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ABSTRACT 

We derive and present a MAPLE program for the construction of a parametric cubic polynomial curve 

which has sixth-order contract with a given smooth curve at a given point, thus providing a local sixth-order 

approximation to the given curve. Such a program is bound to be useful. We give also examples to show the 

implementation of the method. 
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A 6th-order local approximation by a cubic cu11le 

INTRODUCTION 

In this article we are dealing with computer algebra 

systems to get good results on approximating curves with 

low degree and high accuracy. This approach provides a 

strong tool tn order to get representations and 

approximations of complicated forms of curves and to give 

a parametric form of curves which are given in implicit 

form. The Bernstein polynomials of degree 3 on an interval 

I = [0, to] are defined by : 

For more on Bernstein Polynomials see [I]. 

Two curves 

C : given by x : 1 --7 9\2 

P : given by y : I --7 9\2 

have contact of order k > 0 at t = t0 
E I iff there exists 

reparametrizations a and j3, which satisfy : 

= 'i =0,1, ... 'k. 

In [2], [3], [4], [6], [7], [8], [9], these are related results. 

2. CONSTRUCTION OF THE APPROXIMANT 

In [10] a cubic approximant in Bernstein form is 

constructed. In this article we write a Maple-Program to 

construct a cubic Polynomial approximant in Bernstein 

form, which has a 6th order of contact at the point of 

approximation. For a given curve C, we want to find a curve 

P, which has contact of order 6 with C. Geometric 

continuity is an appropriate way to fit together two curves at 

a common point, and provides also additional free 

parameters for geometric modeling. It does not depend on 

the parameterization of the curves. For a given regular 

smooth planar curve : 

( 
f(t) ) . 

C:t--7 
g(t) 

t E I 

a cubic polynomial curve Pis required : 

(set)) 
p : t --7 11(t) t E I 
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which has a 6th order of contact at a common point in I, 

where s (t) and 11(t) are cubic polynomials in Bernstein 

form; i.e. 

3 3 3 3 
i,:(t): = a0 B

0
(t) + a1B1(t) + a2B2(t) + a3B3(t) 

3 3 3 3 
11(t): = C0 B0 (t) + c1B 1(t) + c2B2(t) + c3B3(t) 

It is always possible to assume that 

where A:;:. 0, so that for t E I we can parametrize C in the 

form 

s (t) 
c : t --7 s (t) --7 ( q> ((j>(t)) ) , t E I 

Thus P approximates C near t
0 

with order 6 iff P and C have 

6th order of contact at to i.e. iff 
d . 

(-;--Y { q, <s<t) -11(t)} 1 t = t) = o, 1, 2 •... , 5 o) 

So, to get the required order of approximation, we have to 

solve 

2 

'1>2 (s(to))sl (to)+ '1>1 (s(to))s2(to) -112Cto) = O, 

3 
'1>3 ( s(to) )s I (to) + 3q>2( s(to) )s I (to)S2(to) 

+ '1>1 (s(to) )s3(to)- 11)(t0 ) = 0, 

4 2 

<1>4 (s(to))s1(to) + 6<1>is<tJ)s1(to)s2Cto) + 3q>2(s(to)) 

2 
s2Cto) + 4<1>is<tJ)sl(to)S3(to) = 0, 

'l>s(s(to))s~ (to)+ 10q>4(s(to))s~ (to)s2Cto) 

2 2 
+ 15<1>3 (s(to))sl(tJs2Cto) + 10q>3(s(to))sl(to)S3(to) 

+ 10'1>2 (s(to)) S2(t0 ) S3(to) = 0 

S (t0 ) = 0 

where q>. (s(t0 )), i,:.(t
0

) and 11-(t
0

) are the ith derivatives of q>,~ 
I I I 

and 11 respectively at t = t0 • Since, we have a free parameter 

we set s 1= s, for somes:;:. 0 and thus obtain 
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<l>iO) s + <1> 1 (0) s 2 (t0 ) -112 (t0 ) = 0, 

4 2 2 
<1> 4 (0) s + 6<1>3 (0) s s2(to) + 3<1>2 (0) s2(to) 

+ 4<1>2 (0) s s3(to) = 0, 

5 3 2 
<1>5 (0) s + IO<J> iO) s s 2(t0 ) + 15<J>3(0) s sito) 

+ I O<J>iO) s sito) + 1 O<J>2(0) sito) s3(t0 ) = 0 

s(to)=O 

1l (t0 ) = 0 

To simply the notations, we use the abbreviation : 

<J>. = <J>. (0), i = 0, 1' ... , 5 
I I 

3. MAPLE - Program 

In this section we give a Maple-Program to solve the 

system in the last section. 

#Cubic polynomial approximation in Bernstein form 

# First the cubic Bernstein polynomials are defined 

bern : = proc(n, i, t) 

bionomial (n,i,)*(tO- tti * t\n-i) 

end: 

#Input tO : node of approximation, and the value of the 

# function at tO. 

# F [i] : i = I, 2, 3, 4, 5 : the associated derivatives of the 

# function to be approximated at tO. 

#The cubic polynomials X(t) and Y(t) are defined by X and 

# Y respectively. 

X : = aO * bern(3,0,t) +a! * bern(3, I ,t) + a2 * bern(3,2,t) 

+ a3 * bern(3,3,t) ; 

Y : = bO * bern(3,0,t) + bl * bern(3, I ,t) + b2 * bern(3,2,t) 

+ b3 * bern(3,3,t) ; 

#The derivatives of X andY. 

der X : = proc(j, t) 
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diff(X, t$j) 

end: 

der Y : = proc(j, t) 

diff(Y, t$j) 

end: 

#We simplify the notations of derivatives of X andY and 

# substitute t = tO. 

x :=array (1..3); 

y : =array (1 .. 3); 

F: =array (1..5); 

for j from 1 to 3 do 

x [j] :=subs (t =tO, derX (j, t)); 

y [j] : =subs (t =tO, derY (j, t)); 

od; 

# Now we substitute in the system of equations 

e1 :=subs (t =tO, X); 

e2 : =subs (t =tO, Y); 

e3:=x[l]-s; 

e4 : = F[l] * s - y[l]; 

A 
e5: = F[2] * s 2 + F[l] * x[2]- y[2]; 

A 
e6: = F[3] * s 3 + 3*F[2]*s*x[2] + F[l] * x[3]- y[3]; 

A A A 
e7 : = F[4] * s 4 + 6* F[3]*s 2*x [2] +3*F [2]*x[2] 2 

+ 4* F [2]*s*x [3] ; 

A A A 
e8: = F [5]*s 5 + 10* F [4]*s 3x [2] + 15*F [3]*s*x [2] 2 

+ I O*F [3]* s A2*x [3] + lO*F [2]*x [2]*x [3] ; 

sol : = solve ( { e 1 = tO, e2 = yO, e3 = 0, e4 = 0, e5 = 0, e6 = 

0, e7 = 0, e8 = 0} , {aO, al, a2, a3, bO, bl, b2, b3}); 

assign (sol) ; 

4. Solution of the System 

Applying the Maple-Program in the last section gives the 

following output : 
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Co= 0, 

al = 
- s 

2 
3to 

a2=R, 

1 42 23 2 3 42 
c3 = ---::-2 - ( -4Q>3s to$2 - 36Q>2s to - 72Q>2sRto + $

1
$ 

4
s to 

24<j>2sto 

3 2 3 2 2 
+ 24Q> 1Q>3s to+ 36Q>1Q>3s Rto + 72Q>

1
Q>2s + 216Q>

1
cp

2
sRto 

where R is a real root of the following cubic equation : 

26 3 . 2 5 2 4 2 3240Q>2t0 Z + (540cp3cp2s t
0 

+ 6480Q>2st
0 

) Z 

This equation is of odd degree and has always real roots. 

The derivation of the program provides a proof of the 

existence of such a parametric cubic interpolant. 

By applying the Maple-Program to required data 

consisting of values and derivatives of a function at a given 

point it is possible to find a cubic polynomial approximant 

in Bemtein form which approximates with order 6. The 

computer algebra program enables us to mention the 

following theorem : 

Theorem : A planar curve in C5 can be approximated 

locally by a parametrically defined cubic polynomial curve 
with order 6. 
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5. Examples 

We find a cubic approximant of the circle at ( ~ , ~) 

by applying the Maple-Program in section 5. One 

specializes the program by setting : 

s: = 1, 
1 

yO:=-
12 

and supplies the program with the first, second, third, fourth 

and fifth derivatives at tO in F [i). Executing the program 

gives three solutions 

a21 : = .9106836007; b21 : = 2.422649735; 

a31 : = 3.464101596; b11 : = 2.666666668; 

b31 :=2.000000008; aOl :=2.000000001; 

b01 : = 2.000000001; all : = 1.333333334; 

X1 : aOl *t3 + 3*all* (tO-t)* t2 + 3* a21 * (tO- t)2* t 

+ a3 I* (tO - t)3 : 

Y1 : b01 *t3 + 3*bll* (tO-t)* t2 + 3* b21 *(tO- t)2* t 

b31 * (tO - t)3 : 

a22: =- .2440169385; b22: = 3.577350273; 

a32: =- 3.464101620; b32 : = 1.999999990; 

b12: = 2.666666668; a02: = 2.000000001; 

b02: = 2.000000001; a12: = 1.333333334; 

X2 = : a02 * t3 + 3*a12* (tO- t)* t2 + 3*a22* (tO- t)2* t 

+ a32* (tO- t)3 
: 

Y2: = b02 * t3 + 3*b12* (tO-t)* t2 + 3*b22* (tO- t)2* t 

+ b32* (tO - t)3 
: 

a23 : = .3333333400; b33 : = 2.749999999; 

bl3: = 2.666666668; a03: = 2.000000001; 

b03: = 2.000000001; a13: = 1.333333334; 

b23 : = 2.999999995; a33 : =- .7499999590; 

X3 : = a03 * t3 + 3*al 3* (tO- t)* t2 + 3*a23* (tO- t)2* t 

+ a33* (tO- t)3 : 

Y3 : = b03 * t3 + 3*bl3* (tO-t)* t2 + 3*b23* (tO- t)2* t 

+ b33* (tO- t)3 : 
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which represent three curves t --7 (X1(t), Y1(t)), 

t --7 (X2(t), Y2(t)), t --7 (X3(t), Y3(t)) 

By drawing these curves, we see that the curve 

t --7 (X3(t), Y3(t)) 

coincides graphically with the circle in the first quadrant. 

In the second example, the function f (x) = exp (x2) is 

approximated at (I , E) where E = e. Applying the program 

in section 5 gives two complex solutions and the following 

real solution : 

0.2 0., 0.6 0.8 

Fig 1 : Approximation of the circle 
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R: = 0.1689708683; aO: = 1; bO: = E; a1: = 2/3; 

b2: = 2*E*R; 

b3: = 25/18*E-8*E*R + 9*E* R2 ; b1 : = 1/3*E; 

a3 : = -59/36 + 5*R + 9/2*R2; a2 : = R ; 

X1 : = aO* t3 + 3*al * (tO-t)* t2 + 3* a2* (tO- t)2* t 

+ a3* (tO- t)3 
; 

Y1 : = bO* t3 + 3*b1 *(tO-t)* t2 + 3* b2* (tO- t)2 * t 

+ b3*· (tO- t)3 ; 

which represents an acceptable solution around the point of 

approximation ( 1, E). 

12 

10 

8 

' 
' 
2 

-0.5 0.5 1 1.5 

Fig 2 : Approximation of exp (x " 2) 
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