative Zariski rings. 

We consider X= Specg (G(R)), the graded prime spectrum 
of G(R). Write ~ for the basis of the Zariski topology on X 
consisting of the basic open sets X(f)={peX, f~p}; feG(R) 
homogeneous element. We may define structure sheaves on X. 
First we may associate to X(f), the graded commutative 

Noetherian ring Qf(G(R)) = G(R)[C1] and we obtain the 

graded Noetherian structure sheaf Q~(R) on X having as the 

stalk at peX the Noetherian local graded ring Qf(G(R)). 

Secondly we may associate to X(f) the Noetherian 

commutative ring G(R)[f-1 ]0 and we obtain the usual 

structure sheaf QG(R) on X having as the stalk at pe X the 

Noetherian local ring Q~ (G(R)) 0 . Associating to X(f)e ~ the 

micro-localizations, Qj (R), resp. Q~ (R) we obtain sheaves 
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Q~, resp. Q~, on X, having as the completed stalks at peX 

the Noetherian rings Q~ (R), resp Q~ (R), . The quantization 

of the micro-level for G(R) is obtained by looking at the parts 

of filtration degree zero F0Q~ This may also be viewed as 

parts of degree zero in the graded sense for the corresponding 
J.l -).1 

Rees sheaves FoQx = (Qx)o. 

1. 1 Theorem: With the above notations, [1], [3] 

1 - Q~, F0Q~ are Zariski coherently filtered sheaves on X. 

2- Q~ is Noetherian graded sheaf on X. 

II-AFFINE GRADED-SCHEMES FOR G (R) 

In this section, we summarize properties for X SpecgG(R). 
In general, obviously X=Specg(G(R)) is not a scheme. 
However in case G(R) is positively graded, then we write P(X) 
= Proj(G(R)) for the Zariski open subset of X consisting of the 
graded prime ideals not containing G(R)+ = EEl (G(R)) 0 , and 

n>O 
in this case the closed set V(G(R)+) in X is nothing but Spec 
G(R)o. We may define the P(X) = Proj(G(R)) generally as the 
subset in X given by the graded prime ideals p of G(R) such 
that there is an n :F- 0, G(R) 0 cr. p. Hence we have. 

2.1 Theorem: X = p(X) ¢:::> G(R) is quasi-strongly graded. 

So, there is no sensitivity in studying many other problems 
like coherence and theorems of formal completions, .... Only 
we have to assume the condition that G(R) is quasi-strongly 
graded as we will see in section 4. 

Let R, R' be non-commutative Zariski filtered rings and cp: 
R ~ R' be as strict epihomomorphism. Then cp induces a 
continuous map 

which is 

aG(cp):(Specg (G(R')) ~Specg (G(R)) 

defined by: q ~ G(cpr1(q), where G(cp): G(R) ~ G(R'). 
Moreover, if R" is another non-commutative Zariski filtered 
ring and cp' : R' ~R" is another strict epihomomorphisms, then 

From this it follows that Specg o G is a contravariant graded 
functor from the category of non-commutative Zariski filtered 
rings and strict epihomomorphisms to the category of 
topological spaces and continuous maps. 

Also, we can prove the following properties. 

2.2. Theorem: With the same considerations as above, 
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SpecgG(R) is an affine graded-scheme and has a basis for the 
Zariski topology of affine Noetherian basic open sets .• 

2.3 Theorem: X = SpecgG(R) is compact and integral such 

that at each point pe X, the coefficient for Q ~ is just the union 

of sections for Q~ .. 

2.4 Theorem: with notations and considerations as above, 

a-Since Specg G(R) is path-connected then SpecgG(R) is 
not disconnected. 

b- SpegG(R) is irreducible and Noetherian. 

2.5 Remark: On X, the graded sheaf G(Q~) is nothing but 

the graded structure sheaf Q~, since, for each X( f)£~ we have 

GL~XX(f)) =~(X(f))) =G(~f (R)) =Qf(G(R)) =G(R)[C1] 

and for each pe X, we have 

Hence, as just terminology, we call (SpecgG(R), 

G(Q~)) as affine graded scheme of G(R). Now a graded­

scheme needs not be a scheme, but this is just terminology of 
course. 

III- MORPHISMS OF AFFINE SCHEMES 

Let R', R be non-commutative Zariski filtered rings and <1> 

: R' ~ R be strict filtered epihomomorphism. 

Let feh(G(R1), peX=SpecgG(R) such that aG(<j>)(p)=qeY 
= SpecgG(R'). By the exactness of the localization functors 
G( <I>) induces a graded ring epihomomorphism G(R 1r 
~G(R)G<<P><O· 

Thus, G( <1>) induces a graded ring epihomomorphism 

Q~(R') (Y(f)) ~ Q~(R) (X(G(<j>)(f))) which already ts 

compatible with the restriction graded homomorphism, hence 
we have a graded sheaf epimorphism 

G( <I>)-: Q~(R') ~ Q~(R) as required. 

Again, by the exactness of the localization functors 
associated to p, aG( <1> )(p )=q, G( <1>) induces a graded local ring 

epihomomorphism of the stalks G( <I>) P: Q~(R'),q ~ Q~(R),p . 

Therefore <j>: R' ~ R induces a graded morphism 

(aG(<j>)G(<j>)- ):(X,Q~(R)) ~ (Y,Q~(R')) 

of graded affine schemes such that the graded homomorphisms 
induced on the stalks are graded local homomorphisms. 

Conversely, let ('lf,S)g:(X,Qx)g ~ (Y,Qy )g ·be an 

epimorphism (where X = SpecgG(R), Y = SpecgG(R 1 and 
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Qx, Qy are the graded structure sheaves Q~, Q~) such 

that 9~: G(R') q ~ G(R) Pis a graded local epihomomor­

phism for each pe X ( q='lf(p) ). ('lf,S)g determines a graded ring 
epimorphism G(<j>): G(R1 ~ G(R) (and then one may define a 
filtered epimorphism <1>1 : R' ~ R such that G(<j>1) = G(<j>). 

Since the induced embedding ~ ~: Qq ~ Q P of the residue 

fields is monomorphism, hence 

is graded epimorphism induced by <j>. Therefore 

('lf,9) = (aG(<j>), G(<j>) -).We have therefore proved: 

3.1 Theorem: with conventions and notations as before, there 
is a map from the strict non-commutative Zariski filtered ring 
epihomomorphism <j>: R'. ~ R to the graded epimorphisms 

('lf,S)g : (X, Qx) ~ (Y,Qy) such that 

Q~:QY,q ~QX,p•peX, q='lf(p), is local graded ring 

epihomomorphism. 

3.2 Theorem: With conventions and notations as before, there 
is a one-to-one correspondence between the graded 
epimorphisms G(<j>) : G(R1 ~ G(R) (where R', R are non­
commutative Zariski filtered rings) and the graded 

epimorphisms ('lf,S)g:(X,Qx) ~ (Y,Qy) such that 9~is a 

local epimorphism for each pe X. 

Now let us return to filtered setting. Let I c G (R') be a 
graded ideal in G(R 1. Y(l) be an affine basic Zariski open set 
in Y = SpecgG(R 1 . Since aG( <1>) is a continuous map, hence 
aG(<!>Y1(Y(I)) = X(G(<j>)(l)) is an affine basic Zariski open set in 

X = SpecgG(R). We write K1 (n) for the kernel functor, 

- - -
induced by K1, on R' IX" R' and K(n)a(cp)(l) for the kernel 

- -
functor, induced by KG(cjl)(l)', on R/ X" R. By the saturation 

condition, L(KI (n))[L(K(n)G(cjl)(l) )] has a filter basis 

consisting of LIX" L of R'/X 0 R' with 

L e L(KI and [J I X" J of R/ X" R with J e L (KG(cjl)(l) )]. 

Write Q~,I [Q~,G(cjl)(l)] for the localization functor associated 

to K1 (n)[K(n)a(c)l)(I)]. Since K1 (n)[K(n)a(cjl)(l)] is perfect, 

hence <1> induces the graded homomorphism. 

- - - -
Q~.I (R' IX

0 
R') ~ Q~,G(c)l)(l) (R/ X

0 
R) 

Taking the inverse limit in the graded sense, we have the 
graded ring homomorphism 
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(R) 

hence ef induces a filtered Zariski ring homomorphism 

ar 
Qll (R')~Qil 

KI K(.)(l) 

Therefore, we have the filtered ring epihomomorphisms 

9~(1) 
r(Y(I),!!~) ~ r(X(G($)(I)),!!~ ), which are compatible 

with the restriction homomorphisms. 
a~' 

Now, 9~(1); Y(l) c Y = SpecgG(R' ), define !!~ ~ !!~ as a 

filtered sheaf morphism. For every prime ideal pe X, 
q=aG( <11 )(p )e Y and since the local property exists in case of 
associated graded functor, hence the stalk sheaf morphism 

9~: !!~,q ~!!~,pis filtered local homomorphism. All this 

leads to the following: 

3.3 Theorem: There is a map from the strict non-commutative 
Zariski filtered ring epihomomorphisms $:R' ~ R to the 
filtered morphisnis 

such that e~ is filtered local ring homomorphism for each 

peX. 

3. 4 Remark 

1 - Quantum affine schemes and quantum morphisms follow 
easily from this by restricting to parts of degree zero. 

2 - The condition of commutativity of the associated graded 
rings is necessary for our study here in this note. 

N-MORPHISMS OF FORMAL SCHEMES 

In this section, we will mainly be concerned with non­
commutative formal schemes. On the formal level we study 
and prove the relation between R-filt (G(R)-gr) and 

Q~ -Filt(Q~ -Gr). 
X X 

We may work over X = SpecgG(R) or P(X). Consider a 

coherently filtered sheaf of ideals !x in Q~ (here of course X 

means X or P(X) unless we mention otherwise), then G(!x ) is 

a coherent subsheaf of graded ideals of Q~. Let P(X)' be the 

closed subset of P(X) defined by 
G(!P(X) ); P(X)' = V(l) cP(X). Now we can defined two formal 
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schemes. First, the commutative graded formal scheme 
1\ 1\ 

(P(X), Qg ,., ) where P(X) = P(X)' and 
P(X) 

where Liyt g is calculated section wise as the graded limit in 
n 

the category of graded modules. Second, the Noetherian 
1\ 

formal scheme (P(X),QP(X)) where (here in our case) 

QP(X) ::: Lim QP(X) I (G(!p(X) )o)n. 
f­
n 

For convenience, we write 

1\ 1\ 

P(X)=Y, P(X)=Y, G(!y)~ =!~andG(!y)0 =!y· 

Let Me G(R)-grr be any finitely generated graded G (R) -
module. In view of the foregoing observations and conventions 

1\ 

we obtain two formal schemes over Y of Y: graded formal 
coherent sheaf 

and formal coherent sheaf 

M L\ --- Mg,L\ --- LI·m (Mg) /J 0 (M ) 
-Y o -Y -Y o· -y -y <-

n 

4.1. Note 

We can consider the defined sheaves as sheaves over Y, if 
i\ is necessary, this always means the extension by zero outside 

Y. Also, since the open affine Noetherian subsets of Y form a 
base of the topolo'y of Y, then the intersection of thoSf with 

the closed subset Y forms a basis for the topology on Y , see 
2.2. 

We aim to construct morphisms between G(R)- grf 

and Qt - Grcoh.. The z~ro-version of this result over 

(Y, Qy) is in fact corollary 9.9 of (5), Hence it is true. 

Hence we consider the following theorem with its proof 
under the above consideration, but with Y = Specg(G(R)) and 

G(R) is I -adically complete, where I defines ! ~. 

4.2. Theorem (Commutative Level) 

There is an equivalence of categories between G(R)-grr and 

Q~ - Grcoh., where G(R)- grf is the category of finitely 
y 
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generated graded modules over G(R) and Q~ - Grcoh. is the 
y 

category of coherent graded Q~ modules. 
y 

Proof: 

The· functor F1: G(M) a M~,Ll from G(R)-grf to 
y 

Q~ - Grcoh. is a graded exact functor. Indeed, let UE ~(Y); 
y 

say U = speg(B) and G(M)E G(R)-grr. Hence 

M ~ (U) =NEB- grf is finitely generated graded B-module. 
y 

Now M~·Ll (U) = Limg M~ (U) I(!~ (U))n M~ (U) which is 
y f-

!~ (U)- adic graded completion of M~ (U) ,i.e. 

M ~,Ll (U) = N. Since we have finitely generated graded 
y 

modules, hence the completion functor is exact. Therefore 

G(M) a M~Ll (U) is graded exact functor. 

1\ 

The functor F2 :~~ ~ r(Y, ~~)from Q~ -Grcoh 
y y y 

into G(R)-grr is exact and FI> F2 are inverse to each other. It is 

clear that rcY, M ~,Ll) :: G(M). Thus, the two composi-tions 
y 

of our two functors are the identity. But, to show that the 
1\ 

graded functor r(Y, -) is exact on the category 

Q~ - Grcoh' let 
y 

~lgg ~zgg ~3gg ~o 
_A -A _A (1) 

y y y 

be an exact sequence in Q~ -Grcoh.· Since 
y 

1\ 

r(Y, 1 ~ ~ ) = G(M 1 ), i = 1,2,3 are finitely generated graded 
y 

modules, hence 

0 ~ G(M 1) ~ G(M 2) ~ G(M 3) 

is exact in G(R)-grr. Also 

0 ~ G(M1) ~ G(M2) ~ G(M3) ~ G(M4) ~ 0 (2) 

is exact in G(R)-grr, where G(M4) is in G(R)-grr too. Applying 
the exact functor ( )g . .:~. on (2) we obtain the exact sequence 

~~M~,Ll~2M~·Ll~3M~·Ll~4M~·Ll ~O (3) 
y y y y 

From (I) and (3) 4 M ~ = 0. This means that G(M4) = 0, hence 
y 
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1\ 

is exact. Therefore, r(Y,-) is a graded exact functor. 

4.3. Remark (Commutative real case) 

1\ 

Hartshorne's version, [5], of this over (Y,Qy) is also true 

because, in this case, we have real schemes. 

Let us consider the behaviour of the result 4.1. on the 
filtered level. Recall from [2] that for an ideal I orR equipped 
with the induced (hence good) filtration, we may define the 
filtered (non-commutative) Noetherian formal scheme over Y 

as follows. Put G(l) = Ig and V(Ig) = Y. On fwe now 

introduce two structure coherently filtered sheaves 

oil :: Limf (Oil I (Ill )n) and Oq ::F. oil (the sheaf of 
-A -Y -Y -A 0-A 

y f- y y 

quantum-sections over f), where we write Limf to indicate 
f-
n 

that we have taken into account the filtration defined on 

Lim as in [2]. 
f-

Similarly, for ME R-filtgooo; filtered module with good 

filtration, the coherently filtered formal sheaves of M~ and 

M ~,q may be defined as 

n 

respectively. Of course these define coherently filtered sheaves 

over Q~ and Q~ respectively, i.e. M~·A EQ~ -Filtcoh. , 
y y y y 

M ~,q E Q ~ - Filt cob.. The authors in [2] have studied these 
y y 

sheaves. 

4.4 Note 

If R is I -adic filtered complete, i.e. R = Lim f R I In , then 
f-

1\ 

Conversely, if Q~ = Q~, we can assume that Y = Y. Then 
y 

this gives rise to that the ideal I is contained in the prime radial 
/\1 

of R. Therefore In = 0 and this implies that R = R. 

Similarly, we can say that !~is formal complete <=> I is I-adic 
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filtered complete. It is clear that if M is I-adic complete, then 

M ~ will be formal complete, i.e. M ~,d :: M ~. 
y 

Combined with section 3 in [2] and the conventions 
assumed in 4.2. this yields the non-commutative filtered level 
of the result in 4.2. 

4.5. Theorem (non-commutative level) 

There is an equivalence of categories between R-filtgood, 

and Q~ - Filtcoh., where R-filtgood is the category of good 
y 

filtered I-adically completeR-modules and Q~ - Filtcoh. is the 
y 

category of coherent filtered Q~ -modules. 
y 

Proof: 

The functor F1 : M a M ~,d, from R-filtgood into 
y 

Q~ - Filtcoh., is exact. Indeed, let U = Y(f) = 
y 

specg(G(Qf(R))) for suitable feR with o(t)eG(R), for the 

definition of o(f) see [7]. By the well known exactness 

property of Qr (-) on strict sequences we obtain that 

r(Y(t),-) from R-filtgood to Q~ (R)- filtgood is exact. Since 

r(Y(f), M~'d)=Q~(M)AI and the Q~(l)-adic comple-
- y 

tion is exact on good filtration, it follows that M a M ~,d is 
M 

filtered exact functor. 

11 A '11 11 . 
The functor F2~A a r(Y,~A)from QA -Flltcoh.to R-

Y y y 

filigoo<l, is exact. Indeed, consider 

(4) 

an exact sequence in Q~ - filtcoh .. Since 1 ~~ :: M i'd 
y y ~ 

for 

some Mi; i=1,2,3 in R-filtgood it follows that (4) becomes 

(5) 
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A 

Now r(Y ,-)is left exact, then 

O~M1 ~M2 ~M3 ~M4 ~0 (6) 

is an exact sequence in R-filtgood, where M4 is coker(tf>). From 
the first step, .ll is exact, hence we have an exact sequence 

0 ~ M 11'd ~ M 11'd ~ M 11'd ~ M 11'd ~ 0 (7) 
--}A --2A --JA --4A 

y y y y 

Now it is sufficient to compare (5) and (6) to get M~,d = 0. 
A 
y 

i.e.M4 = 0. Hence (6) with M4 = 0 is exact, and this proves that 
A 

Sg a r(Y, Sg ) is filtered exact functor. -y· -y 
Finally, clearly F1F2 = 1 and FzF1 = 1. 

From all of this, the theorem follows. 

4.6. Final remark 

1 -All arguments still hold if .ll is replaced by q in 4.5. This 
gives the quantum formal version of the result 4.5. 

2 - The fact that the micro-or quantum-version of Serre's 
global sections results for coherent sheaves is also true. This 
follows from theorem 4.5. 
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