
Qatar Univ. Sci. Bull. (1985), 5: 33-40 

POINT-WISE SUMMABILITY OF FOURIER SERIES AND ITS RE
LATED SERIES IN THE NORLUND SENSE 

By 
ZIAD RUSHDI ALI 
United Arab Emirates 

Key Words: Fourier series, Derived Fourier series, Conjugate Fourier series, Norlund summability. 

ABSTRACT 
In this note we consider the point-wise summability of Fourier series in the Norlund sense 
by extending a theorem of Lebesgue ( 6]. We also consider analogous theorems of our 
extension to derived Fourier series, and conjugate Fourier series. We finally prove some 
general theorem on the above topic. 

INTRODUCTION 
.00 

1. Let L uk be a given series, and let { Sn } denote the sequence of its partial 
k=o 

sums. Let { qn} be a sequence of real numbers such that On=q0 +q1 + ...... +qn :F 0 
n 

(n ;;;: 0), On=qn = 0 (n < 0). Define tn = J L qn-k sk. 
n lt=O 

.oo 
lflim tn = S we say that L uk is summable in the Norlund sense or S(N, qn)· we note 
n~oo k=O 

that when qn = 1 for n = 0, 1, 2, ..... ,then Norlund's method of summability reduces 
to Cesaro's method of summability or (C, 1) summability. 

The necessary and sufficient conditions for the regularity of the S(N ,qn) method are 
[ 2] : 

qn 
(1) On = o (1) as n ~ oo , and 

Y\ 

(2) L qk = 0 ( I On I ) as n ~ oo 
1(:::0 

If q0 > 0, and { qn} is non-negative for n = 1, 2, .... ,then clearly condition (1) above 
only is necessary and sufficient for the regularity of the S(N,qn) method; furthermore 
if in addition { qn} in non-increasing then the S(N ,qn) method is automatically regular 
since ......9.!!._ = 0 ( --1 - ) . 

On n+1 

2. Let f be a periodic function with period 2 11', integrable in the sense of Lebesgue 
over ( - 11', 11'). Let the Fourier series S [ f J of f at t=x be given by: 
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1 00 

S [ f ] = T ao + 2:: ai cos jx + bj sin jx. 

j = 1 
Then the derived Fourier series of f S [ (] is given by: 

~ 00 

S [ f' ] = L j bi cos jz - ai sin jx = L j Bi (x), 
J=1 j = 1 

and the cojugate Fourier series of f S [ f J is given by: 
00 ... 

S [f] = L bi cos jx - ai sin jx. 
j = 1 

Let 41 (t) = f(x+t) + f(x-t) - 2f(x), 

"' (t) = f(x+t) - f(x-t), 
r (t) = f(x+t) - f(x-t) - 2 t f'(x), 

t 
~ (t) = /'1 .P(u) I du, 

0 t, 

!I! (t) = 
0
/l "' (u) I du , and 

t 
R(t) = /I r'(u) I du . 

0 

In [ 6 J we have: 

Theorem 2.1 (Lebesgue): S [ f] is summable (C, 1) to f(x) at each point x where 

i (t) = o(t). 

3 We consider the following lemmas: 

Lemma 3.1 (Tamarkin and Hille [3] ): Let { qn} be non-increasing sequence of 
non-negative real numbers. Then for any a such that 0 ::;;: a :::: b ::;;: oo , 0 :::: t :::::; rr and 
any n, 

b 

IL , where 
k=a 

1 . 1 
K is an absolute constant,~ = [-t-1 the integral part of -t- , and On = qo + qi 
+ .... qn. 

Lemma 3.2 (Pati [ 5] ) : Let { qn } be a sequence of non-negative real numbers, and 
let On = qo + qi + .. .. +qn . Then for 0 :::: t ::;;: ! we have : 

34 



n 
1 2: qk 

2 1T On k=o 
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sin(2n-2k+2) t 
sin _!._ 

2 

= O(n) as n -+ oo . 

Lemma 3.3 (Dikshit [ 1 1 ) : Let { qn } be a sequence of non negative real numbers, 
and let On = qo + q1 + ...... + qn. Then for 0 ~ t ~ 1T we have : 

n cos t -cos (n-k++)t 
21T10n L qk =O(n)asn-+oo. 

k =o sin ~ 

4. Let g be a positive function defined for x > x0 . Then g is said to be slowly 

varying [ 6 1 if for ex > 0, g(x). xis an increasing, and g(~ is a decreasing function 
X 

g(n) 
of x for x sufficiently large. Accordingly the sequence qn = 

(n+ 1) ex 

where g is slowly varying, and oo > 0 is non-negative, and non-increasing (for n large 

enough); furthermore if ex < 1 then by 

as n-+ oo. 

In the first part of our note we consider the following : 

g(n) 
Let qn = ----

(n+ 1)ex 
, where 0 < ex < 1, and g is slowly varying. 

Then we have the following theorems: 

Theorem 1: S [ f) is summable S(N, -(n""""g+-'-(~-'-))_ex-) to f (x) 

at each point x where i (t) = o (t) 

Analogously we have: 
g(n) 

Theorem 2: S [t'1 is summable S(N, --- ) to f'(x) 
(n+ 1)ex 

at each x where R(t) = o(t). 

- . g(n) 
Theorem 3: S [ f 1 IS summable S(N, --) to 

(n+1)ex 

..L I 1T __ ~_ct_) -
1T 0 t 

2 tan 
dt at each point x where 

2 
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!!! (t) = o(t). 
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The proof of the above theorem is contained with some slight modifications (see 
remarks on p. 5) in the proof of theorems 4, 5 and 6 below, and hence is omitted. We 
note further that the choice oc = 0 with g(x) = 1 for all x reduces to Lebesgue's 
theorem [ 6 ] . 

In the second part of our note we consider the following : 

Let qn be a non-negative, non-increasing sequence of real numbers ( q0>0) and let On 

= q0 + ql + . . . . + qn be such that On - oo as n - oo. Similarly let an be a 
non-negative, nn-increasing sequence of real numbers with a1 < 0, and let An = a1 +a

2 
+ . . . . . . +an be such that An - oo as n - oon . 

1 n ak,Ok 
Assume now that -- L = 0(1) asn- oo. 

0 ak 
n k=1 

Then we have the following theorems: 

Theorem 4 : S [ f] is summable S(N,q0 ) to f(x) at each point x 

where a~ 
i (t) = o ( A~ ) 

Analogously we have : 

Theorem 5: S [ f'] is summable S(N, qn) to f(x) at each point x 

where R( t) = o ( ~~ ) . 
1: 

Therome 6: S [ f ] is summable S(N ,q
0

) to -
1

-
1T 

a * (t) = o ( A,; ) . 
1:: 

at each point x where 

11T "' (t)t 
0 2tan-

2 

dt 

F'iProof of theorem 4: Let S0 (x) denote the sequence of partial sums of S [ f ] at t=x. 
Then 

Sn(x) - f(x) = 1 f1Tc~~(t) 
2 1T 0 

Hence 

36 

Sin (n+ f )t 

sin .1.. 
2 

dt. 
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1T 

tn(x) - f(x) = j ot> (t) ~-1-
o 2 1T On 

sin(n -k++ )t 
---~-dt, 

. t 
SID z 

1T 

= j 9 (t) Kn(t) dt say. 
0 

In order to prove the theorem we show 
1T 

0
/ 9 (t) K0 (t) dt = o(1) asn~oo. 

Now for a suitable choice of 8 such that 0 < - 1- < 8 < 1T we have: 
n 

1 

I
n ll 1T 

(t) K0 (t) dt = ( + J + J ) ol> (t) Kn(t) dt , 
0 1. 8 

n 

= 11 + lz + 13 , say . 

First by lemma 3.2 above we have: 
1 

11 = Jn ot> (t) K 0 (t) dt 
0 

1 
= O(n J"l+ (t) I dt ) = o ( 

0 

) = o(1) as n ~ oo, 

Second, clearly the method S(N,qn) is regular. Hence by the Riemann-Lebesgue 
theorem and the regularity of the method S(N ,q

0
) 

we have : l3 = JTTot> (t) Kn (t) dt = o(1) as n ~ oo 
ll 

Third by lemma 3.1 we have: 

ll 1 /ll Q 
lz =1../ ol> (t) Kn(t) dt = 0 (--a:- 1. I 9 (t) I ---=

1
"t::..__ dt). 

n n 
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Now we can easily show (see [ 1 ] , [ 4 ] , [ 5] ) that: 

8 0 [ 1 0 ]8 1 ifl dQ 1 8 J 1 /I 41 <t>l--f- dt = - i(t)_:L -0 1 i(t> ~ + -
0 1 r J<t> 

n _ On t 1 n t nlJ 
n - n 0 n 

n '1: 
-2 dt, 

= l2,1+l2,2 + 12,3, say. t 

I 0 ( 1 ) ( On . n . an ) 2•1 = -
0 

+ o = o(1)+o(1) = o(l) as n - oo 
n On , An 

1 n 1 
12 2 = O( .1/s. i (-s-) dO £sJ) 

On 
8 

= 0 ( _1_ t k . ak ~-Ok-1) ) + o(1) , 

On k=1 
n n 

=o( _1_ L ak . k . qk ) +o(1) = o(-01 L akA Ok ) +o(1) 
On k=1 Ak n k=1 k 

= o(1) as n - oo • 

n 
12,3 = o (

1 
J 

-8 

atSJ 0 (s] 
---,;;...:_--=-.:.... ds) 

On - A[s] 

n 
1 ~ ak- Ok 

= o (---~ A ) + o(1) as n- oo. 
On k=1 k 

Hence 12 = o(1) as n - oo • This completes the proof of theorem 4. 

Proof of theorem 5: Let Sn(x) denote the sequence of partial sums of the derived series 
of a Fourier series. Then 

1 
sin(n+--) t 

1 /'" d 2 Sn (x) = - -- + (t) -- ( ) dt , and 
21T o dt sin _t_ 

2 

hence by integration by parts and simplifying we have : 

Sn(x) - f'(x) = -
1
-

21T 0

/u sin (n+f-)1 

sm--
2 
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r' (t) dt. Therefore 
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1T n sin (n-k+__!_)t 

tn(x) - f'(x) = 2:Qn OJ r'(t) L qk . t 2 dt 
k=o sm--

2 
1T 

= j r'(t) Kn(t) dt = 0(1) as in theorem 4 above. 
0 

Proof of theorem 6: Let Sn (x) denote the sequence of partial sums of the conjugate 
series of Fourier series. Then it is easily seen that: 

1 I " (t) I " tn(x) -- t dt = - "'(t) Kn (t) dt , where 
"o 2tan 2 o 

1 
h cos(n-k+ -

2
- ) t 

Kn (t) = 
1 Lqk 

2TT0n k=O sin + 
Now the proof follows as in theorem 4 above. 

REMARKS 

1. If ak = . qK = 1, then An = n, and On = n+ 1 ,-.JAn. We have: 

a n 
f (t) = 0( -~- ) = o (t), and <5- L 

A"t n k=o 
= 0(1) as n ~ oo 

Clearly this case represents Lebesgue's theorem [ 6] . 

g(k) k1-oc 
2.1f ak = 1, and qk = o <·oc <1 . Then Ak = k, and Qk-

1
_oc g (k) 

(K+ 1) oc 

as k ~ oo ; furthermore i (t) = o(t), and 

1 ~ ak - Qk 1 ~ - oc 
-
0 

L_, A ...v L._, k g(k) = 0 (1) as n ~ oc 
n k=o k nt- oc g(n) k=o 

Clearly this case represents theorems 1, 2, and 3. 

3 A th t g(n) · · · f h · · · . ssume a (-)Is non-mcreasmg or n > n1. T en It IS easily seen that application 
n+l oc 
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of lemma 3.1 is possible in the proofs of theorems 1, 2, and 3. 

REFERENCES 

Dikshit, H.R. 1962. The Norlund summability of conjugate series of a Fourier series. 
Rendconti Del Circolo mathematico Di Palermo 11: 227-234. 

Hardy G.H. 1949. Divergent series, Oxford at the Clarendon press, 60-70. 

McFadden L., 1942. Absolute Norlund summability, Duke Math. J., 9: 168-207. 

Rafat Nabi Siddiqi 1977. On determination of the jump of a function of Wiener's class, 
J. of Science of Kuwait Univ. 4: 16-23. 

T. Pati, 1958-1961. A generalization of a theorem of Iyengar on the harmonic 
summability of Fourier series. Indian J. of Math. Allahabad 1-3: 85-90. 

Zygmund, 1969. Trigonometric series, V. 1, Cambridge at the University press, 90-92. 

40 


