
-

University of Qatar 

QATAR UNIVERSITY SCIENCE BULLETIN 
( Qatar U niv. Sci. Bull. ) 

VOL. 10 1990 

EDITOR : PROF. A. S. EL-BAYOUMI 

EDITORIAL BOARD 

PROF. R. M. ABDU 

PROF. L. I. AL-HOUTY 

PROF. S. A. AL- NAGDY 

PROF. S. E. EL-GENDI 

(Zoology) , 

(Physics) 

(Chemistry) 

(Mathematics) 

Published by the Faculty of Science 
University of Qatar 



Qatar Univ. Sci. Bull. (1990) 10: 2:J-:l9 

COLLINEATIONS OF POLAR SPACES 

By 

LAlLA E.M. RASHID 

Mathematics Department, Faculty of Education, 
Kafer El Sheikh, Tanta University, 

Kafer El-Sheikh, Egypt 

ABSTRACT 

In this paper we consider general embeddable polar spaces with Witt index 

at least three. 

If rr : S( ~) ---> S( ~) bP a thirk collinPation betwPen polar sparPs with i( ~) 
=i( ~) 3 3. Then there exists a place 0 : k-> k' U oo with valuation ring A = 
0· 1 (k'), an A- module Min V with Mk = V and a 0-semilinPar mapping 

B: M ---> V' such that 

rr (X)= B (M{)X) K' for all points X inS ( ~). 

INTRODUCTION 

The fundamental theorem of projective geometry describes the bijective 
collineations between two projective spaces PV and PV' of finite dimension 
(greater than one) over division rings k and k' in terms of an isomorphism 0 
: k-->k' and a 0-semilinear bijective mapping between the underlying vector 
spaces V and V'. Tits [9, Theorem 8. 6II] has given an Pxtensive gpnpralization 
of this theorem to embeddable polar spaces induced by polarities coming from 
either ( (J, E )-hermitian forms of from ( 0, E )-quadratic forms with Witt 
indices at least two. In another direction, Klingenberg [7] and later Andre [1] 
and Rado [8], have generalized the fundamental theorPm by considering non­
injective collineations. Now the isomorphism 0 must be replaced by a place 
0: k-->k' U XJ and an integral structure' owr tlw valuation ring A = 0·

1 
(k') is 

induced into the projective space PV. In [6,XXII] and [10, p.366]. WPisfeilPr 
asks for analogues of this to other Tits buildings. Recently, Faulkner and Ferrar 
[3] gavP this for Moufang plane's. In [5], whPrP gprwralization of work of Chow 
[2] is given, we were also led to this type of theorem for polar spa cPs dPfirwd 
over symmetric and alternating forms with maximal Witt index. In the present 
work we will consider general embeddable polar spaces with Witt index at 

least three. 
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Collineations of Polar Spaces 

LetS(~) be a polar space on the underlying finite dimensional k-vector spece 
V with polarity ~ of trace type coming from either a non-degenerate trace­
valued (a, E )-hermination form on a non-degenerate (a , E)-quadratic form 
q associated with a( a , E )-hermitian form f, with Witt index i( ~ ) ~ 3. Similarly 
let S( ~·) be a polar space on the k' -vector space V' with polarity f ' of trace 

type having Witt index i( f{ ) ~ 3. 

Theorem. Let 7T: S( ~ ) ~ S( ~ ') be a thick collineation between polar spaces 
with i( ~ ) = i( f) ~ 3. Then there exists a place 0 : k ~ K' U oo with valuation 
ring A = 0 -1(k'), an A-module M in V with Mk = V and a 0-semilinear 

mapping B:M~ V' such that 
1rX = B(MnX)k' for all points X in S( ~ ). 

Moreover, the hermitian forms f and r associated with the polarities ~ and 
f be chosen so tha M has an orthogonal splitting M = M(1) _L M(2) where 
M(1) is unimodular and free with rank equal to the dimension of B(M) over 

0(A), while B(M(2)) = 0, and 

0(f(x,y)) = r(B(x), B(y)) for all x,y E M. 

The definition of a thick collineation is given in the following section. In the 
above theorem M(2) need not be free. Also, f(M(2), M(2)) ~ m, the unique 
maximal two-sided ideal of A. If both the polar spaces S( ~ ) and S( ~ ) are 
associated with pseudoquadratic forms then, with the appropriate 
interpretation, q' o B = 0 o q. Conversely, it is fairly easily seen that any 
0-semilinear mapping B : M ---- V', as in the theorem, induces a collineation. 
In the sympletic situation where 0 is the identity and E = -1, the above 
theorem has been completely proved in [5, theorem 2.1]. When 7T is bijective, 
the result reduces to Theorem 8.611 in [9]; however, 6k;;; A= k', V = M = 
M(1) :o= V' and the forms f and rare isometric. See also note added in proof. 

If the collineation 7T is surjective, the 0(A) = k' and B(M) = V'. 

2. Pseudo-quadratic forms and polar spaces. We give now the definition of 
(0

7
E)-hermitian forms and pseudo-quadratic forms and the connection with 

polar spaces; further details can be found in [9, Section 8]. Let k be a division 
ring, v a finite dimensional right k-vector space and a : k ~ k an 
antiautomorphism, that is, and additive automorphism of k such that 

(ab) = b0 acr for all a,b E k. 

A function f: V XV~ k is called a () -sequilnear form if it is biadditive and if 

f(xa,yb) = a0 f(x,y)b for all x,z, E V and a, b, E k. 

The form f is reflexive if the relation f(x,y) = 0 is symmetric for x,y E V. This 
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condition is equivalent to the existence of a nonzero € E k such that 
f(y,x) = f(x,y) 0 € for all x,y E V . 

Necessarily 
€ = E-1 and tcr2 € t € -1 for t € k . 

A form f satisfying these conditions is said to be ( (J, € )-hermitian. 

Now assume € 4= -1 when 0 is the identiy and the characteristic of k is not 
two. Set 

ko,c = { t - t 0 /t E k}, 

an additive subgroup of k, and denote by k( (J, €) the quotient group k/k 0 ,E. 

A Function q: V ~ k( (J, E) is called a ( 0, E)-quadratic form or a psedo 
-quadratic form relative to a and € 'ifthere exists a 0-sequilinearform 
g: V x V ~k such that 

Also, 

q(x) = g(x,x) + ka , E , for all x E V. Then, 
q(x a) = a" q(x) a for a E k and x E V. 

q(x+y) = q(x) + q(y) + (f(x,y) + k.,,E) for all x,y f V, where 

f : V x V ~k is the trace-valued ( , )-hermitian form defined by 

f(x,y) = g(x,y) + g(x,y)o- E. 

The form f is uniquely determined by q. The pseudo-quadratic form q is 
determined by the associated form f and the values taken by q on the elements 
of a basis of V. A pseudo-quadratic form is called nondegenerate when the 
associated hermitian form f is non-degenerate, that is, f(x,V) = 0 only when 
X= 0. 

q(x+y) = g(x+y , x+y)+ k<J,E, 
= g(x) + g(y) + g(x,y) + g(y,x) 

A subspace U ofV is called totally singular with respect to the pseudo-quadratic 
form q if q vanishes on U. If U is totally singular for q, then U is also totally 
isotropic with respect to the associated hermitian form f, that is, f(U,U) = 0. 
All amximal totally singular (respectively, totaly isotropic) subspaces ofV have 
the same dimension called the Witt index of q (respectively, f). 

If the characteristic of k is not two, all totally isotropic subspaces of V are 
also totally singular. 

The projective space PV of V is the set of all one-dimensional subspaces of 
V. Let f be a non-degenerate trace-valued ( 0, E)-hermitian form on V with 
Witt index i(f)~ 2. Then f determines a polarity ~ of trace type for the space 
PV. Denote by S( f) the set of all isotropic points X in PV. Thus f(X,X) = 0. 
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Collineations of Polar Spaces 

The S( ~)is the polar space relative to the polarity ~ (or form f). More strictly, 
S( ~)should be defined relative to an equivalence class of proportional forms, 
rather than to a representative of the class, as we have done. Let q be a 
non-degenerate ( (J, E)-quadratic form on V with Witt index i(q) ~ 2 and f as 
its associated hermitian form. Again, this determines a polarity ~ of trace 
type. Denote by S( ~) the set of all singular points X in PV. Thus, q(X) = 0 
on S ( ' ) . Then S ( ~ ) is the polar space relative to the proportionality class of 
the pseudo-quadratic form q. The linear subspaces of S( ~ ) are the subspaces 
of V which are totally isotropic, respectively totally singular, with respect to 
the hermitian form f, respectively pseudo-quadratic form q, associated with 
~In particular, a line of S ( ~ ) is totally isotropic, respectively totally singular, in 
two dimensional subspace of V. If X and Y are points in a polar space with 
f(X,Y) = 0, the line joining X and Y is denoted by X + Y. 

Now let k' be a second division ring and S( ~ ') a polar space with polarity~' 
aasociated with either a non-degenerate trace-valued ( 0 ', t' )-hermitian form 
f:V' -k' on the finite dimensional k'-vector space V', or with a non­
degenerate {(j', s")-quadratic form 

q': V' ~ k'(O', E ') 

with associated ( 0', £')-hermitian form f. Assume i( ~ ') ~ 2. 
A collineation between the polar spaces S( ~ ) and S( f) is a mapping 

rr : S( ~ ) ~ S ( ~ ') 

with the following properties. Let X,Y E: S( ~ ) with X + Y a line (so f(X,Y) 
= 0). Then, 

f(rrX, 1rY) = 0. 

Moreover, if 1T X =f 1T Y, then for any point Z on the line X + Y of S( ~),the 
point 1rZ is on the line 1rX + 1rY of S(f ). In particular, it follows that any line 
S(~}is carried by 1r into a line of S( f) (usually not surjectively). It is possible 
for 1T to carry all the points of a line of S( ~ ) into a single point in S('-'). 

LetS(~) be a polar space with Witt index i( ~) = n ~ 2. A polar frame for 
S(f)a set of points F = {X,,Y,, ... ,X .. ,Y .. } inS(~) with 

f(Xi,X.i) = f(Yi,Y.i) = 0 for 1 ~ i, j ~ n, and i =f j 
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but 

f(Xi,Yi) f- 0 or 1 ~ i ~ n. 

since i( ~ ) = n and f is o- trace-valued and non-degenerate, it follows that 
S(~)a polar frame. Let span F be the set of points inS(~) that are also in the 
subspace of PV spanned by the points in F. 

A collineation rr : S( ~ ) ~ S( ~ ') is called thick if there exists a polar frame F 
of S( ~ ') such that rr F is a polar frame of S( 1 ') (so necessarily i(') = i( f)) 
and, moreover, for each line L of S ( ~ ) in span F the cardiality of the set 
{ rr X \ X a point on L} is at least three. Thus, in particular, each line L' of 
span rr F coming (via rr) from a line L C span F contains at least three points 
coming from points on L ( in general, L' will also contain many points not 
coming from S( ~ )). 

As a consequence of our theorem, the image rrS( ~ ) of a thick colineation rr 
is a polar space defined over the subring 0(A) of k'. if the mapping rr is 
surj~ctive, then 0(A) = k'. However, in general, the image rrS(~) will be 
properly inside a polar space defined over the larger division ring k'. 

3. Theorem on Thick collineations. In this section we prove the theorem in 
the special case where S( ~) is spanned by any of its polar frames, that is, 
when dim V=2n where n = i(f) ~ 3, by generalizing the ideas of Theorem 
2.1 in [5] to our present situation. The polar spae S( ~) is associated with 
either a non-degenerate trace-valued ( <J, E)-hermitian form f, or with a ( (j, E 
)-quadratic form q, with non-degenerate trace-valued (a, E: )-hermitian form 
f. In the first case the linear subspaces of S( ~ ) are totally isotropic and in the 
second case they are totally singular. Likewise for S( ~ '). 

Let rr: S( f ) ~ S( f) be a thick collineation. It is possible for S( ~ ) to be 
assocciated with a pseudo-quadratic form while S( ~') is associated with an 
hermitian forn, for example, let rr be the identity mapping but in the image 
space forget the pseudo-quadratic form and consider the larger space 
determined by the totally isotropic points (both k and k' will have characteristic 
two). It is also possible for S( f) to be associated with an hermitian form and 
S( ~ ') with a pseudo-quadratic form: for example, fa symmetric form over 
the 2-adic number field Q2 and q' a quadratic form over the finite field F2• 

Now assume dim V = 2i( ~ ) ~ 6. Since rr is thick collineation, there exists a 
polar frame { X1,Y1, ••• ,X",Y "} for S( ~ ) with { rrX 1, rrY1, ••• ,rrX", rrY "} a polar frame 
for S( ~'). Let S be the totally isotropic or totally singular subspace of V 
spanned by X1, ••• , X" and T the totally isotropic or totally singular subspace 
spanned by Y1, ••• , Y". Then 

S n T = 0 and V = S S T. 
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Collineations of Polar Spaces 

Likewise, if 1TX1, ••• , 1TX" spans S' in V' and 1TY1, ••• , 1TY" spans T'., 

then 

S' n T' = 0 and V' = (S'@ T')·...L W' 

with W' a subspace of V'. Since n ~ 3, the restriction 

1T PS ~ PS' 

satisfies the conditions of Teorem 3.1 m [4] (the proof remains valid over 
division rings). Hence there exists a place 

0 5 : k ~ k' U 00 

with valuation ring 

As= 0·\ (k'), 

a free As - module M5 = u1As + ... + unAs in S with rank n and a 0 5-semilinear 
mapping B5 : M5 ~ S' defined by 

B5( .£ U; a;) = ~ u'; 0 5 (a;) 

such that 

1rX = B5(M5 () X) k' 

for all points X in PS. Here u; is a nonzero element from the one-dimensional 
subspace X;ofV, and u'; is a non-zero element from 1TX;, 1::S i ::S n. The module 
Ms and the mapping Bs are not uniquely determined but can be changed by 
multiplication by scalar. Likewise, considering the restriction 

1T: PT ~ PT', 

there exist corr:esponding 0 T• AT, MT = AT + ... + 
AT in T with V; € Y and BT : MT ~ T' where 
BT( r v'; b;) = ~ v'; 0T (b;) and 
1rY = BT(MT n Y) k' 

for points Y in PT. 

Since 1T is a thick collineation, there exists a point (u1 + V0 b) k on the line u1k 
+ vnk with image 

{u'1 + v' .. b') k' where b' =#= 0. 

Replacing MT by MTb and adjusting Br we may assume b = I. Likewise, by 
changing the choice of the v'; , we may assume b' = I. Let 0 =I= a E As. Since 
1T is a collineation, the image of (u1a + u2+ V 11a)k must be 

(u'1 0s(a) + u'2 + v'n 0s (a) k'. 

Hence the image of (u2 + V 0 a) k must be 

(u'z + v'n0s (a)k'. 
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Assume first that a- 1 E AT. Then, by a similar argument, the image of (u2 + 
vna)k is also 

(u'2 0T(a- 1) + v',JK'. 

Hence 0 5(a) = 0,-(a). On the other hand, if a- 1 f.. AT, then 0T(a) = 0. Now the 
image of (u2 +v1+vna)k is in u'2 k' + v'1 k' and hence the image of (u2 + v"a)k 
is u' 2 k'. Thus 0 5(a) = 0 also. Hence 

0 5(a) = 0T(a) for all a f A5• 

By symmetry As= AT= A and 0 5 = 0T =0, say. Now M = Ms + MT is a 

free A-module of rank 2 n. 

From the definition of a polar frame, 

f(u; , vi) = o i.ici 

where 0 i=- c; E k. Assume there exist C;, ci with 

0 (c- 1.i c;) = 0. 

Since u; + ui and v; - vi c- 1.i c; are orthogonal, it follows from the properties 
of 1T that u'; + u'.i and v';-vp(c- 1.i c;) are orthogonal. This is a contradiction of 

0 cc-lj ci) = 0. 
HPnCP c- 1.i c; is a unit in A and M is a modular A-module. Changing the choice 
of each u; E X; by a unit, we may assume 

f(u;, v;) = c t= 0, 1 ~ i ~ n. 

Replacing f by the proportional form c- 1 f we may assume M is unimodular 
and c = I. Morover, now 

For any a( A the elements ui +u 2a and v1a(!"-v2 are orthogonal. Hence, 
u 1' + u2 ' 0(a) and v1'0(a"')- v2 ' are orthogonal so that 

0(aU) =C'·1 0 (a)""' c'. 

Again, since u 1 + v2 is orthogonal to v1 

c' 0(~) = c'a·e~. 
- u 2, it follows that 

It II 

If we now replace f by the proportional ( o, E)-hermitian form C1
-

1f where 

E II = ci-I C1 o I~ I and bcr11 = ci-I b" 1 C 1 for b ~ k'
1 

then 

0( E:) = E 11 and 0(ac:r ) = 0(a)cr11 for all a <; A 

(If ~ is associated with a pseudo-quadratic form Q1
, this will also be changed 

to a proportional form). Now we may assume 

f (u\ , v'i) = I , 1 ~ i ~ n, 
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Collineations of Polar Spaces 

0(~) = E 'and 

0(acr) = 0(a)~r' for a E A. 

Define B : M ---+ V by 

B(x+y) = B5(x) + fi.r(y) for x (; M 5 and y E. MT. 

We must prove 

1TX = B(M () X) k' 

for all points X inS( ~ ). This has already been done for X in PS or PT, and for 

X = Cui + via)k with i F- j and a E A. 

Now consider X = xk where 

x = E (uiai + vi bi) with ai , bi E A. 

Without loss in generality, we may asssume ai = 1. Let 7TX = x'k' where 

x' = L: (u'ia'i + v'i b'i). 

Since, fori~ 2, xis orthogonal to vi ari- vi, it follows that x' is orthogonal 
to v'i 0Ca) - v'i and hence that 

a'i = 0CaJ a'I· 

Similarly, 

b'i = 0(bi) a' I for i ~ 2. 
tT 

Now assume that a 2, say, is a unit in A. Then xis orthogonal to ui-vlb1· 1a 2) E, 

from which it follows that 

b' I = 0(b1)a' I· 

Thus, in this situation, 

X'= B(x) a'1 

and the proof is complete. It remains to consider the case where a 2, b 2, ••• , an, 

bn are all nonunits in A. Then 

x' E u'Ik' + v'1k'. 

We can now find y E u 2k + u 3k such that 

f(x,y) = 0, 7T(yk) = B(y)k' and 

7T(x+y)k = B(x+y)k'. 

It follows from collinearity that 

7TX = B(x)k'. 

Also, it is clear that 

0(f(x,y)) = f (B(x) , B(y)) for all x,y E M. 
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This completes the proof when dim V = 2n. In particular, in the symplectic 

situation where a is the identity mapping and E = -1, the theorem has 
been established. 

4. The general case. We now complete the proof of the theorem in the general 
situation. Since 1T : S( ~ ) -+ S(~ ) is a thick collineation, by the results of the 

previuos section, there exists a place 0 : k - k' U oo and a free unimodular 

A-module 

M = 0 

where 

n = i( ~ ) = i( F ') ?!: 3 and f(u; , vi) = c5 ii , i ~ i , j~ n 

(after normalizing the form f). Moreover, there is a 0-semilinear mapping 8 0 

: M 0 -+ V' such that 

1r X = B0(M0 n X)k' for all points X in S( ~ ) n P(M0 k). 

We must extend M 0 to an A-module M in V with Mk = V, and 8 0 to a 0-

semilinear mapping B : M - V' which induces 1T. 

Let 8 0 (U';) = u'; and 8 0 (V;) = v'; , 1 :::::; i :::::; n, and V = M 0 k ..L. W where W is a 

subspace of V with Witt index i( ~ I W) = 0. The Polar space S( ~ ') may be 
associated with a ( C5 ', f ')-hermitian form f', or with a (a', E. ')-quadratic form 
q' with hermitian form f'. In either case, f' can be normalized by changing to 

a proportional form so that 

f'(u';, v'i) = o ii, 1 :::::; i, j :::::; n. 

0(E) = f 'and 

0(acr ) = 0(a)o-' for all a ~ A. 

Let 

V' = ....L (u',. k' + v',-k') and V' = V'o + W' 
o •=I 

where W' is a subspace of V' with Witt index i( ~'I W') = 0. Then 

B0 (M0 )k' = 'V o· 

Let Mw be the set of all w E: W for which the exists c E A with 

f(w,w) = c+c""E and q(w) = c+kr,E 

when S( ~)is associated with a pseudo-quadratic form q. We will prove that 
Mw is an A-module in W. clearly w a E. Mw for all w ~ Mw and a E. A, so 
it suffices to prove additivity. Let 

w E Mw so there exists c E A with 

f(w,w) = c + c""E 
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Collineations of Polar Spaces 

(and q(w) = c + k cr, E.). Put 

Then X = xk is a point in S( ~ ) and by the properties of 1r, its image 

1rX = (u'1 d'- v'1 C'+ w')k' for some c', d' ( k' and w' ( W'. 

Let 

then 

f(x,r) = f(r,r) = 0, 

so that X + rk is a line in S( ~ ). Hence 

f'(B 0 (r) , 1rX) = 0 

and consequently c' = 0(c) d'. If d' = 0, then c' = 0 and w' = 0 since 

i(~' I W') = 0 

As this is impossible, d' f= 0 and we may asume after changning w' by a 
scalar, that d' = 1 and c' = 0(c). Now let z be a second element in Mw. 

Then 

f(z,z) = a + acrE 

(and q(z) = kcr ,E) for some a E. A. Let 

b = f(w,z) E k. 

If we show b ( A then it follows that w + z E Mw since 

f(w+z, w+z) = e + e"'" E with e = a + b + c ( A (and q(w+z) = e 

+ k:v,£Let Y be the point (v2b + u 2 - v2 a-z) kin S(~ ). 

Then X + Y is a line in S( ~ ). Analogously to the argument with X above. 

1rY = (v'1 b' + u'2 - v'2 0(a)-z') k' 

for some b' E k' and z' E w'; it is impossible for 1rY = v'1k' since 

f'(1rX, 1rY) = 0. 

Thus 

b' = f'(w' , z') 

Also Y + (u1-v2b .. E ) k is a line in S( ~ ). If b /. A, then 

1f(U1-v2b .. E ) k = v'2 k' 

forces 

f'(1rY,v' 2) = 0, 

which is a contradiction. Hence b ~ A and then b' = 0(b). Thus Mw is an 
A-module. We have also shown that 
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0(f(w,z,)) = :f'(w',z'), 

and when S( f ) and S( ~ ') are both associated with pseudo-quadratic forms 

that 

q'(w') = 0(q(w) ). 

The above argument also shows that if w E. Mw , so there exists c E A with 

f (w,w) = c+ c.,. E , then theimageofthepointX= xkwherex = u 1-v1c + wis 

1TX = (u'1 - v'1 0(c) + w') k' for some w' E W'. 

Define .Bw: Mw- W' by .B wCw) = w'. We will prove that Bw is a 0-semilinear 

mapping. If c f. m, the unique two sided ideal of A, then 

:f'(w',w') = 0 

(and q'(w') = 0). Since i( f' I W') = 0, it then follows that w' = 0. 

In particular, 

.Bw(wa) = 0 = Bw(w) 0(a) for all w E. Mw and a E. m. For w E. Mw, let 
t = v + w where v is a primitive element of M0 (So v fi M 0 m) with tk E. S( ~ ). 

Then. by an argument analogous to one used before, 

7Ttk = (B0 (V) + w'')k' for some w'' E W'. 

(In fact, after changing the basis of M0 , we may assume v= u1-v,a with a €. 

A in some new basis ii1, v 1, ••• , U0 , V 0 associated with a polar frame, and the 
result follows from the 0-semilinearity of 8 0 on M~. We next show w'' = 
.Bw(w). for those v E M 0 for which f(x,t) = 0, this is clear since (x-t)k lies in 

S(~) ll P(M0 k), so that 7T(x-t)k must be collinear with 7TX and 7Ttk. In the 
remaining case, it follows after constructing a new point of this same type 

orthogonal o both X and tk. This construction is possible since n ;;;:,: 3. Thus 

7T(V + w) k = (B0 (V) + Bw(w)) k'. 

It is now easily seen that Bw is an additive homomorphism and 

.Bw(wa) = .Bw(w) 0(a) for all units a E A. Thus .Bw is a 0-semilinear 
mapping. 

Next we prove Mwk = W so that M = M 0 + Mw is an A-module with Mk = V. 
Let w £: W. Since f is trace-valued there exists c E. k such that 

f(w,w) = c + co-€ 

(and q(w) = c+ka-,E, when S(~) is associated with a pseudo-quadratic form 

q). If c E A, then w E. Mw. Otherwise, c-1 E: A and wc-1 E Mw 

f(wc- 1 , w c -I) e + e u- E 

where 
e = (c-1) E A. 
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Co/lineations of Polar Spaces 

Hence 
Mwk = W. 

Define a 0-semilinear mapping .B : M ~ V' by 

.B(v+w) = .B0 (V) + .Bw(W) for all v E: M 0 and E. Mw. 

Then .B induces TT. for let X= xk E A(~) where x = v + w with v tMo 

primitive and w E: W . Then 

f(w,w) = -f(v,v) 

(andq(w) = -q(v). Sincev E. M0 therenowexistsc E A such that 

f(w,w) = c + c"'~ 
(and q(w) = c + kQ" ,E)· Hence w f Mw and x E. M. Since 
M flX = xA it follows that 

TTX = B(x)k' = B(m (l x)k'. 

This completes the proof of the main statement of the theorem. We have also 

shown that f and f can be chosen such that 

0(f(x,y)) = fB(x), B(y)) for all x,y E M. 

If fCMw , Mw) ~ m, then (see note added in proof) 

B(Mw) = 0 and B(M)k' = V' 0 • 

In this case take M(l) = M0 and M(2) = Mw. Then 

M = M(l) _L M(2) 

with M(l) a free unimodular A-module of rank 2n. It is possible to construct 
examples where M(2); is n.ot free. 

Now asume there exists w,z E Mw with f(w,z) = 1. Let 

B(w) = w' and B(z) = z'. 

Then 

f(w',z') = 0(1) = 1 

and hence w' "fo 0 and z' f 0. If f(w,w) is a unit in A, then wA is a free rank 

one, orthogonal direct summand of Mw. Likewise if f(z,z) is a unit. If neither 
f(w,w) nor f(z,z) are units, then wA + zA is unimodular free, rank two, 
orthogonal direct summand of Mw. Since now 

f(w',w') = 0(f(w,w)) = 0, 
the polar space S( f) must be associated with a pseudo-quadratic form q' 

with q'(w') i= 0 (and the characteristic of k' must be two). 
Proceeding in this fashion we obtain a splitting 

M = M(l) J_ M(2) 
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where 

with the Bi free unimodular A-modules of rank one or two, while M(2) is an 

A-module with 
f(M(2), M(2))k~m. 

Thus 13(M(2)) = 0. The A-module M(l) is unimodular and free with rank 

equal to the dimension of 13(M) over 0 (A). This completes the proof of the 
theorem. 

Remarks. In the splitting M= M(l) _j_ M(2) the components M(l) and M(2) 
are not uniquely determined. If the valuation ring A is discrete, then M(2) 
will be free and m-modular and M = M(l) _l_ M(2) is just a splitting into 

Jordan components. In general, M(2) will not be free. 

Since there is no assumption that the collineation 

1T : S( n _j_ S( 'f') 

is surjective, in general 

0(A) =f= k' and 13(M)k' f V'. 

In fact, it is not necessary ture that B(M)k' and V' have the same dimension 

over k'. However, if it is assumed that ms surjective, although not necessarily 
injective, it is easily seen that 

0(A) = k', 130 (M0 ) =V'0 and 
13(M) = 13(M(1)) = V'. 

Note added in proof. There is an exceptional situation for part of the theorem 
we had not noticed before. Assume the characteristic of k' is two, S( ~) is a 
polar space associated with a pseudo-quadratic form and 1T is not surjective 

. It is then possible for 13(M(2)) i= 0, so the statement about M(1) and M(2) 
in the tho rem should be omitted for this situation. The main part f the theorem 
is not affected. 
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