POINT-WISE SUMMABILITY OF FOURIER SERIES AND ITS RELATED SERIES IN THE NORLUND SENSE

By
ZIAD RUSHDI ALII
United Arab Emirates

Key Words: Fourier series, Derived Fourier series, Conjugate Fourier series, Norlund summability.

Abstract

In this note we consider the point-wise summability of Fourier series in the Norlund sense by extending a theorem of Lebesgue [6]. We also consider analogous theorems of our extension to derived Fourier series, and conjugate Fourier series. We finally prove some general theorem on the above topic.

INTRODUCTION

1. Let $\sum_{k=0}^{\infty} u_{k}$ be a given series, and let $\left\{S_{n}\right\}$ denote the sequence of its partial sums. Let $\left\{q_{n}\right\}$ be a sequence of real numbers such that $Q_{n}=q_{0}+q_{1}+\ldots \ldots+q_{n} \neq 0$ $(\mathrm{n} \geqslant 0), \mathrm{Q}_{\mathrm{n}}=\mathrm{q}_{\mathrm{n}}=0(\mathrm{n}<0)$. Define $\mathrm{t}_{\mathrm{n}}=\frac{1}{\mathrm{Q}_{\mathrm{n}}} \sum_{\mathrm{k}=0}^{\mathrm{n}} \quad \mathrm{q}_{\mathrm{n}-\mathrm{k}} \mathrm{S}_{\mathrm{k}}$.
If $\lim _{n \rightarrow \infty} t_{n}=S$ we say that $\sum_{k=0}^{\infty} u_{k}$ is summable in the Norlund sense or $S\left(N, q_{n}\right)$. we note that when $q_{n}=1$ for $n=0,1,2, \ldots$. , then Norlund's method of summability reduces to Cesaro's method of summability or ($\mathrm{C}, 1$) summability.

The necessary and sufficient conditions for the regularity of the $S\left(N, q_{n}\right)$ method are [2]:
(1) $\frac{\mathrm{q}_{\mathrm{n}}}{\mathrm{Q}_{\mathrm{n}}}=\mathrm{o}$ (1) as $\mathrm{n} \rightarrow \infty$, and
(2) $\sum_{k=0}^{n} q_{k}=0\left(\left|Q_{n}\right|\right)$ as $n \rightarrow \infty$.

If $\mathrm{q}_{0}>0$, and $\left\{\mathrm{q}_{\mathrm{n}}\right\}$ is non-negative for $\mathrm{n}=1,2, \ldots$, then clearly condition (1) above only is necessary and sufficient for the regularity of the $S\left(N, q_{n}\right)$ method; furthermore if in addition $\left\{q_{n}\right\}$ in non-increasing then the $S\left(N, q_{n}\right)$ method is automatically regular since $\frac{\mathrm{q}_{\mathrm{n}}}{\mathrm{Q}_{\mathrm{n}}}=0\left(\frac{1}{\mathrm{n}+1}\right)$.
2. Let f be a periodic function with period 2π, integrable in the sense of Lebesgue over $(-\pi, \pi)$. Let the Fourier series $S[f]$ of f at $t=x$ be given by:
$S[f]=\frac{1}{2} a_{0}+\sum_{j=1}^{\infty} a_{j} \cos j x+b j \sin j x$.
Then the derived Fourier series of $f \quad S\left[f^{\prime}\right]$ is given by:
$S\left[f^{\prime}\right]=\sum_{J=1}^{\infty} j b_{j} \cos j z-a_{j} \sin j x=\sum_{j=1}^{\infty} j B_{j}(x)$,
and the cojugate Fourier series of $f \quad \widetilde{S} \quad[f]$ is given by:
$\tilde{S} \quad[f]=\sum_{j=1}^{\infty} b_{j} \quad \cos \quad j x-a_{j} \quad \sin \quad j x$.
Let $\quad \phi(t)=f(x+t)+f(x-t)-2 f(x)$,
$\psi(t)=f(x+t)-f(x-t)$,
$r(t)=f(x+t)-f(x-t)-2 t f^{\prime}(x)$,
$\Phi(\mathrm{t})=\int_{\mathrm{o}}^{\mathrm{t}}|\phi(\mathrm{u})| \mathrm{du}$,
$\psi(\mathrm{t})=\int_{\mathrm{o}}^{\mathrm{t}_{1}}|\psi(\mathrm{u})| \quad \mathrm{du}, \quad$ and
$R(t)=\int_{0}^{t}\left|r^{\prime}(\mathrm{u})\right| \quad \mathrm{du}$.
In [6] we have:
Theorem 2.1 (Lebesgue): S [f] is summable (C, 1) to $f(x)$ at each point x where I (t$)=\mathrm{o}(\mathrm{t})$.
3 We consider the following lemmas:
Lemma 3.1 (Tamarkin and Hille [3]): Let $\left\{\mathrm{q}_{\mathrm{n}}\right\}$ be non-increasing sequence of non-negative real numbers. Then for any a such that $0 \leqslant \mathrm{a} \leqslant \mathrm{b} \leqslant \infty, 0 \leqslant \mathrm{t} \leqslant \pi$ and any n,

$$
\left|\sum_{k=a}^{b} q_{k} \quad e^{i}(n-k)^{i}\right| \leqslant K Q_{r} \quad \text {, where }
$$

K is an absolute constant, $\tau=\left[\frac{1}{t}\right]$ the integral part of $\frac{1}{t}$, and $Q_{n}=q_{o}+q_{1}$ $+\ldots \mathrm{q}_{\mathrm{n}}$.

Lemma 3.2 (Pati [5]): Let $\left\{q_{n}\right\}$ be a sequence of non-negative real numbers, and let $Q_{n}=q_{0}+q_{1}+\ldots+q_{n}$. Then for $0 \leqslant t \leqslant \frac{1}{n}$ we have :

ZIAD RUSHDI ALI

$$
\frac{1}{2 \pi Q_{n}} \sum_{k=0}^{n} q_{k} \frac{\sin (2 n-2 k+2) \frac{t}{2}}{\sin \frac{t}{2}}=0(n) \text { as } n \rightarrow \infty
$$

Lemma 3.3 (Dikshit [1]) : Let $\left\{q_{n}\right\}$ be a sequence of non negative real numbers, and let $\mathrm{Q}_{\mathrm{n}}=\mathrm{q}_{0}+\mathrm{q}_{1}+\ldots \ldots+\mathrm{q}_{\mathrm{n}}$. Then for $0 \leqslant \mathrm{t} \leqslant \pi$ we have :

$$
\frac{1}{2 \pi Q_{n}} \sum_{k=0}^{n} q_{k} \frac{\cos \frac{t}{2}-\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}=0(n) \text { as } n \rightarrow \infty
$$

4. Let g be a positive function defined for $x>x_{0}$. Then g is said to be slowly varying [6] if for $\propto>0, g(x) . x$ is an increasing, and $\frac{g(x)}{x^{\alpha c}}$ is a decreasing function of x for x sufficiently large. Accordingly the sequence $q_{n}=\frac{g(n)}{(n+1) \propto}$, where g is slowly varying, and $\infty>0$ is non-negative, and non-increasing (for n large enough); furthermore if $\propto<1$ then by [6] $Q_{n}=\sum_{k=0}^{n} q_{k} \sim \frac{{ }_{n} 1-\propto}{1-\propto} \cdot g(n)$ as $\mathrm{n} \rightarrow \infty$.

In the first part of our note we consider the following :
Let $\mathrm{q}_{\mathrm{n}}=\frac{\mathrm{g}(\mathrm{n})}{(\mathrm{n}+1) \propto}$, where $0<\propto<1$, and g is slowly varying.
Then we have the following theorems:
Theorem 1: $S[f]$ is summable $S\left(N, \frac{g(n)}{(n+1) \propto}\right)$ to $f(x)$ at each point x where $\Phi(t)=o(t)$.
Analogously we have:
Theorem 2: $S\left[f^{\prime}\right]$ is summable $S\left(N, \frac{g(n)}{(n+1)^{\propto}}\right)$ to $f^{\prime}(x)$ at each x where $\mathrm{R}(\mathrm{t})=\mathrm{o}(\mathrm{t})$.
Theorem 3: $\tilde{\mathbf{S}} \quad[\mathrm{f}]$ is summable $\mathrm{S}\left(\mathrm{N}, \frac{\mathrm{g}(\mathrm{n})}{(\mathrm{n}+1) \propto}\right)$ to $\frac{1}{\pi} \int_{0}^{\pi} \frac{\phi(t)}{2 \tan \frac{t}{2}}$ dt at each point x where $\psi(t)=o(t)$.

The proof of the above theorem is contained with some slight modifications (see remarks on p. 5) in the proof of theorems 4,5 and 6 below, and hence is omitted. We note further that the choice $\propto=0$ with $g(x)=1$ for all x reduces to Lebesgue's theorem [6].
In the second part of our note we consider the following :
Let q_{n} be a non-negative, non-increasing sequence of real numbers ($q_{0}>0$) and let Q_{n} $=q_{0}+q_{1}+\ldots .+q_{n}$ be such that $Q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Similarly let a_{n} be a non-negative, nn-increasing sequence of real numbers with $a_{1}<0$, and let $A_{n}=a_{1}+a_{2}$ $+\ldots . .+a_{n}$ be such that $A_{n} \rightarrow \infty$ as $n \rightarrow \infty_{n}$.
Assume now that $\frac{1}{Q_{n}} \sum_{k=1}^{n} \frac{a_{k}, Q_{k}}{a_{k}}=0(1) \quad$ as $n \rightarrow \infty$.
Then we have the following theorems:
Theorem 4 : S [f] is summable $S\left(N, q_{n}\right)$ to $f(x)$ at each point x
where

$$
\Phi(t)=o\left(\frac{a_{\tau}}{A_{\tau}}\right)
$$

Analogously we have :
Theorem 5: $S\left[f^{\prime}\right]$ is summable $S\left(N, q_{n}\right)$ to $f^{\prime}(x)$ at each point x where $R(t)=o\left(\frac{a_{\tau}}{A_{\tau}}\right)$.
Therome 6: $\tilde{\mathrm{S}}[\mathrm{f}]$ is summable $\mathrm{S}\left(\mathrm{N}, \mathrm{q}_{\mathrm{n}}\right)$ to $\frac{1}{\pi} \int_{0}^{\pi} \frac{\psi(\mathrm{t})}{2 \tan \frac{\mathrm{t}}{2}} \mathrm{dt}$
at each point x where $\boldsymbol{\psi}^{(t)}=o\left(\frac{{ }^{a} \boldsymbol{\tau}}{A_{\boldsymbol{\tau}}}\right)$.
Proof of theorem 4: Let $S_{n}(x)$ denote the sequence of partial sums of $S[f]$ at $t=x$. Then

$$
S_{n}(x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\operatorname{Sin}\left(n+\frac{t}{2}\right) t}{\sin \frac{t}{2}} d t .
$$

Hence

$$
\begin{aligned}
t_{n}(x)-f(x) & =\int_{o}^{\pi} \phi(t) \frac{1}{2 \pi Q_{n}} \sum_{k=0}^{n} q_{k} \frac{\sin \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t \\
& =\int_{0}^{\pi} \phi(t) K_{n}(t) d t \quad, \quad \text { say. }
\end{aligned}
$$

In order to prove the theorem we show

$$
\int_{0}^{\pi} \phi(t) K_{n}(t) d t=o(1) \quad \text { as } n \rightarrow \infty
$$

Now for a suitable choice of δ such that $0<\frac{1}{n}<\delta<\pi$ we have:

$$
\begin{aligned}
(t) K_{n}(t) d t & =\left(\int_{o}^{\frac{1}{n}} \int_{\frac{1}{n}}^{\delta}+\int_{\delta}^{\pi}\right) \phi(t) K_{n}(t) d t \\
& =I_{1}+I_{2}+I_{3}, \text { say }
\end{aligned}
$$

First by lemma 3.2 above we have:

$$
\begin{aligned}
I_{1} & =\int_{0}^{\frac{1}{n}} \phi(t) K_{n}(t) d t \\
& =O\left(n \int_{0}^{\frac{1}{n}}|\phi(t)| d t\right)=o\left(\frac{n \cdot a_{n}}{A_{n}}\right)=o(1) \text { as } n \rightarrow \infty
\end{aligned}
$$

since $n . a_{n} \leqslant A_{n}$.
Second, clearly the method $S\left(N, q_{n}\right)$ is regular. Hence by the Riemann-Lebesgue theorem and the regularity of the method $S\left(N, q_{n}\right)$
we have : $\mathrm{I}_{3}=\int_{\delta}^{\pi} \phi(\mathrm{t}) \mathrm{K}_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}=\mathrm{o}(1) \quad$ as $\mathrm{n} \rightarrow \infty$
Third by lemma 3.1 we have:

$$
\mathrm{I}_{2}=\int_{\frac{1}{\mathrm{n}}} \int^{\delta} \phi(\mathrm{t}) \mathrm{K}_{\mathrm{n}}(\mathrm{t}) \mathrm{dt}=\mathrm{O}\left(\frac{1}{\mathrm{Q}_{\mathrm{n}}} \frac{1}{\mathrm{n}} \int^{\delta}|\phi(\mathrm{t})| \frac{\mathrm{Q}}{\mathrm{\tau}} \mathrm{t} \mathrm{dt}\right)
$$

Now we can easily show (see [1], [4], [5]) that:

$$
\begin{aligned}
& =\mathrm{I}_{2,1}+\mathrm{I}_{2,2}+\mathrm{I}_{2,3} \text {, say. } \\
& \frac{\tau}{\mathrm{t}^{2}} \mathrm{dt} \text {, } \\
& \mathrm{I}_{2,1}=0\left(\frac{1}{\mathrm{Q}_{\mathrm{n}}}\right)+\mathrm{o}\left(\frac{\mathrm{Q}_{\mathrm{n}} \cdot \mathrm{n} \cdot \mathrm{a}_{\mathrm{n}}}{\mathrm{Q}_{\mathrm{n}}, A_{\mathrm{n}}}\right)=\mathrm{o}(1)+\mathrm{o}(1)=\mathrm{o}(1) \text { as } \mathrm{n} \rightarrow \infty \text {. } \\
& \mathrm{I}_{2,2}=0\left(\frac{1}{\mathrm{Q}_{\mathrm{n}}} \frac{1}{\delta} \int^{\frac{\mathrm{n}}{\mathrm{~s}} .} \Phi\left(\frac{1}{\mathrm{~s}}\right) \mathrm{dQ}_{\mathrm{ts}}\right) \\
& =o\left(\frac{1}{Q_{n}} \sum_{k=1}^{n} \frac{k \cdot a_{k}\left(Q_{k}-Q_{k-1}\right)}{A_{k}}\right)+o(1), \\
& =o\left(\frac{1}{Q_{n}} \sum_{k=1}^{n} \frac{a_{k} \cdot k \cdot q_{k}}{A_{k}}\right)+o(1)=o\left(\frac{1}{Q_{n}} \sum_{k=1}^{n} \frac{a_{k} \cdot Q_{k}}{A_{k}}\right)+o(1) \\
& =o(1) \text { as } n \rightarrow \infty \text {. } \\
& \mathrm{I}_{2}, 3=\mathrm{o}\left({ }_{\frac{1}{8}} \int^{\mathrm{n}} \frac{\mathrm{a}_{[\mathrm{ss}} \mathrm{Q}_{\{s \mathfrak{l}}}{\mathrm{Q}_{\mathrm{n}}-\mathrm{A}_{\mathrm{ts}]}} \mathrm{ds}\right) \\
& =o\left(\frac{1}{Q_{n}} \sum_{k=1}^{n} \frac{a_{k}-Q_{k}}{A_{k}}\right)+o(1) \text { as } n \rightarrow \infty .
\end{aligned}
$$

Hence $\mathrm{I}_{2}=\mathrm{o}(1)$ as $\mathrm{n} \rightarrow \infty$. This completes the proof of theorem 4 .
Proof of theorem 5: Let $\mathrm{S}_{\mathrm{n}}(\mathrm{x})$ denote the sequence of partial sums of the derived series of a Fourier series. Then

$$
S_{n}(x)=-\frac{1}{2 \pi_{o}} \int^{\pi} \psi(t) \frac{d}{d t}\left(\frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right) d t \text {, and }
$$

hence by integration by parts and simplifying we have :

$$
\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{2 \pi} \int_{\mathrm{o}} \int^{\pi \sin \left(\mathrm{n}+\frac{1}{2}\right) \mathrm{t}} \frac{\mathrm{r}^{\prime} \quad \text { (t) dt. Therefore }}{\sin \frac{\mathrm{t}}{2}} \quad
$$

$$
\begin{aligned}
t_{n}(x)-f^{\prime}(x) & =\frac{1}{2 \pi Q_{n}} \int_{0}^{\pi} r^{\prime}(t) \sum_{k=0}^{n} q_{k} \frac{\sin \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}} d t \\
& =\int_{0}^{\pi} r^{\prime}(t) K_{n}(t) d t=0(1) \text { as in theorem } 4 \text { above. }
\end{aligned}
$$

Proof of theorem 6: Let $S_{n}(x)$ denote the sequence of partial sums of the conjugate series of Fourier series. Then it is easily seen that:

$$
\begin{aligned}
& t_{n}(x) \frac{1}{\pi} \int_{0}^{\pi} \frac{(t)}{2 \tan \frac{t}{2}} d t=-\int_{0}^{\pi} \psi(t) K_{n}(t) d t, \text { where } \\
& K_{n}(t)=\frac{1}{2 \pi Q_{n}} \sum_{k=0}^{h} q_{k} \frac{\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}
\end{aligned}
$$

Now the proof follows as in theorem 4 above.
REMARKS

1. If $a_{k}=. q_{K}=1$, then $A_{n}=n$, and $Q_{n}=n+1 \sim A_{n}$. We have:

$$
\Phi(t)=0\left(\frac{{ }^{a} \tau}{A_{\tau}}\right)=o(t), \text { and } \frac{1}{Q_{n}} \sum_{k=0}^{n} \frac{a_{k} Q_{k}}{A_{k}}=0(1) \text { as } n \rightarrow \infty
$$

Clearly this case represents Lebesgue's theorem [6].
2. If $\mathrm{a}_{\mathrm{k}}=1$, and $\mathrm{q}_{\mathrm{k}}=\frac{\mathrm{g}(\mathrm{k})}{(\mathrm{K}+1) \propto} \mathrm{o}<\propto<1$. Then $\mathrm{A}_{\mathrm{k}}=\mathrm{k}$, and $\mathrm{Q}_{\mathrm{k}} \sim \frac{\mathrm{k}^{1-\propto}}{1-\propto} \mathrm{g}$
as $k \rightarrow \infty$; furthermore $\boldsymbol{\Phi}(t)=o(t)$, and

Clearly this case represents theorems 1,2 , and 3 .
3. Assume that $\frac{g(n)}{(n+1)}$ is non-increasing for $n>n_{1}$. Then it is easily seen that application

Summability of Fourier Series

of lemma 3.1 is possible in the proofs of theorems 1,2 , and 3.

REFERENCES

Dikshit, H.R. 1962. The Norlund summability of conjugate series of a Fourier series. Rendconti Del Circolo mathematico Di Palermo 11: 227-234.

Hardy G.H. 1949. Divergent series, Oxford at the Clarendon press, 60-70.
McFadden L., 1942. Absolute Norlund summability, Duke Math. J., 9: 168-207.
Rafat Nabi Siddiqi 1977. On determination of the jump of a function of Wiener's class, J. of Science of Kuwait Univ. 4: 16-23.
T. Pati, 1958-1961. A generalization of a theorem of Iyengar on the harmonic summability of Fourier series. Indian J. of Math. Allahabad 1-3: 85-90.
Zygmund, 1969. Trigonometric series, V. 1, Cambridge at the University press, 90-92.

