HOMOMORPHISMS AND SUBALGEBRAS OF MS-ALGEBRAS

$$
\begin{aligned}
& \text { S. EI-Assar and A. Badawy } \\
& \text { Faculty of Science, Tanta University, Tanta, Egypt } \\
& \text { MS بوتيجـة لتكــوين وتمثيل جبريـات MS بوطـة الثلاتي المصـاحب أمكنـا تَثيل تشــابهات جبريات }
\end{aligned}
$$

ABSTRACT

According to the characterization of MS-algebras from the subvariety K_{2} by mean of the triple construction, we characterize the homomorphisms and the subalgebras of the MS-algebras. Also, we solve the "Fill-in" problem for the associated triples.

Key Words : MS-algebras, De Morgan algebras, kleene algebras, Varictics, Homomorphisms, Subalgebras.

INTRODUCTION

Blyth and Varlet introduced MS-algebras which are algebras of type (2,2,1,0,0) abstracting de Morgan and Stone algebras (sec [2] and [3]. In [1] and [4] they considered a certain subvaricty K_{2} of MS-algebras whose members may be thought of as algebras abstracting kleene and Stone algebras. Each member of K_{2} contains two simpler substructures, one being a kleene algebra and the other a distributive lattice with unit. They developed the "Chen-Gratzer" style construction theorem for the members of K_{2} utilizing methods similar to those employed by Katrinak [6] and [7] .

The purpose of this note is to study the propertics of the triple dealing with the homomorphisms and the subalgebras of MS-algebras from K_{2}. The last part deals with fill-in theorems, giving sufficient conditions in order that (K, D, ?) can be filled in to make a triple.

A De Morgan algebra ($\mathrm{L} ; \mathrm{V}, \wedge,{ }^{\circ}, 0,1$) is an algebra of type $(2,2,1,0,0)$ such that ($L ; v, \wedge, 0,1$) is a bounded distributive lattice and ${ }^{\circ}$ is a unary operation satisfying the identitics :

$$
x=x^{\infty 0} \text { and }(x \vee y)^{\circ}=x^{\circ} \wedge y^{\circ}
$$

As a dircet consequence of the definition, we have, for all $x, y \in L,(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, 0^{\circ}=1,1^{\circ}$ $=0$ and the assignment $x \rightarrow x^{\circ}$ satisfies $x \leq y$ if and only if $x^{\circ} \geq y^{\circ}$.

A Klecne algebra ($\mathrm{K} ; \mathrm{V}, \wedge,{ }^{\circ}, 0,1$) is a De Morgan algebra on which for every $\mathrm{x}, \mathrm{y}, \mathrm{x}^{\circ} \wedge \mathrm{x} \leq \mathrm{y} \vee \mathrm{y}^{\circ}$ holds. An MS-algebra is an algebra ($L ; \vee, \wedge,{ }^{\circ}, 0,1$) of type $(2,2,1,0,0)$ such that ($L ; v, \wedge, 0,1$) is a bounded distributive lattice and $x \rightarrow x^{\circ}$ is a unary operation and the following identities are satisfied:
(1) $x \leq x^{\circ}$,
(2) $(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}$,
(3) $1^{\circ}=0$.

The class of all MS-algebras forms a varicty. The subvariety K_{2} is defined by the additional two identities:
(4) $x \wedge x^{\circ}=x^{\circ \circ} \wedge x^{\circ}$,
(5) $\left(x \wedge x^{\circ}\right) \vee y \vee y^{\circ}=y \vee y^{\circ}$.

For any $\mathrm{L} \varepsilon \mathrm{K}_{2}$, we have
(6) $x=x^{\circ \circ} \wedge x^{\circ}\left(x \vee x^{\circ}\right)$, for every $x \varepsilon L$,
(7) $L^{\infty 0}=\left\{x \varepsilon L: x=x^{\infty 0}\right\}$ is a Kleene algebra,
(8) $\mathrm{L}^{\wedge}=\left\{\mathrm{x} \varepsilon \mathrm{L}: \mathrm{x} \leq \mathrm{x}^{\circ}\right\}=\{\mathrm{z} \varepsilon \mathrm{L}: \mathrm{z}=\mathrm{x}$ $\left.\wedge x^{\circ}\right\}$ is an ideal of L and
(9) $L^{\vee}=\left\{x \in L: x \geqq x^{\circ}\right\}=\{z \varepsilon L: z=x$ $\left.v x^{\circ}\right\}$ is a filter of L.

For a $\varepsilon L^{\infty \circ}$, denote $d_{a}=a v a^{\circ} \varepsilon L^{v}$.

Let $L \varepsilon K_{2} . L^{v}$ is a filter of L and hence L^{v} is a distributive lattice with the largest element $1 . F\left(L^{v}\right)$, the lattice of all filters of L^{v}, is distributive. The map $\phi(\mathrm{L})$: $\mathrm{L}^{\circ o} \rightarrow \mathrm{~F}\left(\mathrm{~L}^{\vee}\right)$ defined in the following way.
$a \phi(L)=\left\{x \varepsilon L: x \geqq x^{\circ}\right\}=\left[a^{\circ}\right) \cap L^{v}, a \varepsilon L^{\infty}$
is a polarization, that is $\phi(\mathrm{L})$ is a $(0,1)$ - homomorphism such that a $\phi(L)=L^{v}$ for every a $\varepsilon L^{\infty \vee}$ and a $\phi(\mathrm{L})$ is a principal filter of L^{v} for every a $\varepsilon \mathrm{L}^{\infty 0 \wedge}$. The triple [$\left.L^{\infty 0}, L^{v}, \phi(\mathrm{~L})\right]$, which we call briefly the triple associated with L , uniquely determines the algebra L . A K_{2}-triple (triple) is ($\mathrm{K}, \mathrm{D}, \phi$), where
(i) $\mathrm{K}=\left(\mathrm{K} ; \mathrm{v}, \wedge,{ }^{\circ}, 0,1\right)$ is a Klcene algebra,
(ii) D is a distributive lattice with 1 and
(iii) $\phi: K \rightarrow F(D)$ is a polarization.

A K_{2} - triple constructs an MS - algebra from K_{2} (See [1] and [5] such that L^{∞} is isomorphic with K, L^{v} is isomorphic with D and the diagram .

is commutative. $\left(\psi, \chi\right.$ are isomorphisms of $L^{\circ o}$ and K and of L^{v} and D, respectively and $F(\chi)$ stands for the isomorphism of $F\left(L^{V}\right)$ and $F(D)$ induced by $\left.\chi\right)$.

The constructing MS-algebra L is described by
$L=\left\{\left(a, a^{\circ} \phi U[x)\right), a \varepsilon K, x \gamma \varepsilon a^{\circ} \phi\right\} \subset K x F_{d}(D)$
where γ is a modal operator on D with
$\operatorname{Im} \gamma=\left\{\mathrm{z} \varepsilon \mathrm{D}:[\mathrm{z})=\mathrm{a} \phi\right.$ for some $\left.\mathrm{a} \varepsilon \mathrm{K}^{\wedge}\right\}$.
$\operatorname{Let}\left(a, a^{\circ} U[x)\right),\left(b, b^{\circ} \phi \cup[y)\right) \varepsilon$ L. Then we have
(10) $\left(a, a^{\circ} \phi U[x)\right) \wedge\left(b, b^{\circ} \phi U[y)\right)$
$=\left(a \wedge b,(a \wedge b)^{\circ} \phi \cup[x \wedge y)\right)$,
(11) $\left(a, a^{\circ} \phi U[x)\right) \vee\left(b, b^{\circ} \phi U[y)\right)$

$$
=\left(a \vee b,(a \vee b)^{\circ} \phi \cup[t)\right), t \in D
$$

(12) $\left(a, a^{\circ} \phi \cup[x)\right) \leq\left(b, b^{\circ} \phi U[y)\right)$ if and only if $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{a}^{\circ} \phi \mathrm{U}[\mathrm{x}) \supseteq \mathrm{b}^{\circ} \phi \mathrm{U}[\mathrm{y})$,
(13) $(0, D) \leqq\left(a, a^{\circ} \phi U[x)\right) \leqq(1,[1))$ and
(14) $\left(a, a^{\circ} \phi U[x)\right)^{\circ}=\left(a^{\circ}, a \phi\right)$.

MAIN RESULTS

I. Homomorphisms Of Ms-algebras From K_{2}

Lel $L, L_{1} \varepsilon K_{2}$ and h be a homomorphism of L into L_{1}, that h is a lattice homomorphism which preserves 0 , $1,{ }^{\circ}$.

Definition 1

Let ($\mathrm{K}, \mathrm{D}, \phi$) and ($\mathrm{K}_{1}, \mathrm{D}_{1}, \phi_{1}$) be K_{2} - triples (triples). A homomorphism of the triple ($\mathrm{K}, \mathrm{D}, \phi$) into (K_{1}, D_{1}, ϕ_{1}) is a pair (f, g), where f is a homomorphism of K into K_{1}, g is a homomorphism of D into D_{1} such that for everya $\varepsilon \mathrm{k}$:
(15) $\mathrm{d}_{\mathrm{a}} \mathrm{g}=\mathrm{d}_{\mathrm{af}}$
(16) $a \phi g \leq a f \phi_{1}$
holds.

Lemma 1

Let $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{K}$ and $\mathrm{x}, \mathrm{y}, \mathrm{t} \varepsilon \mathrm{D}$. Let γ, γ_{1} be modal operators on D and D_{1}, respectively. Then
(i) $a \phi \cap[y)=[t)$ and $y \gamma \varepsilon$ a ϕ implics $\operatorname{af} \phi_{1} \cap[y g)=[\operatorname{tg})$ and $y g \gamma_{1} \varepsilon a f \phi_{1}$,
(ii) $\left(a^{\circ} \phi U[x)\right) \cap\left(b^{\circ} \phi U[y)\right)=(a \vee b)^{\circ} \phi U[t)$ and $t \gamma \varepsilon(a \vee b)^{\circ} \phi$ implies
$\left.\left((a f)^{\circ} \phi_{1} U_{[x g}\right)\right) \cap\left((b)^{\circ} \phi_{1} U_{[y g)}\right)$ $=(\mathrm{a} \vee \mathrm{b})^{\circ} \mathrm{f} \phi_{1} \mathrm{U}[\mathrm{tg})$ and $\operatorname{tg} \gamma_{1} \varepsilon(\mathrm{a} \vee \mathrm{b})^{\circ} \mathrm{f} \phi_{1}$.

Proof

(i) Let $a \phi \cap[y)=[t)$, then $t=x_{1} \vee y, x_{1} \varepsilon$ a ϕ and $\mathrm{x}_{1} \mathrm{~g} \varepsilon \mathrm{a} \phi \mathrm{g} \leq \mathrm{af} \phi_{1}$.

If $t_{1} \varepsilon$ af $\phi_{1} \cap[y g)$, then $t_{1}=x_{1} g \vee y g$ $=\left(x_{1} \vee y\right) g=\operatorname{tg}$ and af $\phi_{1} \cap[y g) \subseteq[t g)$. Also, af $\left.\phi_{1} \cap[y g) \circlearrowright a \phi g \cap y g\right)$
$=(a \phi \cap[y)) g=[t) g=[\operatorname{tg})$ and $y \gamma \varepsilon a \phi$ implies $\operatorname{yg} \gamma_{1} \varepsilon$ af ϕ_{1},
(ii) ((af $\left.\left.)^{\circ} \phi_{1} \cup[x g)\right) ~ \cap((b))^{\circ} \phi_{1} \cup[y g)\right)$ $=\left((\mathrm{af})^{\circ} \phi_{1} \cap\left((\mathrm{~b})^{\circ} \phi_{1} U_{[\mathrm{yg}))}\right) \quad \mathrm{U}([\mathrm{xg}) \cap\right.$ $\left.\left((b f)^{\circ} \phi_{1} \cup[y g)\right)\right)$
$=\left((a f)^{\circ} \phi_{1} \cap(b f)^{\circ} \phi_{1}\right) U\left((a)^{\circ} \phi_{1} \cap[y g)\right) U$ $\left([\mathrm{xg}) \cap(\mathrm{bf})^{\circ} \phi_{1}\right) \cup([\mathrm{xg}) \cap[\mathrm{yg}))$ $=(a \vee b)^{\circ} f \phi_{1} U[\operatorname{tg})$.
and

$$
\begin{aligned}
& \left((a f)^{\circ} \phi_{1} \cap[y g)\right) \cup\left(\left([x g) \cap\left(b f^{\circ} \phi_{1}\right) \cup[x \vee y) g\right)\right. \\
& \quad=\left[t_{1} g\right) U\left[t_{2} g\right) \cup[(x \vee y) g] \\
& \quad=\left[\left(t_{1} \wedge t_{2} \wedge(x \vee y) g\right)=[t g),\right.
\end{aligned}
$$

where
$(a f)^{\circ} \phi_{1} \cap[y g)=\left[t_{1} g\right)$ an $\left(7(b)^{\circ} \phi_{1} \cap[x g)=\left[t_{2} g\right)\right.$ by (i) and $t=t_{1} \wedge t_{2} \wedge(x \vee y) . \bigcap$
Now, since $\mathfrak{t} \gamma \varepsilon(\mathrm{a} \vee \mathrm{b})^{\circ} \phi, \mathrm{t} \gamma \mathrm{g} \varepsilon(\mathrm{a} \vee \mathrm{b})^{\circ} \phi \mathrm{g}$ $\subseteq(\mathrm{a} \vee \mathrm{b})^{\circ} \mathrm{f} \phi_{1}$ and $(\mathrm{tg}) \mathrm{Y}_{1}=\mathrm{t} \gamma \mathrm{g} \quad \varepsilon(\mathrm{a} \vee \mathrm{b})^{\circ} \mathrm{f} \phi_{1}$

Theorem 1

Let L and L_{1} be MS-algebras from $K_{2},(K, D, \phi)$ and $\left(K_{1}, D_{1}, \phi_{1}\right)$ be the associated triples, respectively. Let h be a homomorphism of L into L_{1} and h_{K}, h_{D} the restrictions of h to K and D, respectively. Then (h_{K}, h_{D}) is a homomorphism of the triples. Conversely, every homomorphism (f, g) of triples uniquely determines a homomorphism h of L into L_{1} with $h_{K}=f, h_{D}=g$ by the following rule :
$\mathrm{xh}=\mathrm{x}^{00} \mathrm{f} \wedge\left(\mathrm{x} \vee \mathrm{x}^{\circ}\right) \mathrm{g}$ for all $\mathrm{x} \varepsilon \mathrm{L}$.
(In other words, homomorphisms of MS-algebras from K_{2} are the same as homomorphisms of triples).

Proof

To prove the first statement we have to verify (15) and (16) with $g=h_{D}$ and $f=h_{K}$. Evidently,
$d_{a h}=a h \vee(a h)^{\circ}=\left(a \vee a^{\circ}\right) h=d_{a} h$, $\mathrm{a} \phi \mathrm{h}=\{\mathrm{xh}: \mathrm{x} \varepsilon \mathrm{a} \phi\}=\left\{\mathrm{xh}: \mathrm{x} \varepsilon\left[\mathrm{a}^{\circ}\right) \cap \mathrm{D}\right\}$

$$
\subseteq\left\{y: y \varepsilon\left[(a h)^{\circ}\right) \cap D_{1}\right\}=\text { ah } \phi_{1}
$$

Conversely, let (15) and (16) hold. We represent the elements of L and L_{1} as in Construction Theorem that is $L=\left\{\left(a, a^{\circ} \phi U[x)\right): a \varepsilon K, x \varepsilon D, x \gamma\right.$ e $\left.a^{\circ} \phi\right\}$, where γ is a modal operator on D with $\operatorname{Im} \gamma=\{z \varepsilon D$:
$[\mathrm{z})=\mathrm{a} \phi$ for some $\mathrm{a} \varepsilon \mathrm{K}^{\wedge}$] and
$L_{1}=\left\{\left(b, b^{\circ} \phi_{1} \cup[y)\right): b \varepsilon K_{1}, y \varepsilon D_{1}, y \gamma_{1} \varepsilon b^{\circ} \phi_{1}\right\}$,
where γ_{1} is a modal operator on D_{1} with
$\operatorname{Im} \gamma_{1}=\left\{z \varepsilon D_{1}:[z)=a \phi_{1}\right.$ for some $\left.a \varepsilon K_{1}\right\}$.
Then the definition of h reads :
$\left(a, a^{\circ} \phi \bigcup[x)\right) h=\left(a f,(a f)^{\circ} \phi_{1} U[x g)\right), x g \gamma_{1} \varepsilon(a f)^{\circ} \phi_{1}$. We show that h is well defined. Let
$\left(a, a^{\circ} \phi U[x)\right)=\left(b, b^{\circ} \phi U[y)\right)$.
Then $a=b$ and $a^{\circ} \phi U(x)=b^{\circ} \phi U[y)$.

Hence, $\mathrm{x} \geqq \mathrm{x}_{1} \wedge \mathrm{y}$ and $\mathrm{y} \geqq \mathrm{y}_{1} \wedge \mathrm{x}$ for some $\mathrm{x}_{1}, \mathrm{y}_{1} \varepsilon \mathrm{a}^{\circ} \phi$. Since g is a homomorphism and (16) holds, then we have $\mathrm{xg} \geqq \mathrm{x}_{1} \mathrm{~g} \wedge \mathrm{yg}$ and $\mathrm{yg} \geqq \mathrm{y}_{1} \mathrm{~g} \wedge \mathrm{xg}$ with $x_{1} g, \quad y_{1} g \varepsilon(a f)^{\circ} \phi_{1}$. So we obtain $(a)^{\circ} \phi_{1} U[\mathrm{xg})=(\mathrm{a})^{\circ} \phi_{1} U[\mathrm{yg})$.

Thus, $\left(a, a^{\circ} \phi U[x)\right) h=\left(b, b^{\circ} \phi U[y)\right) h$. Therefore, h is a map of L into L_{1}. Obviously, $h_{K}=f$ and $h_{D}=g$. To prove that h is a homomrphism, we have to verify the following three formulac:
(17) $\left(\left(a, a^{\circ} \phi U[x)\right) \wedge\left(b, b^{\circ} \phi U[y)\right)\right) h$ $=\left(a, a^{\circ} \phi U[x)\right) h \wedge\left(b, b^{\circ} \phi U[y)\right) h ;$
(18) $\left(\left(a, a^{\circ} \phi U[x)\right) \vee\left(b, b^{\circ} \phi U_{[y)}\right)\right) h$

$$
=\left(a, a^{\circ} \phi U[x)\right) h \vee\left(b, b^{\circ} \phi U[y)\right) h ;
$$

(19) $\left(a, a^{\circ} \phi U[x)\right)^{\circ} h=\left(\left(a, a^{\circ} \phi U[x)\right) h^{\circ}\right.$.
(17) $\left(\left(a, a^{\circ} \phi U_{[x}\right)\right) \wedge\left(b, b^{\circ} \phi U_{[y))) h}\right.$

$$
=\left(a \wedge b,(a \wedge b)^{\circ} \phi U[x \wedge y)\right) h
$$

$$
\left.=\left((a \wedge b) f,((a \wedge b) f)^{\circ} \phi_{1} \cup[(x \wedge y) g)\right)\right)
$$

$$
=\left(\mathrm{af},(\mathrm{af})^{\circ} \phi_{1} \cup[\mathrm{xg})\right) \wedge\left(\mathrm{bf},(\mathrm{bf})^{\circ} \phi_{1} \cup[y \mathrm{~g})\right)
$$

$$
=\left(a, a^{\circ} \phi U[x)\right) h \wedge\left(b, b^{\circ} \phi U_{[y)}\right) h
$$

(18) $\left(\left(a, a^{\circ} \phi U^{[x)}\right) v\left(b, b^{\circ} \phi U_{[y)}\right)\right) h$
$=\left(a \vee b,(a \vee b)^{\circ} \phi U[t)\right) h$
$\left.=((a \vee b) f,((a \vee b)))^{\circ} \phi_{1} U[t g)\right)$
$=\left((a \vee b) f,\left((a)^{\circ} \phi_{1} U[x g)\right)\right.$
$\cap\left((b f)^{\circ} \phi_{1} \cup[y g)\right)$
by lemma 1 (ii)
$\left.=\left(a f,(a f)^{\circ} \phi_{1} U[\mathrm{xg})\right) \vee\left(b f,(b f)^{\circ} \phi_{1} U_{[y g}\right)\right)$
$=\left(a, a^{\circ} \phi U[x)\right) h \vee\left(b, b^{\circ} \phi U[y)\right) h$.
(19) $\left(a, a^{\circ} \phi U(x)\right)^{\circ} h=\left(a^{\circ}, a \phi\right) h=\left(a^{\circ} f, a f \phi_{1}\right)$

$$
\begin{aligned}
& =\left(a f,(a)^{\circ} \phi_{1} \cup[x g)\right)^{\circ} \\
& =\left(\left(a, a^{\circ} \phi U(x)\right) h\right)^{\circ} .
\end{aligned}
$$

Thus, h is a homomrphism of L into L_{1}. It is easy to see the uniqueness of h with $h_{K}=f$ and $h_{D}=g$.

II. Subalgebras of MS - Algebras from $\mathbf{K}_{\mathbf{2}}$

According to the characterization of MS-algebras in K_{2} by means of the triple ($\mathrm{K}, \mathrm{D}, \phi$), we characterize the subalgcbras and solve the "Fill-in" problem for their associated triples.

Theorem 2

Let L_{1} be a subalgebra of an MS-algebra L from K_{2}, then $L^{\circ 0}{ }_{1}=L_{1} \cap L^{\circ o}$ is a subalgebra of $L^{\circ 0}$ and $L_{1}{ }^{v}=$ $L_{1} \cap L^{v}$ is a sublatice of L^{v} containing 1 . The triple associated with L_{1} is $\left(L_{1}{ }^{\circ 0}, L_{1}{ }^{v}, \phi_{1}\right)$, where ϕ_{1} is given by $a \phi_{1}=a \phi \cap L_{1}{ }^{v}$, for $a \varepsilon L_{1}{ }^{\circ}$.

Proof

Let $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{L}_{1}{ }^{\circ 0}$, clearly $\mathrm{x} \vee \mathrm{y}, \mathrm{x} \wedge \mathrm{y}$ are elements in $L_{1}{ }^{\circ \circ}, L_{1}{ }^{\circ \circ}$ is a sublattice of $L^{\circ \circ}$. Since L_{1} is bounded and the bounds 0,1 are squclette elements, then
$0,1 \varepsilon \mathrm{~L}_{1}{ }^{00}$ and $1^{\circ}=0$
also $(x \vee y)^{\circ}=x^{\circ} \wedge y^{\circ}$
and $\mathrm{x} \wedge \mathrm{x}^{\circ} \leqq \mathrm{y} \vee \mathrm{y}^{\circ}$ for every $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{L}_{1}{ }^{\circ}$.
Thus $\mathrm{L}_{1}{ }^{00}$ is a subalgcbra of $\mathrm{L}^{\infty 0}$.

Since L^{v} is a sublattice of L containing 1 , then $L_{1}{ }^{v}=$ $L_{1} \cap L^{v}$ is a sublattice of L^{v} containing 1.

Now, we dcfine $\phi_{1}: L_{1}{ }^{\circ 0} \rightarrow F\left(L_{1}{ }^{v}\right)$ by $a \phi_{1}=a \phi$ $\cap \mathrm{L}_{1}{ }^{\mathrm{v}}$, a $\varepsilon \mathrm{L}_{1}{ }^{\circ 0}$, we show that ϕ_{1} is a polarization $0 \phi_{1}=0 \phi \cap L_{1}{ }^{v}=[1), 1 \phi_{1}=1 \phi \cap L_{1}{ }^{v}=L_{1}{ }^{v}$ and $(\mathrm{a} \vee \mathrm{b}) \phi_{1}=(\mathrm{a} \vee \mathrm{b}) \phi \cap \mathrm{L}_{1}{ }^{\mathrm{V}}=$ $=\left(a \phi U_{b \phi}\right) \cap L_{1}{ }^{v}=\left(a \phi \cap L_{1}{ }^{v}\right) U\left(b \phi \cap L_{1}{ }^{v}\right)$ $=\mathrm{a} \phi_{1} \cup \mathrm{~b} \phi_{1}$,
$(a \wedge b) \phi_{1}=(a \wedge b) \phi \cap L_{1}{ }^{v}=(a \phi \cap b) \cap L_{1}{ }^{v}$ $=\left(a \phi \cap L_{1}{ }^{v}\right) \cap\left(b \phi \cap L_{1}{ }^{v}\right)$
$=\mathrm{a} \phi_{1} \cap \mathrm{~b} \phi_{1}, \mathrm{a}, \mathrm{b} \varepsilon \mathrm{L}_{1}{ }^{\circ \circ}$
which means that ϕ_{1} is a $\{0,1\}$ - homomorphism of $L_{1}{ }^{\circ \circ}$ into $F\left(L_{1}{ }^{v}\right)$.

For all a $\varepsilon L_{1}{ }^{o v v}, a=a_{1} \vee a_{1}{ }^{\circ}, a_{1} \varepsilon L_{1}{ }^{\circ o}$ we have $a \phi_{1}=\left(a_{1} \vee a_{1}{ }^{\circ}\right) \phi_{1}=\left(a_{1} \vee a_{1}{ }^{\circ}\right) \phi \cap L_{1}{ }^{v}$ $=\left[d_{a 1}\right) \cap L_{1}{ }^{v}=L_{1}{ }^{v}$ (ϕ is a polarization)
For all a $\varepsilon L_{1}{ }^{\circ \circ \wedge}$, a ϕ_{1} is a principal filter of $F\left(L_{1}{ }^{v}\right)$. Then ($\mathrm{L}_{1}{ }^{\circ \circ}, \mathrm{L}_{1}{ }^{v}, \phi_{1}$) is the K_{2}-triple associated with L_{1}.

Theorem 3

Let $L \in K_{2}, L_{1}{ }^{\circ 0}$ be a subalgebra of $L^{\infty \infty}, L_{1}{ }^{v}$ a sublattice of L^{V} containing 1 . Wc can fill - in ($\mathrm{L}_{1}{ }^{\circ 0}, \mathrm{~L}_{1}{ }^{\mathrm{V}}$, ?) such that it will become the triple associated with a subalgebra of L iff
(1) $a \phi_{1} \cup_{a^{\circ} \phi_{1}}=L_{1}{ }^{\mathrm{V}}$ for a $\varepsilon L_{1}{ }^{\circ o}$
(2) $\mathrm{ava}^{\circ} \varepsilon \mathrm{L}_{1}{ }^{\mathrm{V}}$ for $\mathrm{a} \varepsilon \mathrm{L}_{1}{ }^{\circ 0}$.

Proof

If ($L_{1}{ }^{\circ 0}, L_{1}{ }^{v}, \phi_{1}$) is the triple associated with a subalgebra L_{1} of L, then $a \phi_{1}=a \phi_{L} \cap L_{1}{ }^{v}$. Hence

$$
\begin{aligned}
\left(a \phi_{1} \cup_{a^{\circ} \phi_{1}}\right) & =\left(a \phi \cap L_{1}^{v}\right) \cup\left(a^{\circ} \phi \cap L_{1}^{v}\right) \\
& =\left(a \phi \cup a^{\circ} \phi\right) \cap L_{1}^{v} \\
& =L^{v} \cap L_{1}^{v}=L_{1}^{v} .
\end{aligned}
$$

Now, let a $\varepsilon \mathrm{L}_{1}{ }^{\circ 0}$, then $a v a^{\circ} \varepsilon L_{1} \cap L^{v}=L_{1}{ }^{v}$. Conversely, assume (1) and (2). Let $\mathrm{K}=\mathrm{L}^{\infty \infty}, \mathrm{D}=\mathrm{L}^{\mathrm{V}}$ and $\phi=\phi(\mathrm{L})$. Represent the elements of L as in the Construction Theorem, that is,
$\mathrm{L}=\left(\mathrm{a}, \mathrm{a}^{\circ} \phi \mathrm{U}[\mathrm{x})\right): \mathrm{a} \varepsilon \mathrm{K}, \mathrm{x} \boldsymbol{\varepsilon} \mathrm{D}, \mathrm{x} \boldsymbol{\gamma} \boldsymbol{\varepsilon} \mathrm{a}^{\circ} \phi$ and γ is a modal operator on D)
$L_{1}=\left(\left(a, a^{\circ} \phi U(x)\right): a \varepsilon K_{1}, x \in D_{1}, x \gamma_{1} \varepsilon\right.$ $a^{\circ} \phi$ and γ_{1} is the restriction of γ to $\left.D_{1}\right\}$.

We show that L_{1} is a subalgebra of L. It is clear that 0_{L} $=(0, D)$ and $1_{L}=(1,[1))$ belong to L_{1} and if $\left(\mathrm{a}, \mathrm{a}^{\circ} \phi \mathrm{U}[\mathrm{x})\right) \varepsilon \mathrm{L}_{1}$,
$\left(\left(a, a^{\circ} \phi U[x)\right)\right)^{\circ}=\left(a^{\circ}, a \phi\right) \varepsilon L_{1}$.

Now, lct ($\left.a, a^{\circ} \phi U_{[x}\right)$), ($\left.b, b^{\circ} \phi U_{[y}\right)$) be elements of L_{1}. Wc have
$\left(a, a^{\circ} \phi U[x)\right) \wedge\left(b, b^{\circ} \phi U(y)\right)$
$\left.=a \wedge b,(a \wedge b)^{\circ} \phi U(x \wedge y)\right) \varepsilon L_{1}$ and
$(x \wedge y) \gamma_{1}=(x \wedge y) \gamma \varepsilon(a \wedge b)^{\circ} \phi$,
$\left(a, a^{\circ} \phi U[x)\right) \vee\left(b, b^{\circ} \phi U[y)\right)=\left(a \vee b,\left(a^{\circ} \phi\right.\right.$
$\left.\mathrm{U}(\mathrm{x})) \mathrm{\cap}\left(\mathrm{~b}^{\circ} \phi \mathrm{U}_{[\mathrm{y})}\right)\right)$
$=\left(a \vee b,(a \vee b)^{\circ} \phi U[t)\right) \varepsilon L_{1}$
where
$\left(a^{\circ} \phi U[x)\right) \cap\left(b^{\circ} \phi U(y)\right)=\left(\left(a^{\circ} \phi U(x)\right)\right.$
$\left.\cap \mathrm{b}^{\circ} \phi\right) \mathrm{U}\left(\left(\mathrm{a}^{\circ} \phi \mathrm{U}(\mathrm{x})\right) \cap(\mathrm{y})\right)$
$=\left(a^{\circ} \phi \cap b^{\circ} \phi\right) U\left([x) \cap b^{\circ} \phi\right) U\left(a^{\circ} \phi \cap[y)\right) U$ [$x \vee y$)
$=(a \vee b)^{\circ} \phi U\left[t_{1}\right) U\left[t_{2}\right) U(x \vee y)$
$=(a \vee b)^{\circ} \phi U\left[t_{1} \wedge t_{2} \wedge(x \vee y)\right)$
$=(a \vee b)^{\circ} \phi U[t), t \varepsilon D_{1}, t \gamma_{1} \varepsilon(a \vee b)^{\circ} \phi$.
Since $b^{\circ} \phi(\mathrm{x})=\left[\mathrm{t}_{1}\right)=\left(\begin{array}{lll}\mathrm{x} & \left.\vee \mathrm{x}_{1}\right), \mathrm{x}_{1} \in \mathrm{~b}^{\circ} \phi \text { and } .\end{array}\right.$ $a^{\circ} \phi \cap[y)=\left[t_{2}\right)=\left[y \vee y_{1}\right), y_{1} \varepsilon a^{\circ} \phi(b y$ Lemma 1, [1]),
then $t_{1}, t_{2} \varepsilon D_{1}$ and so $t=t_{1} \wedge t_{2} \wedge(x \mathrm{v} y) \varepsilon D_{1}$. Also, we have .

$$
\begin{aligned}
& \left(a, a^{\circ} \phi U[x)\right) \leq\left(a, a^{\circ} \phi U[x)\right)^{\circ \circ}=\left(a, a^{\circ} \phi\right), \\
& \left(\left(a, a^{\circ} \phi U[x)\right) \wedge\left(b, b^{\circ} \phi U[y)\right)\right)^{\circ} \\
& \quad=\left(a \wedge b,(a \wedge b)^{\circ} \phi U[x \wedge y)\right)^{\circ} \\
& =\left((a \wedge b)^{\circ},(a \wedge b) \phi\right) \\
& =\left(a^{\circ} \vee b^{\circ}, a \phi \wedge b \phi\right) \\
& =\left(a^{\circ}, a \phi\right) \vee\left(b^{\circ}, b \phi\right) \\
& =\left(a, a^{\circ} \phi U[x)\right)^{\circ} \vee\left(b, b^{\circ} \phi U[y)\right)^{\circ} .
\end{aligned}
$$

and

$$
\begin{aligned}
\left(a, a^{\circ} \phi\right. & U[x)) \wedge\left(a, a^{\circ} \phi U[x)\right)^{\circ} \\
& =\left(a, a^{\circ} \phi U[x)\right) \wedge\left(a^{\circ}, a \phi\right) \\
& =\left(a \wedge a^{\circ},\left(a^{\circ} \vee a\right) \phi U[x)\right) \\
& =\left(a, a^{\circ} \phi\right) \wedge\left(a^{\circ}, a \phi\right)\left(\operatorname{Since}\left(a^{\circ} \vee a\right) \phi=D\right) \\
& =\left(a, a^{\circ} \phi U[x)\right)^{\circ \circ} \wedge\left(a, a^{\circ} \phi U[x)\right)^{\circ} .
\end{aligned}
$$

Similarly ,
$\left(x \wedge x^{\circ}\right) \vee\left(y \vee y^{\circ}\right)=y \vee y^{\circ} \forall x, y \varepsilon L_{1}$.
Thus L_{1} is a subalgebra of L. We show that $L_{1}{ }^{\infty} \simeq K_{1}$ and $L_{1}{ }^{v} \simeq D_{1}$.

$$
\begin{aligned}
& \left.\mathrm{L}_{1}^{\infty}=\left\{\mathrm{a}, \mathrm{a}^{\circ} \phi\right): \mathrm{a} \varepsilon \mathrm{~K}_{1}\right\} \\
& \mathrm{L}_{1}^{v}=\left\{\left(\mathrm{a}, \mathrm{a}^{\circ} \phi \cup[\mathrm{x})\right): \mathrm{a} \varepsilon \mathrm{~K}_{1}^{v}\right\}
\end{aligned}
$$

Define $\psi: \mathrm{K}_{1} \rightarrow \mathrm{~L}_{1}{ }^{\infty}$ by a $\psi=\left(\mathrm{a}, \mathrm{a}^{\circ} \phi\right)$, a εK and $\chi: \mathrm{D}_{1} \rightarrow \mathrm{~L}_{1}{ }^{\mathrm{V}}$ by $\mathrm{x} \chi=\left(\mathrm{d}, \mathrm{d}^{\circ} \phi \bigcup[\mathrm{x})\right.$), $\mathrm{d} \varepsilon \mathrm{K}_{1}{ }^{\mathrm{V}}$.

By easy computations, we can prove that ψ and χ are isomorphisms. Hence we can fill-in ($\mathrm{K}_{1}, \mathrm{D}_{1}$, ?) by $\phi_{1}=\phi_{L_{1}}=\phi_{L} \cap D_{1}$ such that it will become the triple associated with a subalgebra of L .

III. Fill-in Theorems (Fill-in problems)

Fill - in problems are statements containing the answer to the question : for a given klecne algebra K, a distributive lattice D with 1 , when docs there exist a ϕ such that (K, D, ϕ) is a K_{2}-triple ?

Theorem 4

(K, D, ?) can always be filled in to make it a K_{2} triple if K is a Kleene algebra and D a distributive lattice with 1 , provided $|K|>1$. If $|K|=1$ then $|\mathrm{D}|=1$.

Proof

Take an arbitrary prime ideal P of K . Define

$$
\begin{array}{rlrllll}
\phi: \mathrm{K} & \rightarrow \mathrm{~F}(\mathrm{D}) \\
\mathrm{x} \phi & =\mathrm{D} & & \text { for } & \mathrm{x} & \notin & \mathrm{P} \\
\mathrm{x} \phi & =[1) & \text { for } & \mathrm{x} & \varepsilon & \mathrm{P} .
\end{array}
$$

It is easy to check that ϕ is a polarization.
Consider the fill-in problem given by the following diagram

where f and g are onto homomorphisms. We can formulate

Theorem 5

Let ($\mathrm{K}, \mathrm{D}, \mathrm{f}$) be a given K_{2}-triple, ($\mathrm{K}_{1}, \mathrm{D}_{1}$, ?) a defective triple and a pair of onto homomorphisms f : $\mathrm{K} \rightarrow \mathrm{K}_{1}$ and $\mathrm{g}: \mathrm{D} \rightarrow \mathrm{D}_{1}$. There exists a ϕ_{1} making $\left(K_{1}, D_{1}, \phi_{1}\right)$ a K_{2}-triple, and (f, g) a homomorphism of $(\mathrm{K}, \mathrm{D}, \phi)$ and $\left(\mathrm{K}_{1}, \mathrm{D}_{1}, \phi_{1}\right)$ iff $(\mathrm{a} \phi) \mathrm{g}=[1)$ for all a $\varepsilon \mathrm{of}^{-1}$.

Proof

Assume that ($\mathrm{K}, \mathrm{D}, \phi$) and $\left(\mathrm{K}_{1}, \mathrm{D}_{1}, \phi_{1}\right)$ be K_{2} triples with a pair of onto homomorphisms f:K $\rightarrow \mathrm{K}_{1}$ and $\mathrm{g}: \mathrm{D} \rightarrow \mathrm{D}_{1},(\mathrm{f}, \mathrm{g})$ is a homomorphism of the two triples.

Then a $\phi \mathrm{g} \subseteq \mathrm{af} \phi_{1}$. Let a $\varepsilon \mathrm{Of}^{-1}$ then $\mathrm{af}=0$ and $(\mathrm{a} \phi) \mathrm{g} \subseteq(\mathrm{af}) \phi_{1}=0 \phi_{1}=[1)$, but $[1)$ is the smallest clement of $F\left(\mathrm{D}_{1}\right)$, then $(\mathrm{a} \phi) \mathrm{g}=[1) \forall$ a $\varepsilon \mathrm{Of}^{-1}$. Conversely, let $(\mathrm{a} \phi) \mathrm{g}=[1) \forall$ a $\varepsilon \mathrm{Of}^{-1}$. Define ϕ_{1} : $K_{1} \rightarrow F\left(D_{1}\right)$ as $b \phi_{1}=a \phi g$, where $b=a f$, a εK, that is (af) $\phi_{1}=(\mathrm{a} \phi) \mathrm{g}$. We have to show that ϕ_{1} is a well defined map. Let $\mathrm{af}=\mathrm{bf}, \mathrm{a}, \mathrm{b} \varepsilon \mathrm{k}$, then $(\mathrm{af})^{\circ}=(\mathrm{bf})^{\circ}$,

$$
\begin{aligned}
a \phi g & =\{x g: x \varepsilon a \phi\}=\left\{x g: x \varepsilon\left[a^{\circ}\right) \cap D\right\} \\
& =\left\{y: y=x g \varepsilon\left[(a f)^{\circ}\right) \cap D_{1}\right\} \\
& =\left\{y: y \varepsilon\left[(b)^{\circ}\right) \cap D_{1}\right\} \\
& =\left\{x g: x \varepsilon\left[b^{\circ}\right) \cap D\right\}=b \phi g
\end{aligned}
$$

and ϕ_{1} is a well defined map.
Since f is a Kleene homomorphism of K onto K_{1}, then $0 \phi_{1}=(0 \cap) \phi_{1}=0 \phi \mathrm{~g}=\{1)$ which is the zero of
$F\left(D_{1}\right)$. Also, $1 \phi_{1}=(1 f) \phi_{1}$ is a $[0,1)-$ map. Now, let $x, y \in K_{1}$, then $a f=x, b f=y$ for some $a, b \varepsilon K$.

$$
\begin{aligned}
(x \vee y) \phi_{1}=(a f \vee b f) \phi_{1} & =(a \vee b) f \phi_{1} \\
& =(a \vee b) \phi g \\
& =(a \phi \cup b \phi) g
\end{aligned}
$$

$$
\begin{aligned}
& =a \phi g \cup b \phi g \\
& =(a f) \phi_{1} U(b f) \phi_{1} \\
& =x \phi_{1} \cup y \phi_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
(x \wedge y) \phi_{1}=(a f \wedge b f) \phi_{1} & =(a f \wedge b f) \phi_{1} \\
& =(a \wedge b) \phi g \\
& =a \phi g \cap b \phi g \\
& =(a f) \phi_{1} \cap(b f) \phi_{1} \\
& =x \phi_{1} \cap y \phi_{1}
\end{aligned}
$$

then ϕ_{1} is a lattice homomorphism.
Also, for all $\mathrm{x} \varepsilon \mathrm{K}_{1}{ }^{\vee}, \mathrm{x}=\mathrm{af}$, then $\mathrm{x}=\mathrm{x}_{1} \vee \mathrm{x}_{1}{ }^{\circ}$,
$\mathrm{x}_{1}=\mathrm{a}_{1} \mathrm{f}$

$$
\begin{aligned}
x \phi_{1}=\left(x_{1} \vee x_{1}^{\circ}\right) \phi_{1} & =\left(a_{1} \mathrm{f} \vee\left(a_{1} \mathrm{f}\right)^{\circ}\right) \phi_{1} \\
& =\left(a_{1} \vee a_{1}^{\circ}\right) f \phi_{1} \\
& =\left(a_{1} \vee a_{1}^{\circ}\right) \phi g \\
& =D g=D_{1}
\end{aligned}
$$

and for all $x \varepsilon K_{1}^{\wedge}, x=x_{1}{ }^{\wedge} x_{1}{ }^{\circ}, \quad x_{1}=a_{1} f$

$$
\begin{aligned}
\mathrm{x} \phi_{1} & =\left(\mathrm{x}_{1} \wedge \mathrm{x}_{1}^{\circ}\right) \phi_{1}=\left(\mathrm{a}_{1} \mathrm{f} \wedge\left(\mathrm{a}_{1} \mathrm{f}\right)^{\circ}\right) \phi_{1} \\
& =\left(\mathrm{a}_{1} \wedge{a_{1}^{\circ}}_{\circ}^{\circ}\right) \mathrm{f} \phi_{1} \\
& =\left(\mathrm{a}_{1} \wedge{a_{1}}_{\circ}^{\circ}\right) \phi g\left(\text { since } a_{1} \wedge{a_{1}}_{\circ} \varepsilon K^{\wedge}\right) \\
& =[d) g=[d g), d \varepsilon D
\end{aligned}
$$

and $x \phi_{1}$ is a principal filter in $F\left(D_{1}\right)$, for all $x \varepsilon K_{1}^{\wedge}$. Hence ϕ_{1} is a polarization and (K_{1}, D_{1}, ϕ_{1}) is a K_{2} triple, we have to show that (f, g) is a triple homomorphism. By definition
$a \phi g=a f \phi_{1} \quad$ and

$$
\begin{aligned}
{\left[d_{a} g\right)=\left[d_{a}\right) g } & =\left[a \vee a^{\circ}\right) g=\left(\left[a \vee a^{\circ}\right) \cap D\right) g \\
& =\left[\left(a \vee a^{\circ}\right) f\right) \cap D g \\
& =\left[a f \vee(a f)^{\circ}\right) \cap D_{1} \\
& =\left[a\left\ulcorner\vee(a f)^{\circ}\right)\right. \\
& =\left[d_{a} f\right)
\end{aligned}
$$

completing the required proof.

REFERENCES

[1] Blyth, T. and Varlet, J. 1980. Sur la construction de certaines MS-algebres, Portugaliae Math. 39, 489-496 .
[2] Blyth, T. and Varlet, J. 1983 . On a common abstraction of de Morgan algebras and stone algebras, Proc. Roy. Soc. Edinburgh, 94 A, 301-308.
[3] Blyth, T. and Varlet, J. 1983 . Subvarieties of the class of MS-algebras, Proc. Roy. Sci. Edinburgh, 95 A, 157-169.
[4] Blyth, T. and Varlet, J. 1983 . Corrigendum Sur la construction de certaines MS-algebres, Portugaliae Math. 42, 469-471.
[5] Katrinak, T. and Mikula, K. 1988 . On a construction of MS-algebras, Portugaliae Math, 45, 2, 157 163.
[6] Katrinak, T. and Mederly, P. 1974 . Construction of modular p-algebras, Algebra Univ. 4, 3, 301 315.
[7] Katrinak, T. 1973. A new proof of the construction theorem for Stone algebras, Proc. Amer. Math. Soc., 40, 75-78 .

