

QATAR UNIVERSITY

 COLLEGE OF ENGINEERING

PEDESTRIAN DETECTION USING MOTION SALIENCY AIDED CONVOLTIONAL

NEURAL NETWORK

BY

ALI ABDUL HAFIZ FARHAT

A Thesis Submitted to

the Faculty of the College of

Engineering

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Electrical Engineering

 June 2018

© 2018 Ali Abdul Hafiz Farhat. All Rights Reserved.

ii

COMMITTEE PAGE

The members of the Committee approve the Thesis of Ali Abdul Hafiz

Farhat defended on 08/05/2018.

Dr. Faycal Bensaali

 Thesis/Dissertation Supervisor

Prof. Abbes Amira

Thesis/Dissertation Co-Supervisor

Prof. Abdenour Hadid

Committee Member

Prof. Serkan Kiranyaz

Committee Member

Approved:

Khalifa Al-Khalifa, Dean, College of Engineering

iii

ABSTRACT

FARHAT, ALI., Masters : June : 2018, Masters of Science in Electrical Engineering

Title: Pedestrian Detection Using Motion Saliency Aided Convoltional Neural Network

Supervisor of Thesis: Dr. Faycal Bensaali.

Co-Supervisor of Thesis: Prof. Abbes Amira.

Pedestrian and crowd analysis is one of the oldest problems in the area of computer

vision and image processing. Researchers have proposed several algorithms that analyze

crowds for different purposes aiming to improve their security and safety. The recent

advancements in the areas of machine learning and computer devices resulted in a

revolution in the proposed algorithms for such problem. The use of Convolutional Neural

Networks in the proposed algorithms boosted the performance of the state-of-the-art

algorithms. This research project studies the impact of integrating of motion saliency along

with the CNN based pedestrian detector. A detailed literature review was conducted to

draw the pathway of the project, discussing different approaches of motion flow algorithms

and CNN based detectors. Background subtraction based on Gaussian Mixture Model

motion flow algorithm was used to extract the motion saliency information. Faster R-CNN

based on AlexNet was considered and integrated with the motion flow algorithm. Two

different approaches of integration were proposed and tested: (1) Motion Masked Faster

R-CNN method, where the motion information is used to generate a mask for the scene,

keeping the regions of interest where motion is found and people may be available;

(2)Motion Corrected Faster R-CNN method, where the motion information is utilized after

iv

the Faster R-CNN detector locates all pedestrian in the frame to correct the false detections.

The report discusses the hardware and software setups used in this thesis project to develop

and implement the proposed detectors. PETS2009 dataset was used to test the proposed

detectors, which are trained on Caltech pedestrian dataset. It was found that the integration

of motion information improves the precision of the Faster R-CNN detector by 7% - 30%,

where the error rate dropped by 6% - 34%. A detailed discussion of further improvement

pathways is provided in the report. Limitations of current implementation of the proposed

detectors are discussed. The evaluation of the proposed detectors is compared to state-of-

the-art detectors in the literature. Models’ performance was discussed, noting the

challenges that degraded their performance and how to overcome them.

v

DEDICATION

To my grandparents, parents, brothers and sisters

vi

ACKNOWLEDGMENTS

 First, I would like to thank my advisors Dr. Faycal Bensaali, and Prof. Abbes Amira

for their support, guidance and encouragement that helped me develop and polish my

technical and non-technical skills. It was an honor to be part of their research group.

 Second, my sincere thanks go to Ilyas Farhat, Mohamed Sami Zitouni, and Omar

Hommos for their lovely online meetings and calls that demonstrated their continuous

passionate support, technical and non-technical guidance.

I would like to thank the KINDI Center and the Electrical Engineering Department

for their continuous support. I would like to thank the KINDI Center for providing me with

some of the equipment used in this work and their opportunity where I was part of their

lovely teem. I would like to thank Dr. Gabriele Oligeri and Dr. Abdullatif Shikfa for their

nice and nurturing collaborative experience that helped me widen my research from various

perspectives. Also, I would like to the thank the Electrical Engineering Department for

allowing me to work with them and their support throughout the past two years.

Special thanks go to the rest of my colleague and lab mate Sharief Saleh for the

enjoyable period that I spent with him during my studies and work at Qatar University.

Also I would like to thank my friends Abdulhadi Al-Qahtani, Ali Al-Zawqari, Omar Abu

Selo, and Ahmed Musleh for their continuous support and for being always there for help.

Lastly, I would like to say that no matter how much I thank my parents, Abdul

Hafiz and Subhiah Farhat, and my siblings, Salman, Hajar, Haroun, Omran, Aalaa, and

Ilyas, it would not be sufficient. Their patience, compassion and advices, where they were

mostly unfollowed, and that what urges me to better myself.

vii

TABLE OF CONTENTS

DEDICATION ... v

ACKNOWLEDGMENTS .. vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS ... xii

CHAPTER 1: INTRODUCTION ... 1

 Background .. 3

 Thesis Scope ... 7

 Thesis Objectives ... 8

 Thesis Outline .. 8

CHAPTER 2: LITERATURE REVIEW ... 9

 Performance Analysis .. 10

2.1.1 Receiver Operating Characteristic Curve ... 11

2.1.2 Recall and Precision .. 14

2.1.3 Accuracy ... 15

2.1.4 Error Rates .. 15

 Motion Flow Algorithms .. 16

2.2.1 Optical Flow.. 17

2.2.2 Background Subtraction.. 19

2.2.3 Frame Differencing ... 20

2.2.4 Comparison of Motion Flow Algorithms ... 20

 Classical Pedestrian Detectors ... 22

2.3.1 Histogram of Oriented Gradients Features Based Pedestrian Detectors 22

2.3.2 Informed Haar-Like Features Based Pedestrian Detector 24

2.3.3 Body-Parts Pedestrian Detectors... 25

2.3.4 Combined Pedestrian Detector ... 26

2.3.5 Aggregated Channel Features Based Pedestrian Detector 27

2.3.6 Locally Decorrelated Channel Features Based Pedestrian Detector........... 28

 CNN Based Pedestrian Detectors ... 29

2.4.1 Regional-based CNN .. 30

2.4.2 Fast R-CNN .. 31

viii

2.4.3 Faster R-CNN Pedestrian Detector ... 32

2.4.4 Regional Proposal Network – Boosted Forest Pedestrian Detector............ 34

2.4.5 The HyperLearner Pedestrian Detector .. 36

2.4.6 Simultaneous Detection and Segmentation R-CNN Pedestrian Detector ... 38

 Comparison and Overview of the Pedestrian Detectors in the Literature 39

CHAPTER 3: PROPOSED MOTION SALIENCY AIDED CNN PEDESTRIAN

DETECTOR ... 44

 An Overview of the Motion Saliency Aided Faster R-CNN Pedestrian Detector

 44

 Hardware and Software Setup .. 46

 Proposed Motion Flow Algorithm ... 47

 Proposed Faster R-CNN Based Pedestrian Detector.. 49

3.4.1 Training the Faster R-CNN Pedestrian Detector .. 50

CHAPTER 4: RESULTS AND DISCUSSION .. 55

 Reflections on the Hardware and Software Setup .. 55

4.1.1 Reflections on the Use of MATLAB .. 55

4.1.2 Reflections on the Use of eGPU ... 56

 Results .. 57

4.2.1 Processing Time .. 58

4.2.2 Video 1 Testing Results .. 60

4.2.3 Video 2 Testing Results .. 63

 Discussion of Results ... 66

CHAPTER 5: CONCLUSIONS AND FUTURE WORK ... 71

 Conclusions .. 71

 Future Work ... 72

REFERENCES .. 74

ix

LIST OF TABLES

Table 2.1 Comparison Between the Different Motion Flow Algorithms21

Table 2.2 Summary of the Classical Image Processing Pedestrian Detectors Proposed in

the Literature ...42

Table 2.3 Summary of the CNN Based Pedestrian Detectors Proposed in the Literature43

Table 3.1 The Architecture of MATLAB’s AlexNet Classification Network Pretrained on

IMAGENET ..53

Table 3.2 The Architecture of the Modified AlexNet Classification Network to Perform

Pedestrian Detection ...54

Table 4.1 Comparison Between the Processing Time for Different Pedestrian Detectors59

Table 4.2 Comparison on Video 1 (PETS2009 S2L1 View 1) Showing the Precision,

Error Rates and AP for Different Pedestrian Detectors ..62

Table 4.3 Comparison on Video 2 (PETS2009 S3MF View 2) Showing the Precision,

Error Rates and AP for Different Pedestrian Detectors ..65

Table 4.4 AP of the Different Algorithms While Varying the IoU Threshold to Determine

True Positive Detections ...69

x

LIST OF FIGURES

Figure 1.1. The winners’ recognition rate of the ILSVRC classification challenge from

2010 to 2017 ...2

Figure 1.2. The schematic diagram of crowd analysis and its distinct categories5

Figure 2.1. Image processing stages in a typical pedestrian detection system10

Figure 2.2. The outdoor experiment setup and examples for the proposed algorithm in

[29] ..23

Figure 2.3. Examples from the pedestrian detection algorithms implemented in [40] ...27

Figure 2.4. The proposed architecture of the R-CNN [50] ...30

Figure 2.5. The proposed architecture of the Fast R-CNN [52]31

Figure 2.6. The proposed architecture of the Faster R-CNN [54]33

Figure 2.7. The proposed architecture of the RPN-BF [55] ...35

Figure 2.8: The proposed HyperLearner pedestrian detector [18]37

Figure 2.9: The proposed SDS-R-CNN pedestrian detector [63]38

Figure 3.1. The block diagram of the MM Faster R-CNN pedestrian detector45

Figure 3.2. The block diagram of the MC Faster R-CNN pedestrian detector45

Figure 3.3. The hardware and software setup used in this work.....................................46

Figure 3.4. The block diagram of the proposed motion flow algorithm48

Figure 4.1. Video 1 detection samples using (a) Faster R-CNN pedestrian detector, (b)

MM Faster R-CNN pedestrian detector, and (c) MC Faster R-CNN pedestrian detector61

Figure 4.2. Comparison on Video 1 (PETS2009 S2L1 View 1) showing the AP for

different pedestrian detectors using an IoU threshold of 0.5 to determine true positive 63

xi

Figure 4.3. Video 2 detection samples using (a) Faster R-CNN pedestrian detector, (b)

MM Faster R-CNN pedestrian detector, and (c) MC Faster R-CNN pedestrian detector64

Figure 4.4. Comparison on Video 2 (PETS2009 S3MF View 2) showing the AP for

different pedestrian detectors using an IoU threshold of 0.5 to determine true positive 66

Figure 4.5. Examples of pedestrian detections using the proposed Faster R-CNN where

the size of the bounding boxes is larger than the pedestrians ...69

xii

LIST OF ABBREVIATIONS

ACF Aggregated Channel Features

AdaBoost Adaptive Boosting

AI Artificial Intelligence

AP Average Precision

BCN Binary Classification Network

CFN Channel Feature Network

CNN Convolutional Neural Networks

ConvNets Convolutional Neural Networks

CPU Central Processing Unit

DT-GMM Dynamic Texture based Gaussian Mixture Model

eGPU external Graphical Processing Unit

FC Fully Connected

FCN Fully Convolutional Network

FPGA Field Programable Gate Arrays

FPPI False Positive Per Image

FPPW False Positive Per Window

FPR False Positive Rate

FPS Frames Per Second

GMM Gaussian Mixture Model

GPU Graphical Processing Units

HOG Histogram of Oriented Gradients

ILSVRC IMAGENET Large Scale Visual Recognition Challenge

IoU Intersection over Union

LBP Local Binary Patterns

LDCF Locally Decorrelated Channel Filters

mAP mean Average Precision

MC Faster R-CNN Motion Corrected Faster R-CNN

MM Faster R-CNN Motion Masked Faster R-CNN

xiii

MR Miss Rate

MRE Mean Relative Error

MS COCO Microsoft Common Objects in COntext

MSE Mean Squared Error

PASCAL VOC PASCAL Visual Object Challenge

PCIe 3.0 Peripheral Component Interconnect Express Generation 3.0

R-CNN Regional-based Convolutional Neural Network

RJMCMC Reversible Jump Markov Chain Monte Carlo

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic

RoI Regions of Interest

RPN Region Proposal Network

RPN-BF Regional Proposal Network – Boosted Forest

SDS-R-CNN Simultaneous Detection and Segmentation R-CNN

SENet Squeeze-and-Excitation Networks

SIFT Scale-Invariant Feature Transform

SVM Support Vector Machine

TPR True Positive Rate

1

CHAPTER 1: INTRODUCTION

The field of image processing and computer vision has been drastically evolving in

the past decade, especially after the significant progress achieved in the area of machine

learning and Artificial Intelligence (AI). Besides, the development in the fields of

electronics and computer devices played an essential role in the development of computer

vision algorithms. The latest Graphical Processing Units (GPUs) provided the ability to

propose, design, train, and test very complicated algorithms as the bottleneck of

implementing computationally intensive algorithms has been addressed [1]. Therefore,

performing the required calculations for such algorithms in a reasonable amount of time

became viable.

Recently, the implementation of Convolutional Neural Networks (CNN); also

known as ConvNets, was the game changer in AI and computer vision. The use of CNN

improved the performance of the proposed computer vision algorithms as it provided the

ability to perform more complex image analysis and recognition tasks. This was clearly

demonstrated in the IMAGENET Large Scale Visual Recognition Challenge (ILSVRC)

that was introduced in 2010 instead of the PASCAL Visual Object Challenge (PASCAL

VOC) [2, 3]. The image classification challenge of the ILSVRC has an approximately 1.5

million images of 1000 object classes instead of having 20 object classes and 1000 images

in the PASCAL VOC [2]. Figure 1.1 summarizes the recognition rate improvements from

2010 to 2017 for the winners of the classification challenge [2, 4-11].

2

Figure 1.1. The winners’ recognition rate of the ILSVRC classification challenge from

2010 to 2017

The algorithm that won the competition of the ILSVRC in 2010 is based on a Scale-

Invariant Feature Transform (SIFT) feature extractor and a stochastic Support Vector

Machine (SVM) classifier achieving a 71.8% recognition rate [2, 4]. In 2011, the winner

utilized a high dimensional image signatures and a one-vs-all linear SVM. This increased

the recognition rate to reach 74.2% [2, 5]. However, the winning algorithm architecture of

the 2012 ILSVRC, known as AlexNet, is an 8-layer CNN that boosted the recognition rate

to 83.6% [2, 6]. AlexNet consists of 60 million parameters and was trained using an

efficient GPU implementation. ZFNet, the winner in 2013, is the average of several CNNs.

This algorithm improved the recognition rate to settle at 88.3% [2, 7]. Indeed, the increase

of the recognition rate did not stop at this point with the proposal of the 22-layer

71.8 74.2 83.6 88.3 93.3 96.5 97 97.75

94.9

65

70

75

80

85

90

95

100

2010 2011 2012 2013 2014 2015 2016 2017

NEC XRCE AlexNet ZFNet GoogLeNet ResNet Trimps-

Soushen

SENet

R
ec

o
g

n
it

io
n

 R
a

te
 [

%
]

Classical Image

Processing Algorithms

CNN Based Algorithms

Human Recognition

Rate

3

GoogLeNet in 2014 [2, 8]. The increase of the network depth increased the recognition rate

further to reach 93.3%. Nonetheless, the result achieved by the 152-layer ResNet proposed

in 2015 by Microsoft Asia research team overcame the human eye ability in classification

by reaching 96.5% where the human’s recognition rate is 94.9% [9]. Later in 2016, Trimps-

Soushen CNN improved the results to reach 97% through fusing five different networks

[10]. Furthermore, the winner in 2017 introduced the Squeeze-and-Excitation Networks

(SENet) where the performance has been improved further to 97.75% [11].

Therefore, it is very easy to observe the significant improvement in the performance

of computer vision and image processing classification algorithms after utilizing the power

of CNNs. Yet, computer vision and image processing algorithms are not limited to

classification purposes only. There are several applications that require different

algorithms such as object detection and instance segmentation. The proposed algorithms

in these applications started to adopt CNN based algorithms since they have demonstrated

better performance in classification.

 Background

Visual analysis and recognition of crowd’s and pedestrian’s image sequences is of

importance for several applications including surveillance, homeland security, intelligent

environments, and autonomous driving [12]. The main motivation of such work is related

to security and safety of both crowds and pedestrians through preventing any disasters and

tragic accidents such as the bombing at the Boston Marathon and the Hajj stampede [13].

Subsequently, this has been the main focal point of many researchers in the field of

4

computer vision and image processing where they have been working on such problems

for more than ten years [12, 14]. In 2022, Qatar will host the FIFA World Cup, and it is

very important to have a reliable crowd analysis system that emphasizes on the safety of

the crowds and prevents any losses in lives.

The applications of pedestrian and crowd analysis are many and include target

tracking, counting, anomaly detection, behavioral pattern recognition and crowd modelling

[12, 13]. The literature shows significant progress in the autonomous crowd and pedestrian

analysis. Yet, several unaddressed shortcomings in the proposed work limited its

performance such as occlusions, articulation of the human body, variation in viewpoints,

and modelling and inference [12, 15].

According to [12], crowd analysis consists of three main stages: crowd modelling,

crowd monitoring, and crowd management. Crowd modelling is about constructing robust

crowd representations to understand scenes where crowd monitoring analyzes visual data

statistically to design real-time decision systems. Moreover, crowd management’s main

objective is to ensure the safety of the crowd through efficient analysis of the crowds’

strategic, tactical, and operational data. Therefore, crowd modelling is the essential stage

in any robust crowd analysis system since it is the primary stage that every advanced

analysis is based on.

There are several parameters are used to classify crowd modelling techniques into

distinct categories [12]. One of the used parameters is the level where crowd modelling

techniques are applied and it consists of two categories: 1) micro-level and 2) macro-level.

In the micro-level, crowd modelling techniques concentrate on crowd’s individual entities

to construct an understanding of the scene’s semantics. In contrast, the macro-level

5

techniques are based on the holistic view of the scene where it may use the flow to

understand its dynamics. Since the micro-level focus on the individual entities of the

crowd, it is considered to be more complex. The micro-level techniques might suffer from

occlusions, targets’ appearance similarities and more computational complexities.

Therefore, more studies in the literature focus on the macro-level techniques. Recently,

some groups started to combine both levels to model the crowds and understand the

behavior of its entities at the same time [12]. Figure 1.2 shows the schematic diagram of

crowd analysis and its categories.

Crowd

Analysis

Crowd

Modelling

Crowd

Monitoring

Crowd

Management

Based on

Implementation

Level

Based on Crowd

Density

Based on

Application

Micro-level

Macro-level

Low-level

Mid-level

High-level

Action

Recognition

Abnormality

Detection

People

Detection

and Tracking

People

Counting

Figure 1.2. The schematic diagram of crowd analysis and its distinct categories

6

Another parameter used to categorize crowd analysis is the density of the crowd

[12]. In fact, crowd modelling has always been depending on the density and it is

categorized into three levels 1) low-level, 2) mid-level, and 3) high-level [12]. In the low

level, the used techniques study the motion to characterize the features that detects

individuals such as optical flow and background modelling. In the mid-level, the

techniques are based on pattern recognition algorithms. The use of SVM and Adaptive

Boosting (AdaBoost) classifiers on extracted features such as Histogram of Oriented

Gradients (HOG) are very common. In this level and based on similar feature extractors,

partial occluded scenes have been successfully analyzed. However, the use of dynamic

texture models and the Lagrangian based techniques at the high level is becoming more

popular recently [12].

Furthermore, crowd modelling techniques are also categorized based on the

application they are designed for [12, 16]. There are several applications that requires

crowd modelling such as 1) people detection and tracking, 2) people counting, 3) action

recognition and behavioral analysis, and 4) abnormality detection [12, 16]. In addition,

there are other parameters used to classify crowd modelling techniques into different, but

less popular categories such as: offline versus online crowd modelling, and static versus

dynamic crowd modelling [12, 16].

7

 Thesis Scope

The scope of this thesis focuses on the study of enhancing the CNN based

pedestrian detector that depends on appearance saliency to detect people through

integrating motion saliency information in visual surveillance. This shall allow the

pedestrian detector results to be enhanced through integrating the motion information

(temporal information) extracted from a sequence of frames. As a result, the detections will

be more accurate as the false detections could be eliminated. It is worth noting that this

approach will process the visual information at two levels. The motion information will

model the crowd at the macro-level through extracting the holistic view of the crowd. On

the other hand, the micro-level analysis where the individual entities of the crowd are

detected is accomplished through the CNN based pedestrian detector. The impact of this

approach will be verified through evaluating the performance of the proposed detector with

and without motion saliency integration on several surveillance videos that have different

settings (e.g. different illumination). The surveillance scenarios investigated in this work

assume that the background of the scene is static and the camera is stationary. In addition,

the crowd density will be assumed to be low. The proposed approach will be evaluated and

benchmarked with other state-of-the-art algorithms against the same surveillance videos.

Moreover, this thesis will focus on reporting all state-of-the-art pedestrian detectors in the

literature. It is worth noting that having a robust pedestrian detector is very important as it

is the starting point of any further analysis, such as people tracking, people identification,

and behavior analysis. Even though these analysis challenges are very related to the

pedestrian detection, it is considered to be out of the scope of this work.

8

 Thesis Objectives

The main objectives of this thesis are:

1) Study and review existing algorithms proposed to perform pedestrian detection in

the literature.

2) Propose a CNN based pedestrian detector that targets surveillance applications.

3) Integrate the proposed CNN based pedestrian detector with a motion flow algorithm

to extract and utilize the motion saliency information to improve the performance.

4) Evaluate the performance post integrating the CNN based pedestrian detector with

the motion flow algorithm to process surveillance videos. This will include reporting

the detection accuracy, processing time, and any interesting and significant results.

 Thesis Outline

The remaining chapters of this thesis are structured as follows: In Chapter 2, the

literature survey is reported. The chapter discusses, the performance metrics used to assess

the pedestrian detectors, and the different motion flow algorithms and compare them. In

addition, it will report and categorize the proposed algorithms for pedestrian detection in

two categories: 1) classical pedestrian detectors, 2) CNN based pedestrian detectors.

Finally, the two families of pedestrian detectors are compared and benchmarked. The

proposed motion saliency based CNN pedestrian detectors and the training process are

reported in Chapter 3. Chapter 4 summarizes the findings of this research project, discusses

the results and states the limitations of the proposed detectors. Finally, Chapter 5 draws the

conclusions of this work, and comments on the future work.

9

CHAPTER 2: LITERATURE REVIEW

The pedestrian detection problem in the field of computer vision and image

processing is not a new problem where several researchers have tackled this problem

thoroughly [17, 18]. A typical pedestrian detector consists of three stages [19]. Figure 2.1

summarizes the three stages of a typical pedestrian detector. The first stage is to propose

bounding boxes that might contain pedestrians. These bounding boxes are also known as

Regions of Interest (RoI). Afterwards in the second stage, the features of each proposed

bounding box are extracted. Finally, classify all the proposed bounding boxes whether they

contain a person or not using the extracted features. To perform these steps, several

algorithms have been proposed. The main difference among them is the ability to extract

more features that help in classifying the bounding boxes, and how these features are

selected and classified [19].

This chapter is divided into five sections: Section 2.1 starts with the performance

analysis and metrics used to benchmark pedestrian detection algorithms. Section 2.2

reviews the motion flow algorithms. Section 2.3 reviews classical pedestrian detectors

algorithms while Section 2.4 concentrates on the CNN based pedestrian detection

algorithms. Section 2.5 compares between the two families of pedestrian detectors.

10

(a) The input image (b) The input image showing the

proposed bounding boxes

(c) Extracting the features of each

proposed bounding box (e.g. HOG

features)

(d) Classifying the proposed bounding

boxes and showing the final result

(green means it is a person and red

means it is not a person)

Figure 2.1. Image processing stages in a typical pedestrian detection system

 Performance Analysis

In this section, how to evaluate the work and benchmark it against other proposed

work in the literature is reported. This would allow a better understanding of the reported

algorithms. Qualitative and quantitative evaluation methods have been reported. The

qualitative evaluation is based on results’ visual inspection. However, the quantitative

11

evaluation depends on computing different metrics [12]. For the purpose of pedestrian

detection, there are various metrics used including but not limited to: Receiver Operating

Characteristic (ROC) curve, recall and precision, accuracy, and error rates [12, 20].

It is worth noting that there are two methods to calculate the performance evaluation

metrics, based on individual pixels or bounding boxes. The first method is more likely to

be used with background modelling based algorithms. The second method is used in case

of the appearance learning based algorithms. In addition, the datasets ground truth data

availability and format, algorithm implementation mechanism, and the benchmarking

protocol used affects which method is used to benchmark the proposed algorithm.

However, regardless of which method is used, the variation in the quantitative evaluation

metric of the proposed algorithm would be minimal [12].

2.1.1 Receiver Operating Characteristic Curve

The ROC curve is a plot that illustrates the performance of binary classifiers while

varying the threshold of discrimination [21]. The plot consists of two quantities: True

Positive Rate (TPR) and False Positive Rate (FPR). Equations 2.1 – 2.2 show how to

calculate these two quantities.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.1)

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2.2)

; where 𝑇𝑃 and 𝐹𝑃 stand for true positive and false positive, respectively, whereas

𝑇𝑁 and 𝐹𝑁 denote true negative and false negative, respectively.

12

To use this quantitative evaluation metric, it is assumed that the detection algorithm

would take an image as an input and return a boundary box and its corresponding score of

confidence for each detected person. Then, by using the generated boundary boxes and the

ground truth boundary boxes of the dataset, the area of overlap between the boundary boxes

and the area of their union are computed. Afterwards, the Intersection over Union (IoU)

metric is used to determine if this detection was correct or not [20]. The IoU threshold was

initially set by the PASCAL VOC criteria to be 50% [3]. In other words, if the IoU value

is 50% or greater, it is considered a correct detection; otherwise, it is a false detection.

Equation 2.3 summarizes the IoU metric [20].

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎(𝐵𝐵𝐷 ∩ 𝐵𝐵𝑇)

𝐴𝑟𝑒𝑎(𝐵𝐵𝐷 ∪ 𝐵𝐵𝑇)
> 0.5 (2.3)

; where 𝐵𝐵𝐷 corresponds to the detected boundary box and 𝐵𝐵𝑇 denotes the ground

truth boundary box.

In case there are unmatched 𝐵𝐵𝐷, they are counted as false positives, and in case

there are unmatched 𝐵𝐵𝑇, they are counted as false negatives. Afterwards, to compare and

benchmark the detectors, the Miss Rate (MR) is plotted against the False Positive Per

Image (FPPI) on a log-log scale while varying the confidence threshold of detection [20].

As the confidence threshold reduces, the MR would decrease while the number of false

positives increases. At the end, the detector is evaluated by finding the log-average MR.

This is calculated based on averaging the MR of the detector at nine FPPI rates that are

evenly spaced in the log scale in the range from 10−2 to 100 [20]. However, since for some

detectors the curve might end before reaching the given FPPI rate, the minimum MR of the

curve is used in that case [20]. The main target for this plot is to minimize the area under

13

the curve since it corresponds to the MR.

Alternatively, if the pedestrian detector is based on binary classifiers, the MR could

be found per window instead of per image. The plot in this case would be the MR against

the False Positive Per Window (FPPW). This is usually used to benchmark the performance

of different classifiers instead of detectors using positive and negative cropped windows

[20]. In addition, it is used to evaluate different systems that generates RoI automatically

[20]. It is worth noting that the performance evaluation would have different values when

evaluated based on per window instead of per image. This is due several reasons including

the fact that the tested RoIs are different in the per window case from the per image case

[20]. Additionally, there are several factors selected when a classifier is being converted to

a detector such as selecting the spatial strides, and the nonmaximal suppression to merge

the nearby detections which affect the performance in the per image case [20]. However,

it is assumed that having a better performance in the per window evaluation means having

better performance in detection.

Since the ultimate aim of pedestrian and crowd detectors is to localize the

pedestrian and crowds in an image, the per image evaluation is usually used [20]. As stated

earlier, the case where the per window is used does not consider the performance of the

detection as it isolates and concentrates on the performance of the classifier. Therefore, the

use of per image evaluation is not limited to the pedestrian detection problem, it is usually

used for any object detection problem as it provides a satisfactory measure of the

algorithm’s detection error [20].

14

2.1.2 Recall and Precision

The recall, also known as sensitivity, is the fraction of relevant instances that are

successfully retrieved. On the other hand, precision is known as the positive predictive

value and it is the fraction of the retrieved instances that are relevant [12, 21]. Based on

these two quantities, an additional quantity known as the F-measure is calculated. The F-

measure is the harmonic mean of the recall and the precision. These quantities are

calculated as illustrated by Equations 2.4 – 2.6 [21].

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.5)

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

 (2.6)

The use of the recall and precision does not stop at this level. A curve known as the

precision/recall curve is plotted to evaluate the object detectors in general for each class of

objects [3]. The main idea of this curve is to define two parameters, the recall and the

precision as follows. For a specific class, the recall is defined as the set of positive samples

that satisfy a specific threshold where the precision is the set of the positive samples that

belongs to the specified class and satisfy the same threshold [3]. Afterwards, a metric

known as the Average Precision (AP) is found through averaging the precision at 11 recall

values that are evenly spaced (0, 0.1, 0.2, … 1). Subsequently, the AP summarizes the

whole precision/recall curve in just a one parameter. Therefore, to have a better

performance in detection, it is required to have a precision at the different levels of recalls.

The advantage of using the AP is its sensitivity and interpretability that visualize the

15

performance of the detection algorithm at different recall levels especially low values [3].

Now, in case the detector is designed for multi class objects (e.g. car, pedestrian,

plane, etc.), there will be an AP for each class. Therefore, a new metric known as the mean

Average Precision (mAP) is used which is basically the mean of the AP per class [3]. It is

worth noting in the pedestrian detection problem, the AP and mAP would be equivalent

since there is one class of objects.

2.1.3 Accuracy

The accuracy is calculated as shown in Equation 2.7 [12].

𝐴𝑐𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2.7)

2.1.4 Error Rates

There are several error rates calculated and used in the evaluation of crowd and

pedestrian detection proposed algorithms [12]. The most used error quantities are the Mean

Squared Error (MSE), the Root Mean Square Error (RMSE), and the Mean Relative Error

(MRE) [12, 22]. To calculate these quantities, Equations 2.8 – 2.10 are used.

𝑀𝑆𝐸 =
1

𝑛
∑(𝐷𝑖 − 𝑇𝑖)

2

𝑛

𝑖=1

 (2.8)

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (2.9)

𝑀𝑅𝐸 =
1

𝑛
∑

|𝐷𝑖 − 𝑇𝑖|

𝑇𝑖

𝑛

𝑖=1

 (2.10)

; where 𝐷 is the estimated value, 𝑇 is the true value, and 𝑛 is the number of frames.

16

 Motion Flow Algorithms

In visual analysis of crowds, motion flow algorithms are used for scene

understanding or for surveillance purposes through modelling and visualizing the dynamics

of the crowd in the scenes. These motion algorithms provide temporal information since

the motion features are detected using consecutive frames [23]. There are three types of

motion levels analyzed using such algorithms: (a) global, (b) local and (c) persistent motion

levels [12]. (a) The global motion is called global since it uses all the pixels of the image

to estimate the motion. One of its applications is the removal of the camera motion (motion

compensation) to be able to concentrate on the motion of objects. To model global motion,

parametric transformations are used. (b) Local motion is applied on blocks of the image

instead of all the pixels at once. One of the main targets of this approach is to track

individual targets where the information of these targets should be available beforehand.

(c) The concept of persistent motion concentrates on the persistent and collective dynamics

in a visual scene as it was introduced in [24]. Despite that the persistent motion algorithms

have their own category, they depend on other global and local motion models to model

the motion flow [12].

Since the main idea of this work is to enhance the detection of the pedestrians, the

review of motion algorithms would be concentrating more on the local motion algorithms.

The local motion algorithms are usually used to track individual targets as stated earlier

which would help in enhancing the performance of the detection.

17

2.2.1 Optical Flow

The optical flow motion algorithm is based on estimating the change of relative

motion between an observer and the visual scene [12]. The detection in this algorithm is

based on estimating the optical flow/velocity vectors for every pixel in the image so that

motion in two consecutive frames is detected. Later, a clustering process based on the

distribution of the flow vector field is used to have the complete movement information

[25, 26]. This field characterizes the velocity of the moving edges, objects and surfaces in

the visual scene and the direction of movement. Based on the magnitude of these vectors,

it is easy to identify and segment the motion part of these two frames based on the zero/non-

zero vector field estimated earlier. This estimation could be accomplished in three-

dimensions in addition to time as the fourth dimension, however and for simplicity, it is

usually mapped to a two-dimensional coordinate system and time is considered to be the

third dimension [27]. It is worth noting that most of the optical flow algorithms are

considered to be computationally slow and does not meet real-time processing speed [23,

26].

To use the optical flow algorithm, there are several constraints for the algorithm to

estimate the flow vector field. The first constraint is known as brightness constancy where

the brightness (intensity) of a point in the scene does not change despite that its location

might change. In addition, it is assumed that the movement of a point between two

consecutive frames is very small, which is known as spatial coherence. Equation 2.11

shows the equations for these two constraints [27].

18

𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) (2.11)

; where 𝐼(𝑥, 𝑦, 𝑡) is the intensity of the pixel at the position (𝑥, 𝑦) at time instant 𝑡

and 𝐼(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑡 + 𝛿𝑡) is the intensity of the same pixel at the new near position

(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) at the time instant 𝑡 + 𝛿.

To get the optical flow vector field, Taylor series is applied on the right hand side

of Equation 2.11, and after neglecting the high order terms with additional simplifications,

Equations 2.12 – 2.13 would be obtained where Equation 2.13 is equivalent to Equation

2.12 but it is written using vector representation [27].

𝐼𝑥 ⋅ 𝑉𝑥 + 𝐼𝑦 ⋅ 𝑉𝑦 = −𝐼𝑡 (2.12)

∇𝐼𝑇 ⋅ 𝑉⃗ = −𝐼𝑡 (2.13)

; where 𝐼𝑥, 𝐼𝑦, and 𝐼𝑡 are the 𝑥, 𝑦, and time derivatives of the brightness intensity,

respectively, ∇𝐼 is the spatial gradient of the brightness intensity, and 𝑉⃗ is the velocity

vector of the image pixel.

Equation 2.13 is used to compute the optical flow and it is known as the two-

dimensional motion constraint equation or the gradient constraint equation. It is worth

noting that ∇𝐼 and 𝐼𝑡 are easy to compute using the sequence of frames but the vector 𝑉⃗

cannot be computed without additional equations. The most used methods to solve this

equation and obtain the velocity vector are known as Lucas-Kanade and Horn-Schunck

[27].

19

2.2.2 Background Subtraction

Another approach used to extract the motion information from a sequence of frames

captured by a static camera is known as background subtraction. It is one of the most basic

and reliable methods used to perform moving object detection and foreground analysis in

a sequence of frames. The idea of this approach is to construct a background model where

the current frame is subtracted from the background model as shown in Equation 2.14.

Then, by thresholding 𝐹(𝑡), the segmented foreground is acquired as shown in Equation

2.15. The main drawback of this approach is that it is not able to handle dynamic

background; hence, the camera should be static [12, 26].

𝐹𝑛 = 𝐼𝑛 − 𝐵 (2.14)

𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = |𝐹𝑛| > 𝑇 = |𝐼𝑛 − 𝐵| > 𝑇 (2.15)

; where 𝐼𝑛 is the current frame, 𝐵 is the background model, 𝐹𝑛 is the image that

shows the pixels of frame 𝐼𝑛 that experienced a change in its intensity level from the

background model 𝐵, and 𝑇 is the threshold level.

According to [28], there are several techniques to implement the background

subtraction algorithm where the main difference among them is how the background model

is constructed. The techniques include direct differencing, mean or median filtering,

temporal median filter, Gaussian Mixture Model (GMM), and kernel density estimation.

However, the use of GMM in crowd analysis have been dominating [12].

20

2.2.3 Frame Differencing

The frame differencing algorithm is very simple where the previous frame is

subtracted from the current frame. The computations of this algorithm is very simple as

shown in Equations 2.16 – 2.17 [26]. Similar to the background subtraction algorithm, a

threshold might be used to detect the foreground of the scene and filter the difference of

the two consecutive frames (Equation 2.17). The main drawback of this algorithm is its

poor ability to detect the contour of the objects detected in the foreground which reduces

the object detection accuracy [26].

𝐹𝑛 = 𝐼𝑛 − 𝐼𝑛−1 (2.16)

𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 = |𝐹𝑛| > 𝑇 = |𝐼𝑛 − 𝐼𝑛−1| > 𝑇 (2.17)

; where 𝐼𝑛 is the current frame, 𝐼𝑛−1 is the previous frame, 𝐹𝑛 is the image that

shows the pixels of frame 𝐼𝑛 that experienced a change in its intensity level from the

previous frame 𝐼𝑛−1, and 𝑇 is the threshold level.

2.2.4 Comparison of Motion Flow Algorithms

As stated earlier, these three different motion detection algorithms have various

advantages and disadvantages. Table 2.1 summarizes these points for the aforementioned

algorithms based on the reported work in [25, 26].

21

Table 2.1 Comparison Between the Different Motion Flow Algorithms

Algorithm Accuracy Computational

Time

Comments

Optical Flow Moderate High ▪ Complex computations and requires

more memory

▪ Not preferred for real-time

processing

▪ Very sensitive to noise

▪ Provides complete movement

information

▪ Can handle dynamic backgrounds

Background

Subtraction

Moderate Moderate ▪ Simpler computations and requires

lower memory

▪ Might require a buffer to store recent

pixel values based on the used

technique (e.g. median)

▪ Cannot handle dynamic background

Frame

Differencing

High Low to

Moderate
▪ The simplest algorithm

▪ Requires a background frame at the

initial step

▪ Suffers from noise

▪ Difficult to obtain accurate outline of

moving objects

▪ Can process low resolution videos

▪ Can adapt with dynamic background

22

 Classical Pedestrian Detectors

The techniques used in pedestrian detection are basically derived from the state-of-

the-art algorithms proposed in the field of computer vision for multiple target tracking. In

addition, the use of motion detection techniques is also common in this application [12].

In this section, different algorithms are discussed where they depend on different hand

crafted features and not on CNNs.

2.3.1 Histogram of Oriented Gradients Features Based Pedestrian Detectors

The work in [29] proposed and implemented a pedestrian detector on a Field

Programable Gate Arrays (FPGA) and GPU. The algorithm is based on two stages, the first

stage is where background subtraction and foreground analysis are used to propose RoIs

based on geometric features. Afterwards, HOG features are extracted and a kernel SVM

classifier are used to categorize the proposed RoIs earlier into two classes: pedestrian or

non-pedestrian. The advantage of using a kernel SVM is the ability to find non-linear

decision boundaries through performing linear separation in a high dimensional feature

space. The implemented kernel SVM utilizes a Gaussian kernel function. The final

implementation of the system takes less than 100 ms to process 1000 windows, processing

around 10 Frames Per Second (FPS). The system was tested using the INRIA [30] dataset

where it showed a similar performance to the proposed algorithm in [30]. In addition, an

outdoor experiment was conducted to verify the performance of the proposed algorithm.

Figure 2.2 shows the experimental setup and some examples of the detection results. The

results from the outdoor experiment reported an accuracy of 95.4% per frame.

23

(a) The outdoor setup of the

experiment

(b) Samples of the detected pedestrians from

the images of the outdoor experiment

Figure 2.2. The outdoor experiment setup and examples for the proposed algorithm in [29]

Furthermore, the work in [22] approached the pedestrian detection problem through

combining appearance and motion algorithms (two are appearance based and one motion

based algorithms). The outputs of the algorithms are combined to enhance the performance

of pedestrian and crowd detection further. The first appearance algorithm performs head

detection. Both HOG and Local Binary Patterns (LBP) features are used in addition to the

multiple kernel learning classifier. The second appearance algorithm performs upright

person detection through utilizing HOG features and an SVM classifier. The two

appearance algorithms were originally proposed in [30, 31]. On the other hand, the

proposed motion detection algorithm depends on the Dynamic Texture based Gaussian

Mixture Model (DT-GMM). Afterwards, the initial motion detection results are used to

enhance the performance of the head and upright person detectors. This would reflect back

on the final results where the individuals of the crowd are localized and detected accurately.

This approach does not improve only detection accuracy, but also reduce the false

detections that has been found in the initial steps. The work used three video sequences

from the PETS2009 [32] dataset to test the proposed approach. The MREs of the video

24

sequence S1_L2_14-06, which contains highly dense crowd moving under significant

occlusion, were found to be 9.64% and 6.25% for the head and upright person detectors,

respectively. For another video sequence, S2_L2_14-55 where it contains movement of

sparse moderate density crowd under varying lighting conditions, the MREs were found to

be 10.17% and 1.61% for the aforementioned detectors, respectively.

2.3.2 Informed Haar-Like Features Based Pedestrian Detector

The proposed algorithm in [17] is based on multi-modal and multi-channel

Informed Haar-like features. The use of such features allowed the algorithm to identify the

characteristics of the human body parts’ while being robust to changes in clothing and

environmental settings. Binary and ternary modalities are the two template modalities used

for the Haar-like features. The use of the ternary modality is to have the ability of

representing more complex features of the pedestrians’ silhouette through representing its

corner regions. The features found are based on ten channels (three channels for the LUV

colors, one channel for the gradient magnitude information, and six channels for HOG).

These channels are found to be the most informative channels in [33] and was used in [34].

The use of color and gradient features provided the ability to overcome the variations in

clothing. The algorithm used an AdaBoost classifier with a 2000 weak classifiers. The

INRIA and Caltech [20] datasets have been used to benchmark the system. Reported results

showed that the log-average MR for the INRIA and Caltech datasets are 14.43% and

34.60%, respectively.

25

2.3.3 Body-Parts Pedestrian Detectors

The researchers in [35] proposed a density aware people detector, using the

proposed regression based density estimator in [36]. The approach implemented does not

depend on the full body of a pedestrian. Instead, it uses part of the body, the head region,

to detect a pedestrian which improved the immunity of the algorithm to occlusions. In

addition, the algorithm roughly estimates the viewpoint of the camera. This improves the

result through identifying the constraints on the size of a pedestrian in the image. To train

and test the algorithm, the researchers have used videos from the Internet besides their own

collected dataset. The detector training was accomplished through using manually

annotated images with both positive and negative samples for the head regions. The

negative samples were created using the same training images, where the overlap with the

positive samples is minimal. The detection AP values reported for 1 pedestrian in 4 𝑚2

was 72% where it decreased to reach around 48% for 9 pedestrians in 4 𝑚2.

Similarly, the work in [37] uses parts of the body to detect pedestrians. The

followed approach consists of two-layers. The first layer is based on the model proposed

in [38] where it utilizes a deformable template to represent part and global appearances.

The second layer uses a mixture model that takes the part scores and the appearance as

features to model the pedestrians and handle the occlusions. To train and test the proposed

approach, the PETS2009 and the UCSD crowd [39] datasets were used. From the

PETS2009, the S1_L2 sequence, which contains highly dense crowd, was used for training.

The two sequences S2_L2 and S2_L3 were used to test the algorithm. The sequence S2_L2

contains a medium density crowd where the sequence S2_L3 contains a high density

26

crowd. The reported AP on the two sequences were 75.5% and 65.5%, respectively. From

the UCSD, the sequence S1 was used for training where the sequence S2 was used for

testing. The reported AP is 68.3%. It is worth noting that the sequences from the UCSD

dataset were manually annotated by the researchers.

2.3.4 Combined Pedestrian Detector

Pedestrian detectors that utilize different algorithms to detect pedestrians based on

specific criteria are categorized in this report as combined pedestrian detectors. For

example, for every video setting, there is a specified algorithm to detect the pedestrians.

The work presented in [40] performs visual analysis of small groups in pedestrian

crowds. Two algorithms are proposed based on the elevation angle of the captured videos.

In case the videos are captured from a high elevation angle, the pedestrians are detected

through implementing a Reversible Jump Markov Chain Monte Carlo (RJMCMC) as

shown in Figure 2.3.a. This is used to process the binary segmentation produced by the

adaptive background subtraction. However, if the videos are of high resolution, the

pedestrians are detected based on HOG features as proposed in [30]. Figure 2.3.b shows an

example of the high resolution images with low elevation angle. The HOG features are

calculated on the output of a background subtraction mask that helps in detecting moving

pedestrians while suppressing the gradients in the regions where it is most likely have no

pedestrians. This allowed to reduce the false positives in such regions. To test this work,

the researchers have collected their own dataset and created its ground truth data. The

reported accuracy of the detection algorithm on the collected dataset was 96%.

27

(a) A sample of pedestrian detection from

a high elevation angle using

RJMCMC

(b) A sample of pedestrian detection from

a low elevation angle using RJMCMC

Figure 2.3. Examples from the pedestrian detection algorithms implemented in [40]

2.3.5 Aggregated Channel Features Based Pedestrian Detector

The work in [41] proposes the Aggregated Channel Features (ACF) pedestrian

detector. Based on [33] and similar to [17, 34], the algorithm uses the same ten channels.

Then, the fast feature pyramid is computed based on an efficient method. The efficient

method computes the pyramid of features based on one scale per octave. An octave is the

interval between two scales where one of them is the double of the other. The features at

the intermediate scales are found from the features of the nearest scale per octave. Hence,

the speed of computation increases while the accuracy is slightly affected. To perform

pedestrian detection, a decision tree is used where it was trained and combined using

AdaBoost. The ACF algorithm processes 32 FPS using the fast feature pyramid features

and it would drop to 12 FPS when the exact feature pyramids are calculated, which is not

28

suitable for real-time processing. The proposed ACF pedestrian detector was tested using

four different datasets: INRIA, Caltech, TUD-Brussels [42], and ETH [43]. The accuracy

of the proposed ACF pedestrian detector among the four sets was found by using the log-

average MR between 10−2 and 100 FPPI. The average of the log-average MR among the

four datasets was found to be 40% when the exact feature pyramid is computed and 41%

when the fast feature pyramid is computed.

2.3.6 Locally Decorrelated Channel Features Based Pedestrian Detector

Afterwards, the work presented in [44] concentrated on improving the performance

of boosted detectors such as the ACF pedestrian detector [41]. Despite the evolution of

these boosted detectors, the use of orthogonal decision trees (decisions are based on single

feature splits) is still the most popular. The main reason behind this dominance is their

simplicity and high efficiency. For example, using oblique decision trees (decision are

based on multiple feature splits) increases the computational cost of training and testing.

Yet, they demonstrated effectiveness in processing high dimensional data with correlated

features [44, 45].

However, the work presented in [46] inspired the idea of decorrelating the channel

features used to detect pedestrians (or objects in general) before applying an orthogonal

decision tree algorithm. This is critical since orthogonal decision trees do not perform well

while processing high dimensional data with highly correlated features [44]. Thus, the

proposed algorithm would avoid the use of oblique decision trees. Initial tests in [44] have

shown that the use of decorrelation filters with orthogonal decision trees outperforms the

oblique decision trees.

29

Subsequently, the ACF detector was modified by applying four decorrelation linear

filters per channel to the 10 channels of the ACF detector. Hence, the total number of

locally decorrelated channel features is 40. Then, to simplify the computations and

maintain similar efficiency to the ACF detector, the 40 channel features are downsampled

by a factor of 2. This downsampling reduces the size of the 40 channel features to an

equivalent size of the 10 original channel features while having minimal impact on the

results. It is worth noting that the implementation of the decorrelating filters is the only

addition to the ACF detector. Hence, the new detector has been called the Locally

Decorrelated Channel Filters (LDCF) pedestrian detector. After testing the LDCF detector

on the INRIA and the Caltech pedestrian datasets, the log-average MR is found to be 14%

and 25%, respectively.

 CNN Based Pedestrian Detectors

When the CNN object detectors are studied, the family of Regional-based

Convolutional Neural Network (R-CNN) cannot be ignored. This is due to the performance

of the Faster R-CNN where it achieved the best results on the object detection challenges

such as PASCAL VOC [47] and Microsoft Common Objects in COntext (MS COCO) [48]

[49]. Even though the family of R-CNN networks were proposed to perform multi-class

object detection, they can be finetuned to perform specific class object detection.

Therefore, the family of the R-CNN are reported in this section to understand their main

building blocks and evolution.

30

2.4.1 Regional-based CNN

The development of the R-CNN started in [50] where it boosted the performance

of object detection from 35.1% mAP for the work in [51] to 53.7% on the PASCAL VOC

2010. The proposed architecture for the R-CNN is shown in Figure 2.4. Selective search is

used to generate class independent region proposals. Selective search was used to propose

RoI for the purpose of comparing the proposed R-CNN with the state-of-the-art algorithms

at that time as they used selective search. Afterwards, AlexNet [6] was used to generate a

4096 dimensional feature vector for each of the proposed regions. At the end, linear SVMs

are used to classify the detected objects. To process one image on a GPU, it takes around

23 seconds, which might vary based on the class of the object being detected.

Figure 2.4. The proposed architecture of the R-CNN [50]

31

2.4.2 Fast R-CNN

The work of R-CNN did not stop at this step where another approach called Fast

R-CNN was proposed in [52]. The proposed architecture of the Fast R-CNN is shown in

Figure 2.5. The proposed network processes the input image to extract a feature map using

several convolutional layers from the VGG-16 network [53]. Afterwards, the RoI pooling

layer extracts a feature vector from the feature map that has a fixed length for each object

proposal in the image. The extracted vector is then processed by the Fully Connected (FC)

layers. At the end, two output layers are used to detect the class of the object using a

softmax layer and the refined bounding box is regressed by the bounding box regressor

layer. The reported mAP for the PASCAL VOC 2010 was 66.1% where the mAP for the

PASCAL VOC 2012 was 65.7%. It takes around 0.32 seconds to process one image using

the Nvidia K40 GPU where it takes 47 seconds for the R-CNN to process one image on

the same GPU as reported in [52].

Figure 2.5. The proposed architecture of the Fast R-CNN [52]

32

2.4.3 Faster R-CNN Pedestrian Detector

The work in [54] has further enhanced the performance by proposing the Faster R-

CNN architecture shown in Figure 2.6. The proposed architecture consists of two networks.

The first network is the Region Proposal Network (RPN) which is a Fully Convolutional

Network (FCN). It takes an input image and proposes boundary boxes and their

corresponding confidence score. This is accomplished through sliding a window on the

input image. Then anchors of different sizes and scales are used to propose regions inside

the sliding window. The different sizes and scales anchors are used to address the problem

of multi-scale and several aspect ratios. The proposed RPN uses nine anchors that have

three different sizes and three different scales. The second network is the Fast R-CNN

detector proposed in [52]. The contribution of this work lies in the idea that both RPN and

Fast R-CNN networks share several convolutional layers to make it more efficient.

However, this would complicate the training process of the Faster R-CNN network as each

network will modify the shared convolutional layer differently.

The Faster R-CNN mAP testing results on the PASCAL VOC 2007 and 2012 were

reported to be 78.8% and 75.9%, respectively. It is found that the implementation of the

Faster R-CNN (based on VGG-16) on the Nvidia K40 GPU takes 0.2 seconds to process

one image. However, if the implementation was based on the ZFNet [7], it takes

approximately 0.06 seconds to process one image. In other words, it is capable of

processing 5 or 17 FPS depending on which CNN is used. This made the Faster R-CNN

implementation one step closer to the real-time processing assuming that a camera takes

25 FPS which translates to processing each frame or image in 0.04 seconds (or 40

milliseconds).

33

Figure 2.6. The proposed architecture of the Faster R-CNN [54]

After the proposal of Faster R-CNN, the researchers in [55] implemented a

pedestrian detector using the Faster R-CNN architecture. The reported log-average MR on

the Caltech dataset was 20.2%. This MR would drop to 16.2% in case the ‘atrous

convolution’ presented in [56] is used. On the other hand, the work also implements a RPN

only to perform pedestrian detection where it demonstrated better performance as the log-

average MR decreased to reach 14.9%. Furthermore, the log-average MR decreases further

in case the RPN and R-CNN networks are combined to reach 13.1%.

Therefore and after these findings, the researchers in [55] investigated why Faster

R-CNN has an outstanding performance in multi-class object detection problems while its

performance is not at the same level in pedestrians detection. Furthermore and as stated

earlier, it was found that the performance of the RPN as a pedestrian detector is better than

34

the Faster R-CNN as a standalone pedestrian detector. The accuracy loss in Fast R-CNN is

due to its classifier. The first reason for the degradation in accuracy is the size of the objects

to be detected. The size of the pedestrian instances is small and with the use of a pooling

layer, the extracted low resolution feature map is found to be not discriminative which

cause the reduction in accuracy of the Fast R-CNN classifier. In addition, most of the false

detections are usually due to the hard background instances, which causes the Faster R-

CNN pedestrian detector to suffer.

2.4.4 Regional Proposal Network – Boosted Forest Pedestrian Detector

Subsequently, the researchers in [55] proposed the RPN-Boosted Forest (RPN-BF)

architecture shown in Figure 2.7. It addresses the first point through using the crafted

features at the RPN’s first layers where the resolution is high to increase the size of the

feature map. In addition, it utilizes a cascaded BF to classify the proposed bounding boxes

by the RPN. The use of BF improves the ability to classify hard negative background

instances that are proposed by the RPN. The proposed architecture depends on the deep

features extracted by the RPN and uses the BF for classification. As a result, it is considered

more computational efficient and it overcomes the older algorithms that depend on hand

crafted features and BF.

The implemented RPN is based on the VGG-16 network that is pretrained on the

IMAGENET dataset. Since the proposed RPN aims to detect pedestrians only, the

modifications applied in [57] were respected. The aspect ratio of the nine anchors used

have been fixed to a single aspect ratio of 0.41 (width/height). This ratio is used since it is

found to be the average aspect ratio of the pedestrians [57]. Thus, the RPN proposes

35

bounding boxes and their corresponding confidence scores which are passed to the BF in

addition to the extracted features.

Figure 2.7. The proposed architecture of the RPN-BF [55]

The cascaded BF is trained using the outputs of the RPN (proposed regions,

confidence scores, and features). The hyper-parameters are set according to [58] and the

RealBoost algorithm is used in training [59]. The BF processes the proposed bounding

boxes in a biased fashion where the produced score by the RPN is used as an initial score.

The RPN-BF testing was accomplished among four datasets: Caltech, INRIA,

ETH, and KITTI [60]. The log-average MR reported for the Caltech dataset is 9.6% where

it took 0.5 seconds to process one image (2 FPS) on the Nvidia Tesla K40 GPU. The

reported log-average MR for the INRIA and ETH datasets were 6.9% and 30.2%,

respectively. For the KITTI dataset, the reported mAP on moderate was 61.15%.

36

2.4.5 The HyperLearner Pedestrian Detector

Another pedestrian detector architecture is proposed in [18]. It is known as

HyperLearner. It is based on integrating channel features into the CNN based pedestrian

detector. The work tested three different group of channels to be integrated to improve the

performance: apparent-to-semantic channels, temporal channels, and depth channels.

The apparent-to-semantic channels include in addition to the same ten channels

used in [17, 34], the edge, the segmentation, and the heatmap channels. The edge channel

is extracted using the holistically-nested edge detection network proposed in [61], where a

FCN generates the segmentation channel which is blurred to create the heatmap channel.

For the temporal channels, optical flow is used to extract temporal features through using

the consecutive frames of a video. However, the depth channels are generated using the

employed depth sensors to create depth information. It is worth noting that edge and

semantic segmentation channel features demonstrated more promising results when

integrated with the CNN based pedestrian detector.

The proposed HyperLearner consists of four networks as shown in Figure 2.8. First,

the input image is fed to the body network, a modified VGG-16 network pretrained on

IMAGENET, to generate the aggregated activation maps. Later, a Channel Feature

Network (CFN), which is a FCN, predicts the channel feature map through processing the

aggregated activation maps. Afterwards, the proposed Faster R-CNN (RPN and Fast R-

CNN) in [54] are used to propose RoI and perform pedestrian detection.

37

Figure 2.8: The proposed HyperLearner pedestrian detector [18]

To train the proposed HyperLearner, four stages are required. In the first stage, only

the CFN is trained while fixing the body network (since it is a pretrained VGG-16 network).

Then, the RPN is trained while fixing both the body network and the CFN. In the third

stage, the body network, the CFN, and RPN are fixed while the Faster R-CNN network is

trained. However, in the fourth stage, all the networks are trained.

To evaluate the HyperLearner, the following three datasets were used: KITTI,

Cityscapes [62], and Caltech datasets. On the KITTI dataset, integrating the edge channel

boosted the results slightly higher than the segmentation features to reach a mAP of 71.51%

on moderate. For the Cityscapes dataset, the AP reported was 87.67% for the 720p frames

resolution. Furthermore, the log-average MR reported for the Caltech dataset (based on the

new annotations) was 5.5%. The proposed network implementation using a single Nvidia

TITAN X takes 0.25 seconds to process one 720p frame which is equivalent to 4 FPS.

38

2.4.6 Simultaneous Detection and Segmentation R-CNN Pedestrian Detector

Another work that investigated the impact of using semantic segmentation on the

pedestrian detection problem was reported in [63]. The proposed algorithm allows joint

learning on semantic segmentation and pedestrian detection while having limited or

minimal impact on the network. Hence, the proposed architecture is known as

Simultaneous Detection and Segmentation R-CNN (SDS-R-CNN) and it is shown in

Figure 2.9. It contains two networks: a RPN and Binary Classification Network (BCN).

The contribution in the architecture lies in the semantic segmentation infusion layer. This

shall generate feature maps based on semantic masks which improve the ability to perform

pedestrian classification.

Figure 2.9: The proposed SDS-R-CNN pedestrian detector [63]

39

The RPN implemented is the same one proposed in the work of [54] where the same

modifications suggested in the work of [55] has been followed. The RPN is based on the

VGG-16 network pretrained on IMAGENET. The BCN is used to classify the proposals

of the RPN and refine their scores. Another VGG-16 network is used in the BCN to avoid

performance degradation in the pedestrian detection capability as shown in [55]. This

would reduce the efficiency of the proposed algorithm as the computations will be

calculated twice. However, the advantage would be the ability to detect the hard samples

passed by the RPN. In addition, shared networks usually provide similar scores which is

not helpful when the networks are fused.

The SDS-R-CNN evaluation used Caltech and KITTI datasets. The log-average

MR reported for the Caltech dataset is 7.36% where the reported mAP on moderate for the

KITTI dataset is 63.05%. The network takes 0.21 seconds (4.76 FPS) to process one frame

of resolution 960 × 720 using a single Nvidia TITAN X.

 Comparison and Overview of the Pedestrian Detectors in the Literature

Table 2.2 and Table 2.3 summarize the two categories of algorithms stated in the

literature earlier. In general, it is clear that most of the classical algorithms does not process

the raw input image. However, these algorithms extract specific features from the input

images and process the extracted features to perform pedestrian detection such as the 10

channels used by the ACF detector. However, the CNN based algorithms take the input

image and extract deep convolutional features. The extracted features are selected through

the supervised learning of the networks. Thus, the CNN based algorithms have clearly

40

outperformed the classical algorithms as they are using more optimal features to

discriminate the contents of the images.

All in all, the performance gain in the CNN based algorithms over the classical

algorithms came with the price of higher processing time. Even though using shallower

CNN reduced the time, the performance was affected while not satisfying the real-time

requirement as well. In addition, it could be noticed that after the proposal of the Faster R-

CNN, the proposed CNN based pedestrian detection are using more than raw images to

extract the features and detect pedestrians. For example, the HyperLearner best

performance was accomplished when the edge and semantic segmentation channel features

were integrated in the process of pedestrian detection. Similarly, the SDS-R-CNN utilized

the semantic masks to boost the performance. These additional features are extracted

through adding more layers or even networks to the proposed pedestrian detector. As a

result, the processing time of the detector increased.

However, what if such additional features could be extracted using simpler

algorithms. In fact, the idea of this work is inspired from the work presented in [22], and

the review reported in [55]. As stated earlier that there are two reasons for the accuracy of

a Faster R-CNN network to drop, where the second reason stated that the drop is related to

the hard background instances detected as pedestrians. However, and since the application

targeted in this work is visual surveillance, the effect of this limitation on the proposed

pedestrian detector could be minimized if not completely eliminated. This could be

accomplished through utilizing a similar idea to the one reported in [22]. The use of a

motion flow algorithm to detect initial RoI in the images before performing pedestrian

detection will provide an idea of where the people could be located in the image. Therefore,

41

any detections of hard background instances could be corrected through using the motion

flow RoI. Yet, it is worth noting that this approach might introduce additional constraints

and limitations to the proposed detector depending on the selected motion flow algorithm,

and the method of integrating the motion flow information in the detection process.

42

Table 2.2 Summary of the Classical Image Processing Pedestrian Detectors Proposed in

the Literature

Algorithms Features Dataset Performance

Metric

Performance

Measure

Processing

Speed [FPS]

[40] RJMCMC (or)

HOG

Own dataset Accuracy 96% -

[35] Parts of the Body

(Head Region)

Own dataset +

Internet Videos

AP 48% - 72% -

[37] Deformable Template PETS2009 AP 65.5% - 75.5% -

UCSD Crowd 68.3%

[29] Background

Subtraction + HOG

INRIA - - ~10

Own dataset Accuracy 95.4%

[17] Informed Haar INRIA Log-average

Miss Rate

14.43% -

Caltech 34.60%

[22] HOG + LBP + DT-

GMM

(Head Detector)

PETS2009 MRE 9.64% -

10.17%

-

HOG + DT-GMM

(Pedestrian Detector)

6.25% - 1.61%

[41] ACF - Fast Feature

Pyramid

INRIA Log-average

MR

17% 32

Caltech 45%

TUD-Brussels 52%

ETH 51%

ACF - Exact Feature

Pyramid

INRIA Log-average

MR

17% 12

Caltech 43%

TUD-Brussels 50%

ETH 50%

[44] LDCF INRIA Log-average

MR

14% -

Caltech 25%

43

Table 2.3 Summary of the CNN Based Pedestrian Detectors Proposed in the Literature

Algorithms CNN Architecture Dataset Performance

Metric

Performance

Measure

Processing

Speed [FPS]

[55] Faster R-CNN Caltech Log-average

MR

20.2% -

Faster R-CNN

(atrous convolution)

Caltech 16.2% -

RPN Caltech 14.9% -

RPN + R-CNN Caltech 13.1% -

RPN + BF Caltech 9.6% 2

Caltech (new

annotations)

7.3%

INRIA 6.9%

ETH 30.2%

KITTI

(moderate)

mAP 61.15%

[18] HyperLearner Caltech (new

annotations)

Log-average

MR

5.5% 4

Cityscapes AP 87.67%

KITTI

(moderate)

mAP 71.51%

[63] SDS-R-CNN Caltech Log-average

MR

7.36% ~4

KITTI

(moderate)

mAP 63.05%

44

CHAPTER 3: PROPOSED MOTION SALIENCY AIDED CNN PEDESTRIAN

DETECTOR

In this chapter, the design of the proposed Motion Saliency Aided CNN pedestrian

detector is reported. Section 3.1 shows an overview of the proposed motion saliency aided

pedestrian detector. Section 3.2 discusses the hardware and software setup used in this

study to implement the algorithms developed. Sections 3.3 reports the proposed motion

flow algorithm and Section 3.4 discusses the proposed CNN pedestrian detector.

 An Overview of the Motion Saliency Aided Faster R-CNN Pedestrian

Detector

As stated earlier that the main aim of this work is to investigate the potential

improvement of the performance of a CNN based pedestrian detector after integrating it

with a motion flow algorithm. Thus, one of the key points investigated in this work is how

the motion saliency information could be used to enhance the performance. A typical CNN

based pedestrian detector takes the raw image as input and process it to detect the

pedestrians. However, in this work, this will be slightly modified to integrate the motion

information. In this work, two methods of motion integration are used. The first approach

integrates the motion information in a pre-processing stage; where a sequence of frames is

processed to perform motion analysis and mask the raw image before processing it by the

Faster R-CNN detector as illustrated in the block diagram in Figure 3.1. Hence, this

approach is called Motion Masked Faster R-CNN (MM Faster R-CNN) pedestrian

detector. On the other hand, the second approach integrates the motion information after

45

processing the image using the Faster R-CNN pedestrian detector. Hence, the detection

results are corrected based on the motion information at a post-processing stage as shown

in Figure 3.2. Therefore, this approach is called Motion Corrected Faster R-CNN (MC

Faster R-CNN) pedestrian detector. The choice of the Faster R-CNN architecture to

perform pedestrian detection is discussed later in Section 3.4.

Figure 3.1. The block diagram of the MM Faster R-CNN pedestrian detector

Figure 3.2. The block diagram of the MC Faster R-CNN pedestrian detector

Motion Flow

Algorithm

Pedestrian Detection

Faster R-CNN

Pedestrian

Detector

Motion SegmentationInput Video

Motion Masked Image

Motion Masked

Pedestrian Detection

Blob Analysis

Background

Subtraction (GMM)

Morphological

Operations

Motion Flow

Algorithm

Input Video

Background

Subtraction (GMM)

Morphological

Operations

Motion Segmentation

Initial Pedestrian Detection

Faster R-CNN

Pedestrian

Detector

Motion Corrected

Pedestrian Detection

46

 Hardware and Software Setup

In this work, the proposed algorithms are developed on the Dell XPS 9560. The

laptop is running Microsoft Windows 10 Operating System, on an Intel Core i7 7700HQ

processor, 16 GB of RAM, and a 4 GB GDDR5 Nvidia GeForce GTX 1050 (640 CUDA

core, memory bandwidth of 112 GB/s) [64, 65]. In addition, a 12 GB GDDR5X Nvidia

TITAN Xp (3840 CUDA core, memory bandwidth of 547.7 GB/s) is connected as an

external Graphical Processing Unit (eGPU) through the USB-Type C Thunderbolt 3

connection. It is worth noting that the Dell XPS 9560 Thunderbolt 3 port utilizes 2 lanes

of Peripheral Component Interconnect Express Generation 3.0 (PCIe 3.0) instead of a

typical Thunderbolt 3 which utilize 4 lanes. This limits the bandwidth of the connection to

20 Gbps instead of 40 Gbps [64]. To develop, train, implement and test the algorithms,

MathWorks MATLAB software environment is used since the author is familiar with the

software package. Figure 3.3 summaries the hardware and software systems used.

Nvidia Titan Xp

12 GB GDDR5X

Sonnet eGPU

Breakaway Box Thunderbolt 3.0 – Type-C

20 Gbps Dell XPS 9560

Intel Core i7 7700HQ

16 GB RAM

4GB GDDR5 Nvidia

GeForce GTX 1050

MathWorks

MATLAB

Figure 3.3. The hardware and software setup used in this work

47

 Proposed Motion Flow Algorithm

As reported in the literature review section, there are several motion flow

algorithms used to detect the moving objects and perform foreground analysis in frame

sequences or videos. In this work, the aim of using the motion flow algorithm is to perform

foreground extraction and region detection to perform holistic crowd representation. This

is based on the assumption that pedestrians do not stand still completely in the scene which

indicates that people are in this part of the image. Based on the literature, the most common

algorithm used in visual analysis of crowds is based on background subtraction and GMM,

due to its reliability and high processing speed [12]. Yet, that does not mean this is the best

algorithm in terms of performance. Actually, some algorithms might provide better motion

information such as optical flow [27]; however, the computational cost of such algorithms

increases the processing time and complicates the system further while having minimal or

no impact on the result required in this work.

The use of GMM to implement background subtraction is to use K Gaussian

distributions to model each pixel in the background. The number K is selected to be a small

number and it is assumed that the different Gaussians are used to represent different colors.

Thus, each pixel in the scene is modelled using the mixture of K Gaussian distributions,

and the probability of having a pixel with a certain value 𝑋𝑛 is shown in Equation 3.1 [66].

𝑝(𝑋𝑛) = ∑𝜔𝑖 ⋅ 𝜂(𝑋𝑛, 𝜇𝑖 , Σ𝑖)

𝐾

𝑖=1

 (3.1)

; where 𝜔𝑖 is the estimated weight of the 𝑖th Gaussian distribution, 𝜇𝑖 is the mean

of the 𝑖th Gaussian distribution, Σ𝑖 is the covariance matrix, and 𝜂 is the Gaussian

48

probability density function as shown in Equation 3.2:

𝜂(𝑋𝑛, 𝜇𝑖, Σ𝑖) =
1

(2 ⋅ 𝜋)
𝑛
2 ⋅ |Σ|

1
2

𝑒
(−

1
2
(𝑋𝑛−𝜇𝑖)

𝑇Σ−1(𝑋𝑛−𝜇𝑖))
 (3.2)

Figure 3.4 illustrates the proposed motion flow algorithm. First, background

subtraction using GMM is applied to the input sequence of frames to detect the foreground.

Afterwards, the detected foreground is filtered using morphological operations. This will

remove any small regions where motion has been detected. At the end, blob analysis is

applied to detect the moving objects in the scene as shown in the figure.

Figure 3.4. The block diagram of the proposed motion flow algorithm

Blob Analysis

Input Video

Background

Subtraction

(GMM)

Morphological

Operations

Foreground

Detection

Filtered Foreground

49

 Proposed Faster R-CNN Based Pedestrian Detector

As reported in the literature, there are several CNNs proposed to perform pedestrian

detection. Some of these detectors process the raw images to perform pedestrian detection

where other detectors process the raw images using additional convolutional layers to

extract additional feature channels such as the HyperLearner [18, 63]. This step of

extracting additional feature channels enhanced the proposed CNNs performance while its

processing speed decreased. However, in this work, the aim is to avoid using these

additional convolutional layers and use a motion flow algorithm to enhance the

performance while having minimal impact on the processing speed. Therefore, the Faster

R-CNN architecture is used in this work to perform pedestrian detection since it is the

current state-of-the-art in object detection and it is one of the fastest CNNs [49].

To be able to use the Faster R-CNN as a pedestrian detector, it is required to build

the network and finetune it. First, to create the Faster R-CNN, it is required to have a

classification network that is used to extract convolutional features from the raw image.

These features then are used by the RPN to generate the proposals. At the end, the classifier

of the Faster R-CNN classifies the proposed regions by the RPN network to generate the

final detections of the pedestrians.

To build the Faster R-CNN, first the VGG-16 classification network pretrained on

IMAGENET is used since it is utilized in almost all the reported pedestrian detectors in the

literature. However, with the current hardware and software setup, there was no enough

memory to perform the finetuning for the Faster R-CNN despite the use of 12 GB eGPU

and very small mini-batch size of 8. The reason behind this is not clear but one of the

50

reasons might be due to the way MATLAB utilize the memory of the GPU during the

training process since other frameworks such as Caffe requires a 12 GB GPU memory to

train a Faster R-CNN network based on VGG-16 [55]. Therefore, the next shallower

classification network pretrained on IMAGENET and available on MATLAB was used to

create the Faster R-CNN pedestrian detector. AlexNet was used and the training process

was not interrupted this time. The use of AlexNet should not affect the objectives of this

work since all the CNNs work in a similar fashion and the outcomes found using any of

them shall have similar impact on the others. Yet, the results of this work might not be

competing with the state-of-the-art solutions since a shallow network is used to extract the

features.

3.4.1 Training the Faster R-CNN Pedestrian Detector

To create a Faster R-CNN network in MALTAB using a pretrained classification

CNN, transfer learning was used. Transfer learning allows the user to reuse the required

part of the CNN without the need to retrain the whole network. In this work, the aim is to

take the AlexNet CNN shown in Table 3.1 and use transfer learning to reuse the pretrained

convolutional layers while removing the FC layers to create a Faster R-CNN pedestrian

detector. The reason is that the convolutional layers are trained to extract convolutional

features, visual features in this case, where the FC layers work as a classifier. However,

the pretrained AlexNet FC layers are designed to classify the images into 1000 objects

where in this work the aim is to perform classification into two objects only (pedestrian,

not a pedestrian). Therefore, Layers 17 to 25 have been removed.

51

Afterwards, new layers have been added to the network instead of the layers that

have been removed. Therefore, a new modified AlexNet has been created to perform

pedestrian detection. The modified AlexNet architecture is shown in Table 3.2. As shown

in the table, the output size of the FC layers ‘fc7’ (layer no. 20) and ‘fc8’ (layer no. 23)

have been adjusted to 3072 instead of 4096. The reason behind this is to reduce the size of

the minimum anchor box of the RPN. In case the size has been reduced further (e.g. 2024),

the performance of the detector was affected. However, in case the 4096 was used, several

pedestrians were missed and not detected. Thus, the use of 3072 was the sweet spot.

Furthermore, an additional FC layer was added ‘fc9’ (layer no. 26). In any classification

network, the size of the last FC layer should be equal to the number of classes. Since, the

purpose of this network is to detect pedestrians, then, there are two classes ‘Pedestrian’,

and ‘Background’. However, instead of jumping from a 3072 FC layer ‘fc7’ (layer no. 20)

to a 2 FC layer (layer no. 26), an intermediate 1000 FC layer (layer no. 23) was introduced.

Therefore, the total number of Layers in the modified AlexNet is 28.

As the architecture of the classification network is prepared, the MATLAB function

trainFasterRCNNObjectDetector [67] was used to train the Faster R-CNN pedestrian

detector. The training parameters reported in [55] were used when applicable. The RPN

anchor boxes have been set to a single aspect ratio since the network performs single class

detection. The scale and the number of the anchor boxes, and the size of the minimum

anchor box were [55]selected by MATLAB after statistically analyzing the ground truth

labels of the training dataset. This improved the detection performance on the Caltech

dataset when compared to the case where these parameters have been selected manually.

Yet, the size of the minimum anchor box was larger in this case when compared with [55]

52

due to the different network architecture. To finetune the network and modify the

architecture as stated earlier, the Caltech pedestrian dataset has been used. The dataset

consists of around 250,000 images divided into 11 sets. In the training process, the images

of the first 6 sets are used as suggested by [20]. The images are resized so that the shorter

edge has 720 pixels and the number of strongest regions is set to 1000 proposals similar to

the work in [55]. It is worth noting that the learning rate of the new FC layers ‘fc6’ to ‘fc9’

has been increased when compared to the rest of the layers. The main reason is that the rest

of the layers were pretrained on IMAGENET where the new layers were not trained.

Therefore, their learning rate has been increased as suggested by MATLAB to be 20 times

the pretrained layers [67]. Afterwards, the training of the Faster R-CNN pedestrian detector

started and it took around 28 hours to complete where the eGPU was used during the

training process.

53

Table 3.1 The Architecture of MATLAB’s AlexNet Classification Network Pretrained on

IMAGENET

Layer

No.

Layer Name Layer Type Comments

1 'data' Image Input Input Layer 227x227x3 images with 'zerocenter' normalization

2 'conv1' Convolution 96 11x11x3 convolutions with stride [4 4] and padding [0 0]

3 'relu1' ReLU ReLU

4 'norm1' Cross Channel

Normalization

cross channel normalization with 5 channels per element

5 'pool1' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]

6 'conv2' Convolution 256 5x5x48 convolutions with stride [1 1] and padding [2 2]

7 'relu2' ReLU ReLU

8 'norm2' Cross Channel

Normalization

cross channel normalization with 5 channels per element

9 'pool2' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]

10 'conv3' Convolution 384 3x3x256 convolutions with stride [1 1] and padding [1 1]

11 'relu2' ReLU ReLU

12 'conv4' Convolution 384 3x3x192 convolutions with stride [1 1] and padding [1 1]

13 'relu4' ReLU ReLU

14 'conv5' Convolution 256 3x3x192 convolutions with stride [1 1] and padding [1 1]

15 'relu5' ReLU ReLU

16 'pool5' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]

17 'fc6' Fully Connected 4096 fully connected layer

18 'relu6' ReLU ReLU

19 'drop6' Dropout 50% dropout

20 'fc7' Fully Connected 4096 fully connected layer

21 'relu7' ReLU ReLU

22 'drop7' Dropout 50% dropout

23 'fc8' Fully Connected 1000 fully connected layer

24 'prob' Softmax Softmax

25 'output' Classification

Output

Cossentropyex with 'tench', 'goldfish', and 998 other classes

54

Table 3.2 The Architecture of the Modified AlexNet Classification Network to Perform

Pedestrian Detection

Layer

No.

Layer Name Layer Type Comments

1 'data' Image Input Input Layer 227x227x3 images with 'zerocenter' normalization

2 'conv1' Convolution 96 11x11x3 convolutions with stride [4 4] and padding [0 0]

3 'relu1' ReLU ReLU

4 'norm1' Cross Channel

Normalization

cross channel normalization with 5 channels per element

5 'pool1' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]

6 'conv2' Convolution 256 5x5x48 convolutions with stride [1 1] and padding [2 2]

7 'relu2' ReLU ReLU

8 'norm2' Cross Channel

Normalization

cross channel normalization with 5 channels per element

9 'pool2' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]

10 'conv3' Convolution 384 3x3x256 convolutions with stride [1 1] and padding [1 1]

11 'relu2' ReLU ReLU

12 'conv4' Convolution 384 3x3x192 convolutions with stride [1 1] and padding [1 1]

13 'relu4' ReLU ReLU

14 'conv5' Convolution 256 3x3x192 convolutions with stride [1 1] and padding [1 1]

15 'relu5' ReLU ReLU

16 'pool5' Max Pooling 3x3 max pooling with stride [2 2] and padding [0 0]

17 'fc6' Fully Connected 3072 fully connected layer

18 'relu6' ReLU ReLU

19 'drop6' Dropout 50% dropout

20 'fc7' Fully Connected 3072 fully connected layer

21 'relu7' ReLU ReLU

22 'drop7' Dropout 50% dropout

23 'fc8' Fully Connected 1000 fully connected layer

24 'relu8' ReLU ReLU

25 'drop8' Dropout 50% dropout

26 'fc9' Fully Connected 2 fully connected layer

27 'prob' Softmax Softmax

28 'output' Classification

Output

Cossentropyex

55

CHAPTER 4: RESULTS AND DISCUSSION

In this chapter, the findings and results acquired are discussed and reported. Section

4.1 reports the reflections on the setup used during the development and implementation

of this work. Section 4.2 reports the results of this work in terms of processing time and

performance metrics where Sections 4.3 discusses the reported results and the conclusions

of this work.

 Reflections on the Hardware and Software Setup

In this work, the setup shown in Figure 3.3 has been used where there are some

reflections to be noted based on the implementation of the proposed model.

4.1.1 Reflections on the Use of MATLAB

In this work, MATLAB was used to design the motion flow algorithm, train the

Faster R-CNN pedestrian detector, and integrate them to implement the two motion

integrated detectors. Despite that MATLAB has the following two toolboxes to create and

train CNN using GPUs: Neural Network Toolbox [68] and Parallel Computing Toolbox

[69], it is worth noting the following observations:

• During the training process of CNN object detectors such as Faster R-CNN, the

use of a validation set of images during the training process is not viable. Hence,

to identify if the implemented CNN architecture is promising or overfitting, it

is required to complete the training process which might take from several hours

to several days depending on the architecture of the network, size of the training

dataset, and the GPU used to execute the training process.

56

• During the training process on MATLAB, the program was using the Central

Processing Unit (CPU) to perform some preparation steps in the training

process despite selecting the GPU as an execution environment. These

preparation steps include generating the proposals using the trained RPN before

training the Fast R-CNN network. Subsequently, the training time increased by

several days or weeks depending on the size of the training set. To train a Faster

R-CNN based on AlexNet using 100 images, it took 2 hours to complete the

training using the CPU to generate the proposals. This issue was noticed while

using MATLAB R2018a. However, running the same code on MATLAB

R2017a completed the training process in 10 minutes only using the GPU in all

the stages.

Thus, it is recommended to use a framework specialized in deep learning and CNN

such as Caffe, TensorFlow, Torch; especially since they provide advanced tools to control

the training process, the network and the work in general. In contrast, MATLAB would be

easier to use than the other environments for initial testing and as a learning stage about

CNNs.

4.1.2 Reflections on the Use of eGPU

To train the Faster R-CNN pedestrian detector, the Nvidia TITAN Xp was used as

an eGPU. This was used since its specifications (e.g. memory, memory bandwidth, etc.) is

better than the internal GPU of the Dell XPS laptop. Thus, it should perform training for

larger network architectures and at a faster rate as well. Yet, the performance will not be

identical to a regular desktop computer that utilizes the TITAN Xp as a GPU. The drop in

57

performance reported is in the range from 15% to 20% due to the use of Thunderbolt 3 as

a connection [70]. In addition, an additional drop of 10% to 15% was noticed since the

eGPU is connected through a 20 Gbps Thunderbolt 3 connection. However, the

performance would still be better than the internal GPU since the TITAN Xp memory is

12 GB. In addition, these numbers were reported when the eGPU is used for Gaming and

not performing computations such as in this case. Thus, the exact performance drop might

be slightly different.

During the training process of the CNNs, it was noticed that the preparation stages

take longer time when the training was executed on the eGPU. This is due to the data

transfer through the Thunderbolt connection. However, the training process time was much

shorter. Therefore, for large training datasets, it is recommended to perform the training

process using the eGPU as the total time would be less. For testing, the internal GPU was

used, since the number of frames used in testing is small. It was found that it takes 1.4

seconds (~0.71 FPS) to process one frame using the eGPU where the internal GPU process

the same frame in ~0.11 seconds (~9 FPS), which reflects that internal GPU is faster by a

factor of ~12.7.

 Results

After preparing the proposed motion flow and CNN based pedestrian detectors,

their implementations are integrated as illustrated in Figure 3.1 and Figure 3.2 to create the

two proposed motion saliency aided Faster R-CNN based pedestrian detectors. To assess

these algorithms, the metrics used in evaluation are precision, error rates and AP. The

58

precision, Equation 2.5, provides the percentage of the correct detections out of the total

detections of the detector. The error rates, Equations 2.8 and 2.10, quantify the ability of

the proposed detectors to reduce false detections where the AP quantifies how the detection

ability of the original detector is affected. In other words, if the number of false positives

has been reduced while reducing the detection ability, the proposed algorithms are said to

have drawbacks. For example, having a detector with zero detections would have a zero

error but its detection ability is still zero. Therefore, it is very essential to examine the

detection ability after integrating the motion information.

4.2.1 Processing Time

After implementing the algorithms, the processing time has been analyzed and

reported in Table 4.1 for a frame resolution of 960×720. The reported timings are based

on implementing the algorithms on the Dell XPS 9560 without the use of the external GPU

since it takes longer time as discussed in Section 4.1.2. The motion flow algorithm

implementation was processed on the CPU. However, the CNN pedestrian detection

performs the processing using the Nvidia GTX 1050. In addition, the table shows the

processing time for some other algorithms from the literature where these timings are based

on CPU implementations. The MATLAB implementations of the ACF and the LDCF

detectors are provided by the authors in [71]. However, the implementation of the HOG

features based pedestrian detector is provided by MATLAB [72].

From the table, proposed motion information integrated algorithms dropped the

speed by approximately 1 FPS from the Faster R-CNN. The difference between the two

motion based methods is how motion information is integrated. The MM Faster R-CNN

59

approach uses the motion to mask the image before processing it through the Faster R-

CNN detector. The MC Faster R-CNN approach uses the motion information after

processing the image through the Faster R-CNN detector to correct the detections. Thus, it

performs lower number of computations which made it faster.

Table 4.1 Comparison Between the Processing Time for Different Pedestrian Detectors

Pedestrian

Detectors

Algorithm

(Execution

Environment)

Algorithm Average

Processing Time

[Sec.]

Total Processing

Time [Sec.]

Processing

Speed

[FPS]

Faster R-CNN

[Proposed]

Faster R-CNN

(GPU)

- 0.10865 9.2

MM Faster R-CNN

[Proposed]

Motion Flow (CPU) 0.01512 0.12592 8.1

Faster R-CNN

(GPU)

0.10865

MC Faster R-CNN

[Proposed]

Motion Flow (CPU) 0.01329 0.12194 8.2

Faster R-CNN

(GPU)

0.10865

HOG [30] HOG (CPU) - 0.18616 5.3

ACF [41] ACF (CPU) - 0.21859 4.5

LDCF [44] LDCF (CPU) - 1.18296 0.8

The reported processing time per frame for the pedestrian detectors in the table

ranges from around 0.1 to 1.2 seconds. The slowest detector is the CPU implementation of

the LDCF detector where the processing time reached 1.18 seconds due to the additional

decorrelation filtering stage added on top of the ACF detector, which increased the

60

processing time of the original ACF detector by approximately 1 second. On the other

hand, the processing speed of the HOG features and the ACF detectors is very similar

where both process one frame in ~0.2 seconds on CPU. The implementation of the Faster

R-CNN detector using the GPU caused the Faster R-CNN based pedestrian detector to be

the fastest detector. By comparing these timings, the processing speed has been increased

by up to 10 times from the processing time of the LDCF detector; which has the slowest

implementation.

4.2.2 Video 1 Testing Results

The first video used to test the proposed algorithms is taken from the publicly

available PETS2009 dataset. The video sequence is the S2_L1_12-34 view 1 which

contains a low density sparse crowd with variability in crowd occlusions. The original

video resolution is 768×576 where it is processed at the resized resolution of 960×720. In

addition, the video was manually annotated to create the ground truth bounding boxes to

compute the evaluation metrics.

Figure 4.1 depicts the results of detecting the pedestrians using the three different

algorithms: Faster R-CNN, MM Faster R-CNN, and MC Faster R-CNN. The green

bounding boxes represent the detections of the algorithms, the red bounding boxes

corresponds to discarded detections through motion correction, and blue rectangular

regions represents motion detected regions.

61

Frame #6

Frame #20

Frame #270

Frame #323

(a) (b) (c)

Figure 4.1. Video 1 detection samples using (a) Faster R-CNN pedestrian detector, (b) MM

Faster R-CNN pedestrian detector, and (c) MC Faster R-CNN pedestrian detector

62

From the figure, frame #6 and frame #20 clearly demonstrate two examples of how

the integrated motion information improved the detection in the two proposed approaches.

However, frame #270 demonstrates an example where the MM Faster R-CNN detections

degraded the performance while the MC Faster R-CNN maintained the same performance

of the Faster R-CNN detector. On the contrary, frame #323 illustrates an example where

the MM Faster R-CNN outperforms the Faster R-CNN and the MC Faster R-CNN

detectors.

In addition, Table 4.2 summarizes the evaluation metrics for the proposed

algorithms and three algorithms from the literature. The AP metric reported in the table has

been extracted from the precision/recall curves plotted in Figure 4.2 where the IoU

threshold is 0.5.

Table 4.2 Comparison on Video 1 (PETS2009 S2L1 View 1) Showing the Precision,

Error Rates and AP for Different Pedestrian Detectors

Pedestrian Detectors Precision [%] MRE [%] MSE AP [%]

Faster R-CNN [Proposed] 74.13 25.09 3.52 69.84

MM Faster R-CNN

[Proposed]

84.62 14.93 1.27 69.50

MC Faster R-CNN

[Proposed]

81.25 18.63 1.89 70.74

HOG [30] 66.38 32.70 7.03 74.83

ACF [41] 88.85 9.83 1.09 91.30

LDCF [44] 89.61 9.09 1.11 90.72

63

Figure 4.2. Comparison on Video 1 (PETS2009 S2L1 View 1) showing the AP for different

pedestrian detectors using an IoU threshold of 0.5 to determine true positive

4.2.3 Video 2 Testing Results

Similar to the first video, the second video used to test the proposed algorithms is

taken from the publicly available PETS2009 dataset. The video sequence is the S3_MF_12-

34 view 2 which contains a low density crowd with variability in occlusions. The original

video resolution is 768×576 where it is processed at the resized resolution 960×720.

Figure 4.3 depicts the results of detecting the pedestrians using the three different

algorithms: Faster R-CNN, MM Faster R-CNN, and MC Faster R-CNN. The green

bounding boxes represent the detections of the algorithms, the red bounding boxes

corresponds to discarded detections through motion correction, and blue rectangular

regions represents motion detected regions.

64

Frame #13

Frame #31

Frame #65

Frame #87

(a) (b) (c)

Figure 4.3. Video 2 detection samples using (a) Faster R-CNN pedestrian detector, (b) MM

Faster R-CNN pedestrian detector, and (c) MC Faster R-CNN pedestrian detector

65

From the figure, frame #13 and frame #31 clearly demonstrate two examples of

how the integrated motion information improved the detection in the two proposed

approaches. However, frame #65 demonstrates an example where the MM Faster R-CNN

detections has been affected. One of the pedestrians that is detected by the Faster R-CNN

and MC Faster R-CNN detectors has not been detected. Additionally, the MM Faster R-

CNN was able to correct one false detection in this frame. In contrast, frame #87 illustrates

an example where the MM Faster R-CNN outperforms the Faster R-CNN and the MC

Faster R-CNN detectors.

Table 4.3 summarizes the evaluation metrics for the proposed algorithms and three

algorithms from the literature. The AP metric reported in the table has been extracted from

the precision/recall curves plotted in Figure 4.2.

Table 4.3 Comparison on Video 2 (PETS2009 S3MF View 2) Showing the Precision,

Error Rates and AP for Different Pedestrian Detectors

Pedestrian Detectors Precision [%] MRE [%] MSE AP [%]

Faster R-CNN [Proposed] 20.00 61.64 14.44 46.49

MM Faster R-CNN

[Proposed]

50.00 27.22 1.31 49.76

MC Faster R-CNN

[Proposed]

50.00 26.99 1.12 49.17

HOG [30] 20.00 59.59 18.60 65.39

ACF [41] 66.67 12.14 0.81 89.90

LDCF [44] 60.00 10.87 0.85 85.60

66

Figure 4.4. Comparison on Video 2 (PETS2009 S3MF View 2) showing the AP for

different pedestrian detectors using an IoU threshold of 0.5 to determine true positive

 Discussion of Results

The reported results for videos 1 and 2 in Table 4.2 and Table 4.3 clearly

demonstrates that the motion saliency integration to the Faster R-CNN pedestrian detector

improved the ability of the detector to identify false detections. Furthermore, this

integration did not affect the ability of the Faster R-CNN detector to detect pedestrian as

reflected by the values of the AP. On the contrary, the AP values has been improved slightly

due to the reduction in the number of false positives.

For the MM Faster R-CNN, the MRE has been reduced by approximately 10% and

34% for the first and second videos, respectively. Meanwhile, the precision of the detector

has been increased from 74% to 84% and from 20% to 50% demonstrating further

67

improvements for video 1 and 2, respectively. This shows that MM Faster R-CNN is now

detecting more true positive detections out of the total number of detections; which means

the number of false detections has been reduced since the AP values was close to the

original detector’s AP.

Similarly, the MC Faster R-CNN detector demonstrated similar performance where

the MRE has been reduced by approximately 6% and 35% for the first and second videos,

respectively. In this case, the precision and the AP on the two videos has been improved

emphasizing on the fact that the MC Faster R-CNN detector results have been improved

when compared with the original Faster R-CNN detector.

Therefore, integrating the motion information with the Faster R-CNN detector

either before or after detecting the pedestrians using the Faster R-CNN detector, improves

the ability of the network to reduce false positives. However, the only drawback of this

approach is the increase in the processing time due to the motion information extraction.

Yet, implementing such an algorithm affects the speed of the detector slightly as the motion

integration in this case increased the processing time by less than 20 ms. Therefore, it is

recommended to integrate a CNN based pedestrian detector with motion flow algorithm to

enhance the performance since the processing time of the network is larger than the motion

flow algorithm.

By comparing the proposed motion integrated pedestrian detectors with other

detectors from the literature, it is noted that the main difference is related to the AP

reported. The main reason for the AP of the Faster R-CNN, MM Faster R-CNN, and MC

Faster R-CNN detectors to be the lowest is due to the selection of AlexNet. AlexNet is a

shallow network which consists of 5 convolutional layers and 3 FC layers. When the

68

network is used in a Faster R-CNN architecture, it resulted in having anchor boxes of larger

size when compared to the pedestrians in the surveillance videos used in testing. As a result,

this led to the following two cases: First, the Faster R-CNN detector would be detecting

the pedestrians with large bounding boxes that have low IoU with ground truth bounding

boxes. Second, the network would miss the detection of the pedestrians in case the size of

the anchors is way larger than the size of the pedestrians. This could be verified by varying

the IoU threshold to determine true positive detections and computing the AP at these

different thresholds. In case the AP increased slightly, then the Faster R-CNN detector is

not detecting the pedestrians; however, if the increase in AP was notable, then the Faster

R-CNN is detecting pedestrians with large bounding boxes. Table 4.4 reports the AP of

different algorithms while changing the IoU threshold to determine true positive detections.

As demonstrated in the table, the AP of the three detectors that depends on the

Faster R-CNN proposed in this work has been increased by approximately 5% - 10% when

the IoU threshold is reduced by 5% every time for the two videos. Thus, this demonstrates

that the size of the bounding boxes of the detections is quite large and when the AP is

computed at an IoU threshold of 0.5, many of these detections are considered as false

detections. Figure 4.5 shows examples of large bounding boxes while detecting the

pedestrians. Similarly, the HOG features based pedestrian detector AP increases when the

threshold of true positive detections decreases which leads to a similar conclusion.

However, this is not the case for the ACF and LDCF detectors where their AP increased

by approximately 1% for every reduction by 5% in the threshold. In fact, this is anticipated

since both detectors depend on pyramid of features which causes their results to be more

accurate when compared with the rest of the detectors.

69

Table 4.4 AP of the Different Algorithms While Varying the IoU Threshold to Determine

True Positive Detections

Pedestrian

Detectors

AP [%] on Video 1 (PETS2009 S2L1

View 1)

AP [%] on Video 2 (PETS2009

S3MF View 2)

@IoU=0.5 @IoU=0.45 @IoU=0.40 @IoU=0.5 @IoU=0.45 @IoU=0.40

Faster R-CNN

[Proposed]

69.84 78.73 83.98 46.49 57.50 69.22

MM Faster R-CNN

[Proposed]

69.50 77.40 81.67 49.76 61.84 71.59

MC Faster R-CNN

[Proposed]

70.74 78.80 84.61 49.17 60.71 72.92

HOG [30] 74.83 88.19 88.29 65.39 78.29 83.65

ACF [41] 91.30 92.62 93.57 89.90 91.08 91.63

LDCF [44] 90.72 92.12 92.93 85.60 87.16 87.98

Figure 4.5. Examples of pedestrian detections using the proposed Faster R-CNN where the

size of the bounding boxes is larger than the pedestrians

70

Therefore, based on the reported results and design, the following summarizes the

constraints of the proposed motion saliency aided CNN pedestrian detectors: First, since

the detectors are utilizing a motion flow algorithm that is based on background subtraction,

the stationary camera became one of the constraints of the algorithm. Additionally, the

proposed detectors are designed to detect pedestrians of low density crowds. The

processing speed reported is slightly higher than 8 FPS; which means that the proposed

detectors process videos in real time in case their frame rate dropped to lower than 8 FPS

such as the PETS 2009 dataset scenarios used for testing.

71

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

 Conclusions

Pedestrian and crowd analysis consists of three main stages: crowd modelling,

crowd monitoring and crowd management. Each of these stages tackles specific properties

of the crowd to ensure its safety and security. The scope of this work is related to the crowd

modelling stage where it concentrates on pedestrian detection of low density crowds. This

work proposes to integrate the motion saliency with the CNN based pedestrian detector to

enhance the performance of the pedestrian detector used in surveillance applications

through reducing the false detections.

To develop the proposed model, background subtraction based on GMM has been

implemented as a motion flow algorithm. It was selected due to its simplicity, reliable

performance and being widely used in the literature in similar applications. Faster R-CNN

has been selected as a CNN pedestrian detector since it resembles the state-of-the-are

solution for object detection problems. Faster R-CNN pedestrian detector has been

implemented based on a pretrained AlexNet CNN on IMAGENET dataset.

The integration of the motion information was performed at two different stages

resulting in two proposed detectors: MM Faster R-CNN and MC Faster R-CNN. MM

Faster R-CNN detector masks the images based on the extracted motion information and

then process the masked image using the Faster R-CNN detector. MC Faster R-CNN

detector processes the image using the Faster R-CNN detector and then utilizes the motion

information to correct the detections. Two videos from the PETS2009 dataset were used to

72

test the two proposed motion integrated pedestrian detectors.

Results have demonstrated that the number of false positive detections have been

reduced drastically. For MM Faster R-CNN, the MRE is reduced by 10% and 34% for the

two videos while the precision has been increased to reach 84% and 50% compared to 74%

and 20% for the Faster R-CNN detector without motion integration. MM Faster R-CNN

maintained the AP of the Faster R-CNN detector without motion integration for the first

video while it was increased by 3% for the second video. Similar performance was

observed for MC Faster R-CNN detector where the MRE has been reduced by 6% and 35%

for the first and second videos, respectively. The precision has been increased to reach 81%

and 50% where the AP was improved by 1% and 3% for the first and second videos,

respectively. The integration of the motion flow algorithm decreased the processing speed

of the two proposed detectors reaching ~8 FPS instead of ~9 FPS for the original Faster R-

CNN detector when executed on Nvidia GTX 1050 GPU.

 Future Work

The research results of this thesis show a potential in improving the CNN pedestrian

detector performance through integrating motion saliency. The use of a deeper network

architecture instead of AlexNet would further improve the performance and allowing for

smaller anchor boxes. Implementing a deeper network on a deep learning framework

through using a high end GPU or cluster of GPUs is necessary to accurately perform crowd

modelling and to compete with current state-of-the-art results in this area. In addition, this

would allow the detector to better perform in higher density crowds.

73

The motion flow algorithm performance can be further improved through analyzing

the detected motion regions through joining nearby small regions or ignoring the small

regions if they were apart.

Extending the scope of the work to include people tracking, counting and density

estimation is the next phase of this work.

74

REFERENCES

[1] E. László, P. Szolgay, and Z. Nagy, "Analysis of a GPU based CNN

implementation," in 2012 13th International Workshop on Cellular Nanoscale

Networks and their Applications, 2012, pp. 1-5.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., "ImageNet

Large Scale Visual Recognition Challenge," International Journal of Computer

Vision, vol. 115, pp. 211-252, 2015/12/01 2015.

[3] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, "The

Pascal Visual Object Classes (VOC) Challenge," International Journal of

Computer Vision, vol. 88, pp. 303-338, June 01 2010.

[4] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, et al., "Large-scale image

classification: Fast feature extraction and SVM training," in CVPR 2011, 2011, pp.

1689-1696.

[5] J. Sanchez and F. Perronnin, "High-dimensional signature compression for large-

scale image classification," in CVPR 2011, 2011, pp. 1665-1672.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep

Convolutional Neural Networks," Advances in Neural Information Processing

Systems 25, pp. 1097-1105, 2012.

[7] M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional

Networks," in Computer Vision – ECCV 2014: 13th European Conference, Zurich,

Switzerland, September 6-12, 2014, Proceedings, Part I, D. Fleet, T. Pajdla, B.

Schiele, and T. Tuytelaars, Eds., ed Cham: Springer International Publishing, 2014,

pp. 818-833.

75

[8] C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, et al., "Going

deeper with convolutions," in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 1-9.

[9] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image

Recognition," in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 770-778.

[10] IMAGENET, "IMAGENET Large Scale Visual Recognition Challenge 2016

(ILSVRC2016)," 2016.

[11] J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," CoRR, vol.

abs/1709.01507, 2017.

[12] M. S. Zitouni, H. Bhaskar, J. Dias, and M. E. Al-Mualla, "Advances and trends in

visual crowd analysis: A systematic survey and evaluation of crowd modelling

techniques," Neurocomputing, vol. 186, pp. 139-159, 2016/04/19/ 2016.

[13] A. Dehghan and M. Shah, "Binary Quadratic Programing for Online Tracking of

Hundreds of People in Extremely Crowded Scenes," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. PP, pp. 1-1, 2017.

[14] S. Yao, S. Pan, T. Wang, C. Zheng, W. Shen, and Y. Chong, "A new pedestrian

detection method based on combined HOG and LSS features," Neurocomputing,

vol. 151, pp. 1006-1014, 2015/03/03/ 2015.

[15] V.-D. Hoang and K.-H. Jo, "Joint components based pedestrian detection in

crowded scenes using extended feature descriptors," Neurocomputing, vol. 188, pp.

139-150, 2016/05/05/ 2016.

76

[16] J. C. S. J. Junior, S. R. Musse, and C. R. Jung, "Crowd Analysis Using Computer

Vision Techniques," IEEE Signal Processing Magazine, vol. 27, pp. 66-77, 2010.

[17] S. Zhang, C. Bauckhage, and A. B. Cremers, "Informed Haar-Like Features

Improve Pedestrian Detection," in 2014 IEEE Conference on Computer Vision and

Pattern Recognition, 2014, pp. 947-954.

[18] J. Mao, T. Xiao, Y. Jiang, and Z. Cao, "What Can Help Pedestrian Detection?," in

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 6034-6043.

[19] C. Li, X. Wang, and W. Liu, "Neural features for pedestrian detection,"

Neurocomputing, vol. 238, pp. 420-432, 2017/05/17/ 2017.

[20] P. Dollar, C. Wojek, B. Schiele, and P. Perona, "Pedestrian Detection: An

Evaluation of the State of the Art," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, pp. 743-761, 2012.

[21] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition Letters, vol.

27, pp. 861-874, 2006/06/01/ 2006.

[22] M. S. Zitouni, J. Dias, M. Al-Mualla, and H. Bhaskar, "Hierarchical Crowd

Detection and Representation for Big Data Analytics in Visual Surveillance," in

2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp.

1827-1832.

[23] T. Bouwmans, C. Silva, C. Marghes, M. S. Zitouni, H. Bhaskar, and C. Frelicot,

"On the role and the importance of features for background modeling and

foreground detection," Computer Science Review, vol. 28, pp. 26-91, 2018/05/01/

2018.

77

[24] D. Lin, E. Grimson, and J. Fisher, "Modeling and estimating persistent motion with

geometric flows," in 2010 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2010, pp. 1-8.

[25] H. S. Parekh, D. G. Thakore, and U. K. Jaliya, "A Survey on Object Detection and

Tracking Methods," International Journal of Innovative Research in Computer and

Communication Engineering, vol. 2, 2014.

[26] S. Manchanda and S. Sharma, "Analysis of computer vision based techniques for

motion detection," in 2016 6th International Conference - Cloud System and Big

Data Engineering (Confluence), 2016, pp. 445-450.

[27] A. Agarwal, S. Gupta, and D. K. Singh, "Review of optical flow technique for

moving object detection," in 2016 2nd International Conference on Contemporary

Computing and Informatics (IC3I), 2016, pp. 409-413.

[28] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, "Review and

evaluation of commonly-implemented background subtraction algorithms," in

2008 19th International Conference on Pattern Recognition, 2008, pp. 1-4.

[29] S. Bauer, S. Köhler, K. Doll, and U. Brunsmann, "FPGA-GPU architecture for

kernel SVM pedestrian detection," in 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition - Workshops, 2010, pp. 61-68.

[30] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in

2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR'05), 2005, pp. 886-893 vol. 1.

[31] T. Zhou, J. Yang, A. Loza, H. Bhaskar, and M. Al-Mualla, "Crowd modeling

framework using fast head detection and shape-aware matching," 2015, p. 22.

78

[32] J. Ferryman and A. Shahrokni, "PETS2009: Dataset and challenge," in 2009

Twelfth IEEE International Workshop on Performance Evaluation of Tracking and

Surveillance, 2009, pp. 1-6.

[33] P. Dollar, Z. Tu, P. Perona, and S. Belongie, "Integral Channel Features,"

Proceedings of the British Machine Conference, pp. 91.1-91.11, 2009.

[34] P. Dollar, S. Belongie, and P. Perona., "The Fastest Pedestrian Detector in the

West," Proceedings of the British Machine Vision Conference, pp. 68.1--68.11,

2010.

[35] M. Rodriguez, I. Laptev, J. Sivic, and J. Y. Audibert, "Density-aware person

detection and tracking in crowds," in 2011 International Conference on Computer

Vision, 2011, pp. 2423-2430.

[36] V. Lempitsky and A. Zisserman, "Learning To Count Objects in Images," Advances

in Neural Information Processing Systems, pp. 1324--1332, 2010.

[37] J. Yan, Z. Lei, D. Yi, and S. Z. Li, "Multi-pedestrian detection in crowded scenes:

A global view," in 2012 IEEE Conference on Computer Vision and Pattern

Recognition, 2012, pp. 3124-3129.

[38] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, "Object

Detection with Discriminatively Trained Part-Based Models," IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 32, pp. 1627-1645, 2010.

[39] V. Rabaud and S. Belongie, "Counting Crowded Moving Objects," in 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR'06), 2006, pp. 705-711.

79

[40] W. Ge, R. T. Collins, and R. B. Ruback, "Vision-Based Analysis of Small Groups

in Pedestrian Crowds," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, pp. 1003-1016, 2012.

[41] P. Dollár, R. Appel, S. Belongie, and P. Perona, "Fast Feature Pyramids for Object

Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

36, pp. 1532-1545, 2014.

[42] C. Wojek, S. Walk, and B. Schiele, "Multi-cue onboard pedestrian detection," in

2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp.

794-801.

[43] A. Ess, B. Leibe, and L. V. Gool, "Depth and Appearance for Mobile Scene

Analysis," in 2007 IEEE 11th International Conference on Computer Vision, 2007,

pp. 1-8.

[44] W. Nam, P. Dollar, and J. H. Han, "Local Decorrelation for Improved Pedestrian

Detection," Advances in Neural Information Processing Systems, pp. 424-432,

2014.

[45] B. H. Menze, B. M. Kelm, D. N. Splitthoff, U. Koethe, and F. A. Hamprecht, "On

Oblique Random Forests," Berlin, Heidelberg, 2011, pp. 453-469.

[46] B. Hariharan, J. Malik, and D. Ramanan, "Discriminative Decorrelation for

Clustering and Classification," Berlin, Heidelberg, 2012, pp. 459-472.

[47] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A.

Zisserman, "The Pascal Visual Object Classes Challenge: A Retrospective,"

International Journal of Computer Vision, vol. 111, pp. 98-136, January 01 2015.

80

[48] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al.,

"Microsoft COCO: Common Objects in Context," Cham, 2014, pp. 740-755.

[49] G. Han, X. Zhang, and C. Li, "Revisiting Faster R-CNN: A Deeper Look at Region

Proposal Network," Cham, 2017, pp. 14-24.

[50] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation," in 2014 IEEE Conference

on Computer Vision and Pattern Recognition, 2014, pp. 580-587.

[51] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,

"Selective Search for Object Recognition," International Journal of Computer

Vision, vol. 104, pp. 154-171, September 01 2013.

[52] R. Girshick, "Fast R-CNN," in 2015 IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 1440-1448.

[53] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-

Scale Image Recognition," International Conference on Learning Representations

(ICLR), 2015.

[54] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, pp. 1137-1149, 2017.

[55] L. Zhang, L. Lin, X. Liang, and K. He, "Is Faster R-CNN Doing Well for Pedestrian

Detection?," in Computer Vision – ECCV 2016: 14th European Conference,

Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II, B. Leibe,

J. Matas, N. Sebe, and M. Welling, Eds., ed Cham: Springer International

Publishing, 2016, pp. 443-457.

81

[56] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab:

Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution,

and Fully Connected CRFs," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PP, pp. 1-1, 2017.

[57] Y. Tian, P. Luo, X. Wang, and X. Tang, "Pedestrian detection aided by deep

learning semantic tasks," in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 5079-5087.

[58] Z. Cai, M. Saberian, and N. Vasconcelos, "Learning Complexity-Aware Cascades

for Deep Pedestrian Detection," in 2015 IEEE International Conference on

Computer Vision (ICCV), 2015, pp. 3361-3369.

[59] J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: a statistical

view of boosting (With discussion and a rejoinder by the authors)," Ann. Statist.,

vol. 28, pp. 337-407, 2000/04 2000.

[60] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for autonomous driving? The

KITTI vision benchmark suite," in 2012 IEEE Conference on Computer Vision and

Pattern Recognition, 2012, pp. 3354-3361.

[61] S. Xie and Z. Tu, "Holistically-Nested Edge Detection," in 2015 IEEE International

Conference on Computer Vision (ICCV), 2015, pp. 1395-1403.

[62] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, et al.,

"The Cityscapes Dataset for Semantic Urban Scene Understanding," in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3213-

3223.

82

[63] G. Brazil, X. Yin, and X. Liu, "Illuminating Pedestrians via Simultaneous Detection

and Segmentation," in 2017 IEEE International Conference on Computer Vision

(ICCV), 2017, pp. 4960-4969.

[64] Dell. (Accessed on October 2017). XPS 15. Available:

www.dell.com/en-us/shop/dell-laptops/xps-15/spd/xps-15-9560-laptop

[65] Nvidia. (Accessed on April 2018). GeForce Laptops. Available:

https://www.nvidia.com/en-us/geforce/products/10series/laptops/

[66] P. KaewTraKulPong and R. Bowden, "An Improved Adaptive Background

Mixture Model for Real-time Tracking with Shadow Detection," in Video-Based

Surveillance Systems: Computer Vision and Distributed Processing, P. Remagnino,

G. A. Jones, N. Paragios, and C. S. Regazzoni, Eds., ed Boston, MA: Springer US,

2002, pp. 135-144.

[67] MathWorks. (2017, Accessed on February 2018).

trainFasterRCNNObjectDetector. Available:

https://www.mathworks.com/help/vision/ref/trainfasterrcnnobjectdetector.html

[68] MathWorks. (Accessed on February 2018). Create, train, and simulate shallow and

deep learning neural networks. Available:

https://www.mathworks.com/products/neural-network.html

[69] MathWorks. (Accessed on February 2018). Perform parallel computations on

multicore computers, GPUs, and computer clusters. Available:

https://www.mathworks.com/products/parallel-computing.html

http://www.nvidia.com/en-us/geforce/products/10series/laptops/
http://www.mathworks.com/help/vision/ref/trainfasterrcnnobjectdetector.html
http://www.mathworks.com/products/neural-network.html
http://www.mathworks.com/products/parallel-computing.html

83

[70] eGPU.io. (Accessed on April 2018). PCI Express vs. Thunderbolt - How much

performance drop of your GPU you will have if you put it in eGPU. Available:

https://egpu.io/build-guides/#perf

[71] P. Dollar, C. Wojek, B. Schiele, and, and P. Perona. (2009, Accessed on November

2017). Caltech Pedestrian Detection Benchmark. Available:

www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

[72] MathWorks. (2012, Accessed on March 2018). Detect upright people using HOG

features. Available:

https://www.mathworks.com/help/vision/ref/vision.peopledetector-system-

object.html

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.mathworks.com/help/vision/ref/vision.peopledetector-system-object.html
http://www.mathworks.com/help/vision/ref/vision.peopledetector-system-object.html

