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ABSTRACT 

HANNUN, JAMAL, A., Masters : June : [2019], 

Masters of Science in Civil Engineering 

Title: Impact of Fines on Gas Relative Permeability through Sand using Pore Networks 

from 3D Synchrotron Micro-Computed Tomography 

Supervisor ofThesis: Dr. Riyadh, I, Al-Raoush. 

Fines migration and transport in sand systems have huge influence on vital 

applications, including the storage and recovery of water and energy resources from the 

subsurface. Multi-phase flow of gas through saturated unconsolidated media takes 

place between the pores of sediments, physical phenomenon at the pore-scale control 

the flow properties. Given a sandy sediment media, gas permeability is highly affected 

by fine particles due to migration, clogging and bridging reducing gas flow or causing 

sand particles to displace creating fractures. There is a knowledge gap of fines effects 

on gas production from sandy sediments, especially at the pore-scale. Therefore, there 

is a need to model and quantify effects of fines in multi-phase flow using pore networks 

to better understand gas recovery systems. 

Three-dimensional, synchrotron micro-computed tomography images of sand 

sediments were obtained at Argonne National Laboratory at a resolution of 3.89 micron 

per voxel. Kaolinite and Montmorillonite fine particles were added in varied 

concentrations in six soil specimens, each system was scanned at four stages with varied 

saturations of brine and CO2, resulting in 20 systems. Micro-computed tomography 

images were processed for 3D visualization, quantification and pore network modeling. 

Pore Network Models were generated, and relative permeability properties were then 
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computed for each system. 

Findings revealed that fines accumulate at sand-brine and brine-gas interfaces. 

As fines concentration increased, gas percolation decreased. Further increase in fines 

concentrations resulted in blocking local gas flow causing pressure variations enough 

to create fractures that allows gas to escape and permeability to increase back. Pore 

Networks and Computer-Based Two-Phase Flow Simulations can effectively be used 

to characterize flow in porous media. In unconsolidated media the pore space geometry 

will change due to sand grains movements. At high concentrations, different fines type 

produces altered gas flow regimes, Kaolinite resulted in fractures while 

montmorillonite resulted in detached gas ganglia. Generally, increasing fines reduces 

gas percolation and further injection of gas reduced permeability. The finds herein are 

critical in understanding the impact of fines migration during gas flow in sand, they can 

be applied to characterizing and predicting two phase properties of unconsolidated 

sediments. 
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CHAPTER 1. INTRODUCTION 

1.1. Overview of Unconsolidated Porous Media 

Unconsolidated porous media is any sediment in which the solids are packed 

loosely. Sand and sandstones are considered as porous media that is unconsolidated 

with high porosity and permeability, thus it has the ability to store fluids and pass them 

efficiently. Unconsolidated sand is considered a good reservoir sediment, such 

reservoirs are common, and usually have a great potential in storing and passing vital 

substances including water, oil and gas. It is important for civilized societies to be able 

to recover such reserves from water aquifers or oil and gas reservoirs, it is also critical 

to understand the flow phenomenon of these valuable materials as they percolate 

through deep earth beds. In unconsolidated pores media including sand, the fluids 

whether gases or liquids, flow between the solids in the void space (pore space) as seen 

in figure 1.1.1 (Yu and Cheng, 2002), the connectivity of the pore space is of a huge 

significance to the permeability of the sediment, also the geometry of the pore (the 

small voids) and their throats (the connecting bodies of pores) is a major point of control 

on the flow properties of sediments. Many approaches were developed to uncover the 

geometry of different unconsolidated porous media, the best of which is Micro-

Computed Tomography. This technology uncovers the details of the 3D space of soil 

at the microscopic scale.   

 

Figure 1.1.1: flow in porous media between the sand grains (Yu and Cheng, 2002)   
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1.2. Overview of Fine Migration and Two-Phase Flow 

Fines are small grains that are originated from the porous media in the 

subsurface or that are carried by fluids passing it. As they migrate, smaller fines flow 

through the pore’s throats, while bigger ones get entrapped between the sediments 

grains. This blockage alters the flow patterns of a specific media. It is of a special 

importance to predict such change in flow regimes. With the recent advances in science 

more work is carried on in this field with the aim of characterizing the fines effects on 

multi-phase flow of liquids and gases in unconsolidated porous media, especially sand. 

The geometry of voids in an unconsolidated pores media is considered the most 

complex issue when compared to other sediments. These complex geometries can be 

revealed from 3D X-Ray images. In order to characterize flow patterns and predict 

them, a number of spatial properties must be calculated. It is inefficient to carry such 

studies on complex geometrics, therefore it was shown that simplifying the pore space 

to simpler spheres and cylinders can result in accurate prediction of flow regimes in 

unconsolidated porous media. 

Two-phase flow experiments are conducted by displacing a fluid that is 

occupying the void space with another fluid that is being injected. As the fluids flow in 

and out of the sediment system, the relative permeability of each fluid is measured. 

Additionally when simulating such experiments using a pore network generated from a 

3D image, the two-phase flow simulation are proven to show similar results for the 

relative permeability and the capillary pressures of pores. This helps in studying and 

predicting the flow in unconsolidated porous media, which will improve the capabilities 

in predicting the flow properties of sediments. Figure 1.2 shows how that geometrical 

parameters can affect entrapment and flow of fluids in the void space (Lake, 1989).   
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Figure 1.2.1: two-phase flow altering wettability by pore geometry (Lake, 1989) 

 

 

1.3. Thesis Organization 

This thesis is organized as follows: raw data for fines impact on two-phase flow 

was acquired using a synchrotron facility, the images were filtered then segmented, and 

next pore networks were generated from the post-processed images. Computer 

simulations of two-phase flow experiments were conducted using the generated pore 

networks, the result and the most important conclusions were summarized at the end.   

 

1.4. Objectives 

• Obtain 3D images to visualize the impact of fines on gas flow in 3D. 

• Visually identify the effect of different fines on the movement of sand as the 

CO2 gas is injected with time. 

• Quantifying the fines and gas flow induced change on pore space. 

• Characterizing the change in permeability due to fines and gas injection during 

sand movement. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

2.1. Background 

Migration of fine particles in a fluid is affecting wide range of activities. As 

fluids move through porous media in the subsurface they tend to carry or mobilize solid 

particles due to fluid drag. These particles can be derived in the subsurface from rock 

formations (Gruesbeck & Collins, 1982) or they can be transported from a source. Fine 

particles can be introduced to the porous media naturally or synthetically; they can be 

natural clays, quartz, minerals or contaminants as illustrated in Figure 2.1.1 (a) by 

(Muecke, 1979), in (b) montmorillonite and kaolinite are showed to be present in 

significant portions.  ISO 14688-1:2002 classified fine particles as clays and silts with 

dimensions less than 2 μm and 63 μm respectively. (Hasan et al., 2017) defined the 

process of size exclusion as when fines bigger than the pore space are transported in 

the pores media and get entrapped, (Sakthivadivel, 1966) proposed that this process 

results in deposits that are responsible on plugging the pore throats (openings that 

connects the pore space), which reduces the ability of the passage in the subsurface pore 

space, this ultimately reduces permeability of the sediment. 

  

(a)  

Figure 2.1.1: proportion of fines from real subsurface samples (Muecke, 1979). 

(b)  
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For example, in the petroleum industry, transport of fines in natural rocks is 

considered as one of the main challenges of production. As fluids are extracted or 

injected, fines from rock formations are migrated inducing bridging and blocking of the 

passages in the pore space, this may cause formation damage. The formation damage 

can reduce the productivity and is responsible of loses of $140 billion/year according 

to (Byrne, 2012). The reduction of porous media permeability and porosity due to solids 

invading the pores of sediments are considered from the main issue in production as 

outlined by (Bennion & Thomas, 1994; Bennion et al., 1999). These phenomenon are 

dependent on colloids physics at the pore scale, a micromodels study by (Jung et al., 

2018a) concluded in Figure 2.1.2, to represent the previous studies of ( Khilar & Fogler, 

1987; Bigno te al., 1994;  Khilar& Fogler, 1998; Oyeneyin et al., 1995); the fine 

migrations, bridging and clogging are linked to two important geometrical parameters; 

size of grain(host) to fine particle (D/d) and throat to fine particle size( o/d).  

  

Figure 2.1.2: critical size of gains, throats and fines (Jung et al., 2018a) 
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These conclusions were reached through utilizing micro-models inspected using 

microscopes. That was a great leap in characterizing such phenomenon. However there 

is an increasing need to understand fines influence beyond two dimensions. Those 

three-dimensional studies are in need to represent the real void space of sediments. 

Micro-computed tomography (μCT) is an effective tool to inspect sediments samples 

at microscopic level in 3D.  

Previously, access to advanced μCT for sediments study applications was 

limited, nowadays there is an ongoing improvement in technology that allow such 

studies. Utilizing high brilliance X-Ray sources is considered as the most advance 

approach in studying sediments samples, as they are capable of penetrating thick sample 

and uncovering the spatial details in a level exponentially better than other X-Ray 

sources such as X-Ray tubes, lasers and cyclotrons. Table 2.1.1 shows a selection of 

Synchrotron facilities that provide access to high brilliance X-Ray which is used to 

reconstruct the samples volume at microscopic level, an advantage over Scanning 

electron microscope which cannot penetrate the sample. 
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Table 2.1.1: A Selection of Synchrotron Facilities Around The World, APS was used 

for The Experiments in this Work 

Facility name Location Country 

Energy 

(GeV) 

Circumference 

(m) 

Commissioned 

for synchrotron 

radiation studies 

SPring-8 RIKEN  Japan 8 1,436 1997 

Advanced Photon 

Source (APS) 

Argonne 

National 

Laboratory 

US 7.0 1,104 1995 

PETRA III DESY Germany 6.0 2,304 2009 

European Synchrotron 

Radiation 

Facility(ESRF) 

Grenoble  France 6 844 1992 

Shanghai Synchrotron 

Radiation 

Facility(SSRF) 

Shanghai China 3.5 432 2007 

Australian Synchrotron Melbourne Australia 3 216 2006 

Diamond Light Source Oxfordshire UK 3 561.6 2006 

Synchrotron-Light for 

Experimental Science 

and Applications in the 

Middle 

East (SESAME) 

Al Balqa Jordan 2.5 133 2016 

 

  

https://en.wikipedia.org/wiki/SPring-8
https://en.wikipedia.org/wiki/RIKEN
https://en.wikipedia.org/wiki/Advanced_Photon_Source
https://en.wikipedia.org/wiki/Advanced_Photon_Source
https://en.wikipedia.org/wiki/Argonne_National_Laboratory
https://en.wikipedia.org/wiki/Argonne_National_Laboratory
https://en.wikipedia.org/wiki/Argonne_National_Laboratory
https://en.wikipedia.org/wiki/DESY#PETRA_III
https://en.wikipedia.org/wiki/DESY
https://en.wikipedia.org/wiki/European_Synchrotron_Radiation_Facility
https://en.wikipedia.org/wiki/European_Synchrotron_Radiation_Facility
https://en.wikipedia.org/wiki/European_Synchrotron_Radiation_Facility
https://en.wikipedia.org/wiki/Grenoble
https://en.wikipedia.org/wiki/Shanghai_Synchrotron_Radiation_Facility
https://en.wikipedia.org/wiki/Shanghai_Synchrotron_Radiation_Facility
https://en.wikipedia.org/wiki/Shanghai_Synchrotron_Radiation_Facility
https://en.wikipedia.org/wiki/Australian_Synchrotron
https://en.wikipedia.org/wiki/Melbourne
https://en.wikipedia.org/wiki/Diamond_Light_Source
https://en.wikipedia.org/wiki/Oxfordshire
https://en.wikipedia.org/wiki/Synchrotron-Light_for_Experimental_Science_and_Applications_in_the_Middle_East
https://en.wikipedia.org/wiki/Synchrotron-Light_for_Experimental_Science_and_Applications_in_the_Middle_East
https://en.wikipedia.org/wiki/Synchrotron-Light_for_Experimental_Science_and_Applications_in_the_Middle_East
https://en.wikipedia.org/wiki/Synchrotron-Light_for_Experimental_Science_and_Applications_in_the_Middle_East
https://en.wikipedia.org/wiki/Synchrotron-Light_for_Experimental_Science_and_Applications_in_the_Middle_East
https://en.wikipedia.org/wiki/Balqa_Governorate
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2.2. Studies in the Literature 

Two-phase fluid flow takes place in the voids between the sand grains. These 

spaces are usually in the microscopic scale and flow is affected by properties of fluids such 

as the viscosity and interfacial tension. Another factor that impact the flow in sand 

sediment is the presence of fine particles that can clog or bridge throats, thus blocking the 

flow. In order to understand and simulate such complex multi-phase flow behaviors, 

researchers developed different approaches each with strengths and compromises. Among 

these is pore networks approach which have the advantage of lower computational cost 

compared to other methods at enough representative elementary volume (REV) samples 

to represent reservoir size, which makes it the major link between pore and reservoir scale 

simulations (Xiong, Baychev, & Jivkov, 2016).   

Gas production from subsurface reservoirs requires the consideration of both pore-

scale and reservoir-scale properties. Studies on two phase flow of gas and brine using pore 

network models had started in the mid-20th century. (Fatt, 1956) proposed the network of 

tubes method to simplify the representation of porous media, while (Gruesbeck & Collins, 

1982)converted the porous media to parallel plugging and non-plugging pathways. This 

model was able to represent the effect of flow of fines on the system and showed drop in 

permeability near wellbore regions. Pore-scale networks are constructed to simplify the 

complex geometry, while saving computational time compared to particle passed methods 

like lattes Boltzmann, in exchange of compensable accuracy differences. (Maroudas & 

Eisenklam, 1965a, 1965b) derived from Kozeny equation a theoretical relation of pressure 

drops to fine concentration in pores. (Jerauld et al., 1984a, 1984b) used Monte Carlo 

simulation to show that using spherical pore network yield similar connectivity and 

accessible volume fraction to using 3d Veroni network to represent the pore space as 3d 

planes. This approach is not common as micro-scale flow depends on interfacial radius 
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and interfacial fluid body. Therefore, it is better represented by using the inscribed radius. 

(Sahimi et al., 1990) showed that pore network is sensitive to change of fines concentration 

as the presence of fine changes the void space. (Imdakm & Sahimi, 1991) Developed 

Monte Carlo computer simulation model to study fines migration using 3d pore network 

models. In this model, the path of fines was traced as it flowed in the pore network. 

Percolation threshold is represented as the minimum fraction of open pores at which 

medium connectivity is lost due to fines accumulation in the pores. (Bigno et al., 1994) 

identified five pore blocking mechanisms due to fine particle and linked them to 

production drop models for flow prediction. The main shortcoming of previous works is 

that they do not give priority for spatial properties of the pore space when studying the 

pore networks, rather statistical methods were used from 3D reconstruction. Although 

(Hilfer, 1991) used local porosity as a descriptor to increase the accuracy of statistical 

method, such approach does not properly reflect the pore geometry. Later, (Bryant et al.,  

1993a) used a grain passed approach, to generate from a pack of spheres, a pore network 

by expanding spheres in the pores until they overlap. Although the method resulted in 

more accurate pore networks compared to previous work, the limitation was that it can be 

only applied on spheres of the same size. (Bakke & Øren, 1997; Bakke & Øren, 2002) 

overcame this issue, by successfully using μCT images to produce pore network that are 

representative of sand and sandstone; they also were able to generate two-phase flow 

simulations results that were representative of the actual experiments.  

c linked micro computed tomography images to flooding experiments of fines 

retention in glass beads, utilizing pore networks and water flooding experiments to 

quantify the impact of fines and predict permeability. More recently (Han et al., 2018) 

used CT scans at 107 μm resolution to study fines migration due to depressurizing hydrates 

in sandy sediments.  
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Given that fluids are controlled by transport phenomenon at pore-scale, there is a 

shortage in literature of studies of fines impact at 3D microscale in sand especially with 

gas flow (Two-Phase Flow). This work arguably for the first time, study the effect of 

different fines types and contents on real sand packs imaged using μCT from synchrotron 

radiation, imaging the gas flow as it progresses through sediments. High brilliance 

synchrotron X-ray micro-computed tomography was used allowing fast reconstruction of 

the spatial information which is an advancement over other scanning methods. This 

technique was used to image live experiments of CO2 gas flow in unconsolidated fully 

saturated sand columns with different fine particles content and types (Jarrar et al., 2018). 

This work will be useful in many areas and applications, including but not limited to 

production of conventional and unconventional fossil fuels, filtration, contaminant 

transport, and underground water storage.  
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CHAPTER 3. METHODOLOGY 

3.1 Experimental Setup 

The experiment consists of six small acrylic columns packed with a saturated 

mixture of sand and fine particles. Two different types of fines were used, hydrophobic 

(kaolinite) and hydrophilic (montmorillonite). At the start, the columns are fully 

saturated with brine, then CO2 gas is injected to replace the brine to cause a flow that 

induces fines migration (Jarrar et al., 2018; Jarrar et al., 2019). 

The design aims to study the behavior of gas flow through unconsolidated 

porous media of sand; to understand the impact of different types and concentrations of 

fine particles on the pore morphology and how that will affect the two-phase flow of 

gas and brine in a saturated medium. Methane hydrates are commonly found in 

sediments beds that are primarily formed of loose sand. These sediments are in oceanic 

environments that are fully saturated under the deep sea (Hyodo et al., 2014). In a 

typical gas well, the concentration of fines in the sediments increases radially with the 

flow direction toward the well (Yamamoto et al., 2014). In order to replicate such 

conditions, sand was mixed with fines, then the loose dry sand-fines mixture was 

packed in deposition layers in the acrylic tubes. During packing the brine was added 

gradually to replicate a fully saturated marine environment.  

 

3.1.1 Sand and Fine Particles (Kaolinite/ Montmorillonite) 

The properties and types of sand and fines are selected to reflect the sediments 

found in similar environments where methane hydrates were discovered in (Boswell et 

al., 2012; Cook & Malinverno, 2013; Dai et al., 2004; Mrozewski et al., 2011). The 

selected sand is F75 Ottawa silica sand. A fraction of the grains size was selected by 

using US sieves #70 and #60, resulting in grains dimensions between 250 micrometers 

and 210 micrometers respectively. The sand was sourced from US Silica Company, 
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with a specific gravity of solids (Gs) of 2.65. Two types of fine particles were used, 

hydrophobic and hydrophilic. This allows the study of the different flow phenomena 

caused by migration due to gas flow of different fines. Kaolinite fine particles are more 

hydrophobic compared to the montmorillonite fine particles which are considered 

hydrophilic. The used kaolinite fine particles are commercially named Dixie Clay 

Kaolin and they were sourced from the Vanderbilt Minerals Company, TN, USA. The 

average fine particle size is 0.6 μm while the specific gravity of solids (Gs) is 2.62, 

which is very close to that of sand compared to the rest of the system.  

 

3.1.2 Mixture Ratio 

In realistic reservoirs conditions, fine particles are present in a mixture with the 

existing sediments. To simulate this condition, the silica sand is mixed with fines before 

placing it in the test columns, fine particles are added as a percentage of the sand weight, 

and six different sand fines mixtures were prepared. In Table 3.1.1, each type of fine is 

in the same row with 3 different fines mixtures, the ratios are increased incrementally 

for both kaolinite and montmorillonite. 

 

Table 3.1.1: Types and Quantity of Fines Added to Columns as Ratio of Sand Weight 

Fines Type Percentage of Sand Weight 

Kaolinites 2% 4% 6% 

Montmorillonites 2% 3% 5% 
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In addition to replicating different fine concentrations, the mixture must also 

represent a sand dominant sediment in its behavior. In this setup the mixture proportions 

must not recreate a clay dominant sediments with a relative high fraction of fine 

particles, as this will alter the behavior of sediments. In a clay dominant sediment with 

high fines fraction, the effective stress have a major impact on the sediments behavior. 

At low effective stress the sediments behave as clay dominant sediments, while at 

higher effective stress this behavior is altered due to consolidation of clay, resulting in 

a behavior similar to sand dominant sediment (Han et al., 2018.). The aim of this 

experiment is to simulate unconsolidated sand sediment were fine particles do not carry 

loads in the system. To do so Equation 3.1.2.1 is utilized; the equation uses the concept 

of (J. W. Jung et al., 2012), that the critical fine particles content in a sediment is reached 

when all the voids between the sand are filled with fines. The critical fines content (FC) 

is directly related to the ratio of mass of sand and mass of fine particles. Later an 

analysis on coarse sand mixture was carried out using gravimetric-volumetric analysis 

by (Park & Santamarina, 2017). This showed that the FC can be formulated as in 

Equation 3.1.2.1 below. 

 

𝐹𝐶 =  
𝑒𝑠

1+𝑒𝑠+𝑒𝑓
       Equation 3.1.2.1 

 

Where void ratio of sand is es and void ratio of fines is ef. The targeted porosity 

for this experiment was 40% to simulate loss packing of unconsolidated sand sediments 

in saturated marine environment. Void ratio es is the volume of void over the volume 

of sand, at 40% porosity es = 0.67, for this setup FC was estimated to be equal to 21% 

where ef is 1.5. Given that the highest fine particles concentration used in this 

experiment is 6% of kaolinite, the critical fines content can be estimated after 
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calculating the void ratio of fines ef, in order to compare ef with es the difference in 

specific gravity of solid is calculated, where 6% of fines in weight of sand is equivalent 

to 6.07% volume of sand, as the specific gravity of solids Gs for sand is 2.65 while Gs 

of fines is 2.62. Such difference is small that it can be neglected, those calculating FC 

at 6% kaolinite results in FC = 8.04%, which is far less than the estimated critical FC = 

21%; those due to the low fraction of fines it is assumed that the setup design will not 

result in fines that carry the loading. This means that when studying fines migration, 

the effective stress in these systems will have no to minimal effect, therefore the only 

confining stress that was applied is due to the self-weight of particles of the silica sand. 

 

3.1.3 Columns Size 

The size of the sample is one of the most important aspects in every fluid 

simulation experiment. The dimensions should be large enough to be a representative 

volume of whatever medium under the study, while it should be also small to the degree 

that it allows the study of flow phenomena at the microscale with the current laboratory 

capabilities. Given these assumptions, the fluid movement occurs at the pore-scale and 

is affected by the capillary forces, the sample dimensions are chosen to be 

representative for that scale. The internal size of the used acrylic cylindrical column 

cells is 9.52 mm in diameter and 50.80 mm in height (standard 3/8 in diameter by 2 in 

height cylinders).  

 

3.1.4 Packing  

The approach in which the sediments are placed into the column is of a special 

importance. The packing method of the sand fines mixture should be consistent for all 

the specimens and it must also reflect the way natural in which sand sediments would 

be packed in saturated environments. In nature, sand is formed by deposition of 
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sequential sediments beds on top of each other due to depositional and climatic 

conditions. To replicate this natural occurrence the sand-fine mixture is packed in five 

vertical layers in the cylindrical cells. Initially brine is added to the empty cell, the 

amount added is only enough to cover the first layer of sand-fine mixture, then the first 

fifth of the cylinder height is filled with the sediment’s mixture. Next more brine is 

added in an amount that is enough to cover the next layer and so forth until all the five 

equal sediments layers are packed. To finish packing, each column had two filters 

installed from the top and bottom sides. 

 

3.2 CO2 Injection 

Since the aim of the experiment is to study how different fines concentration 

will alter gas flow in a porous media of sand, gas must be precisely injected in a 

systematic manner in each cell to allow the comparison of the resulting different gas 

flow patterns. In order to capture the gas volume during the experiments run, the acrylic 

cylinders are placed vertically between two ports. 

The lower port is used to inject gas, a hosepipe connects the inlet of the bottom 

port to a pressure regulator, and this regulator is connected to a CO2 gas source. Carbon 

dioxide gas was selected for this experiment; because it is safe to handle in small 

volumes, and it relatively have similar fluids properties to air and natural gases found 

in subsurface reservoirs (Cao, Dai, & Jung, 2016); specifically, when compared to the 

properties of the other fluid in the system which is water-based brine. It is also of 

increasing interest for CO2 sequestration applications.  

The top port is connected by another hosepipe to a flow pump (DigiFlow) 

pressure-volume actuator. It is designed to pump water out of the sediments specimen 

column at a controlled steady rate. Both the upper and lower ports consist of perforated 

plates, glass beads and fine mesh filter. The perforated plates and the glass beads help 
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in the transition of the flow from the upper or lower port to the sediments in the 

cylindrical column by making the stream lines distributed in a parallel manner when 

entering then exiting the sediment system. The fine mesh filter prevents the fine 

particles from entering the flow pump or the pressure regulator.  

Each of the six different columns had four different saturation stages. Initially 

the columns are fully saturated with brine, then CO2 gas was injected through the 

regulator at a constant pressure of 27.6 kPa (4 psi), while the flow pump pulls out 

0.40ml of the brine solution. At the third stage, the DigiFlow pump pulls out a total of 

1.0 ml of the brine solution, while the CO2 is continuously injected at a constant 

pressure of 27.60kPa (4 psi). At the fourth stage, gas pressure was increased through 

the pressure regulator to reach 41.4 kPa (6 psi) without ejecting any additional volume 

of brine; the motive of increasing pressure without flowing out any brine is to observe 

the changes in the flow of gas internally between the sand grains. As the pressure 

increases the radius of curvature of the interfaces between gas and brine changes 

inducing altered permeability. (Mining, 1939). Table 3.2.1 show all the stages captured 

for this experiment, for the 2% montmorillonite column only stages 1 and 2 were 

captured while the 3r and 4th stages were skipped. This was done to take zoomed scans 

with higher resolution for another study. The total of the scanned soil systems is 22. In 

Figure 3.2.1 the effect of increased fines concentration can be observed, at 6% of 

kaolinite the fines clogged the throats, when the gas was injected, it caused enough 

pressure to mobilize the sand grains inducing a fracture. Gas steps injection are shown 

from the full saturated stage one to stage 4 from left to right where the fracture was first 

observed at (b) when the first volume of CO2 was injected.  
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Table 3.2.1: Injection Stages of Gas in Each Soil System for a Given Fines Content 

Fine Type Fines% Injected CO2 (ml) 

Kaolinite 

 0 0.4 1.5 1.5 

2     

4     

6     

Montmorillonite 

2     

3     

5     

CO2 Pressure (kPa gauge) 27.6 27.6 27.6 41.4 

 

 

 

3.3 Scanning  

The preparation and scanning of the soil samples was carried out at Argonne 

National Laboratory (ANL) Synchrotron, Beamline 13D of the Advanced Photon 

Source (APS), USA; it was used to acquire the X-Ray Synchrotron Micro-Computed 

Tomography (SMT) scans (Jarrar et al., 2018). Each of the 22 soil systems were 

(a) (d) (c) (b) 

Figure 3.2.1: top view slices of the obtained 3d images showing stage 1 to 4 from (a) 

to (d) and gas fracture for 6% kaolinite, gas is observed mobilizesing sand grains. 
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scanned four times, the scanned volume represents 11.24% of the total volume of the 

sample. The synchrotron source X-Ray radiation have the advantage of being able to 

control the beam energy level (Sokolov et al., 1966), this advantage was used  to take 

two scans for each region, one with high energy level and another with lower energy 

level. This was used to increase the contrast of the phases in the image; a special brine 

was utilized to get these results.  

 

3.3.1 Micro-Computed Tomography and Synchrotron Source Radiation  

In many fields, X-Ray imaging is a well proven examination technology that do 

not cause damage to the subject, since the first successful demonstration in 1895 

(Röntgen, 1896), many new emerging methodologies pushed the boundaries of this 

technique. For imaging applications that require non-destructive examination of 

samples at the micro-scale or smaller, X-Rays have the advantage of penetrating thick 

samples, something that Electron Microscopy (SEM) cannot do as it reflects of the 

surface (Goldstein et al., 2017). This ability allows imaging of full-sized core samples, 

where the shade of the X-ray can be captured. Another issue is the reconstruction of the 

X-ray shades from 3D scan of a sample. This was solved through inverse radon 

transform for back projections. The inverse of radon transforms allows reconstruction 

of 3D gray-scale intensity image from several X-Ray shades projections. These 

powerful techniques allow researchers to look inside of materials. (Ambrose, 1973; 

G.N, 1973; Perry & Bridges, 1973) were the first to successfully demonstrate a 3D 

reconstruction of human brain, and to characterize materials based on sensed X-Ray 

intensity using Hounsfield  number (or CT Number). A major challenge was the 

intensity of the X-Ray and the sensitivity of the detectors (were shades are casted). 

When the energy and intensity of the image is not high enough, very few photons will 
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pass through the sample to the detectors resulting in noisy low contrast images 

(electronics, 1961). This challenge required scientists to construct big powerful light 

source machines to produce high intensities X-Ray. The most successful of which is 

Synchrotrons (Blewett, 1988; Blewett, 1998). In this work, high brilliance Synchrotron 

source radiation is utilized to scan the samples and reconstruct 3D grayscale intensity 

images, showing with high accuracy the internal features of the columns. 

Electromagnetic accelerators that are laid in a ring shape were used to accelerate the 

particles and keep their speed up in the storage ring. Subatomic particles are accelerated 

in the synchrotron rings, resulting in X-Rays ejected in a direction tangent to the ring 

toward a beam line. In the beam line, the X-Ray penetrate the sample as it rotates, the 

X-Ray passes through the sample and the data are collected on the detector (Krane & 

Halliday, 1987; Whrele & Nielsen, 1988). For each sample the scan is done 4 times to 

capture the gas flow and its effect on the sand grains distribution. 

 

3.3.2 Period of Scan and Speed 

The scan of the sample is done by rotating it along its height and taking multiple 

projections as it rotates, 180 projections are taken for each scan, the scan period is 30 

minutes. In order to capture fluid and sand grains movement at this scanning speed, 

scans were achieved in a multi-step technique. The pump is operated to extract specific 

amount of water, therefore letting gas enters the system, then the image is taken at 

quasi-static conditions capturing the spatial details. This is done 4 times for each step 

of gas injection for each system as detailed in Table 3.2.1. 
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3.3.3 Field of View 

Although the full column dimensions can be captured in theory at lower 

resolution, the selected approach was to capture the middle of the columns for the 

following reasons: 

- Narrowing the field of view increases the image resolution, lowering the 

voxel size. This is especially beneficial when the goal is to binarize the 

image for fluid simulation at the pore scale. Higher resolution will provide 

details of the pore morphology in a refined way, and will limit the effect of 

the building blocks shape, which are cubic voxels especially on curved 

surfaces (Fernandez-Carreiras et al., 2005; Stampanoni et al., 2002; Tonner 

& Harp, 1988). 

- Horizontally when the regions near to the walls of the column are ignored, 

this will eliminate the effect of the boundary on the pore morphology and 

fluids movement, resulting in continues behaviors similar to the 

circumstances encountered in large aquifers (Alshibli et al., 2014). 

- The current capability at the testing facility in Beamline 13D in APS ANL, 

is to reconstruct a stack of 1920x1920x1200 voxels. Thus a suitable size 

that’s large enough but with a high resolution must be selected. 

Two stakes are vertically captured and merged resulting in image size of 

1920x1920x2356 voxels. Voxel size is 3.89 micrometers, meaning that the image size 

is 7.469 mm in diameter and 9.165 mm in height. This is captured out of original 

column dimensions of 9.520 mm and 50.200 mm for diameter and height respectively, 

which is equivalent to 11.24% of the total internal volume of the cylindrical acrylic 

column. In Figure 3.3.1, elevation projection is showing the dimensions of the image’s 

stakes in (a) while in (b) the measurement for the overlapping are drafted. 
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3.3.4 KI Brine for Enhanced Contrast  

For each of the 22 systems representing all the columns and the injection cases, 

two different images were captured using doping agent; one highlighting the gas body 

and the other one highlighting the morphology of the sand grains, this is achieved with 

the assumption that during the scan, the fluid and grains are static. This technique is 

effective in increasing the image contrast, which will result in better features detection 

when binarizing the image, and it will also limit the effect of noise in post processing. 

To do so, a salt is added to the deionized water to form the brine, the resulting mix 

would have a useful property which is when imaged at X-Ray with energy level higher 

Physical Dimensions and Location of Stacks: 

(a) (b) 

Figure 3.3.1: (a) elevation view of the cylindrical cells showing the location of the 

images,  (b) overlapping of the imaged stacks, (Zaher, 2019). 
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than a specific value (radiation edge) it will appear brighter in the image with higher 

intensity value (CT Number), while if the energy level of the X-Ray is below that edge 

it, will have water like intensity, hence the addition of the two images will result in 

enhanced contrast. For this experiment 2% of potassium Iodide (KI) (by weight of 

water), was dissolved in the water. Increasing the concentration of KI can lead to 

changes in water properties, the value used is well within the limits as other studies 

used higher concentrations with minimal effect (Andrew et al., 2014; Iglauer et al., 

2013). 

 

3.3.4.1 Energy levels of synchrotron  

One advantage of the synchrotron source radiation is the ability to adjust the  

X-Ray energy level with wide ranges that other X-Ray sources cannot produce (Brunke 

et al., 2008). APS can store beam energy up to 7.7 GeV (Whrele & Nielsen, 1988), this 

advantage is used to produce two energy levels; one above the potassium Iodine edge 

and the other below. At first X-ray is used with energy level of 33.069 keV which is 

below the edge of KI, two stakes are imaged. Then for the same system another 

tomography for the same two stakes with 33.269 keV X-Ray is taken. From inspecting 

the results, the KI amount of 2% by weight of water resulted in brine with good contrast 

when the images are combined by the addition of the gray-scale image’s CT number. 

Figure 3.3.2 shows the DigiFlow pump (pressure-volume actuator) and pressure 

gauge. Figure 3.3.3 shows the setup, the X-Ray radiation is directed toward the 

beamline and released to penetrate the sample on left. The sample is connected to the 

top port to extract water and the bottom port to inject CO2, through the green hosepipes, 

the sample is rotated around its height and the X-Ray is reflected by the mirror and its 

projection is casted on the camera sensor (Jarrar et al., 2018; Jarrar et al., 2019).  
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Figure 3.3.3:  experiment at beamline 13D at APS ANL. (Jarrar et al., 2018, 2019) 

X-Ray Source 

Top Port 

Bottom Port 

Mirror 

Camera 

Hosepipes 

Pressure Gauge 

Sample 

DigiFlow Pump 

Figure 3.3.2: DigiFlow pump and pressure gauge connected to sample 
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CHAPTER 4. ANALYSIS  

4.1 Image Reconstruction  

 The reconstruction is the process of using two-dimensional X-Ray 

projections for a sample taken at different angles. The intensities for each projection 

will reflect the sum of what the X-Ray beam passed through the sample at a given angle, 

brighter regions mean that more dense material was penetrated and vice versa. Using 

projections that represent the sample from different angles as it rotates, specifically 180 

projections; the three-dimensional volume of the sample can be reconstructed using 

reverse radon transform. Figure 4.1.1 shows an example of the reconstruction of a 

single slice from 180 projections. It is evident that the resulting reconstructed image 

can accurately describe the original sample, even with the resulting artifices. Using the 

same methodology, the scanned specimens are reconstructed slice by slice and 

combined to give 3D grey-scale intensity image.  

 

  

Figure 4.1.1: reconstrction of orginal image using 90 projection at 180o degrees 

 

All 180o Projections 

X-Ray at 90o 
Projection at 90o 

Reconstructed Image 

Original Image 
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4.2 Image Merging and Cropping 

As discussed in section 3.3, in order to scan a bigger, more representative 

volume of the cylindrical column, two stacks for each system were imaged. While 

imaging the stacks, their positions were designed with a specific overlap to ease the 

process of merging them in one image. As showed in figure 3.3.1 the second stack is 

always transformed by 4500 microns in the positive z direction (height). Sequentially 

each two stacks representing the same system are then merged. This is done for images 

with the high and low X-Ray energy levels resulting in 44 images for the 22 system 

(from originally 88 scans). The region overlapped is of a height of approximately 

168.microns, which is considered as proper height to note any problem (variation in 

topographies) when merging. All the images where merged flawlessly without any 

artifacts. Figure 4.2.1 show, the size of a single stack before merging on the left, while 

the final size after merging is displayed on the right.  

 

 

 

Figure 4.2.1: single stack of 1200 voxels height (left) while  merged stacks with 2356 

voxels height (right) 
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  After merging was complete, for each system the two images with X-Ray 

energy levels above and below KI edge were combined. This was done using scaler 

addition of the values or intensities of each voxel. Given that the images above KI edge 

have very dark gas phase (low CT Number), while the ones below KI edge have sand 

with brighter intensity relative to the reset of the image (higher CT Number), the 

resulting gray-scale image would have increased range for the values between the dark 

and bright voxels. This gives more contrast and helps with the later steps of analysis. 

All images were cropped to reduce beam hardening effect and produce the best 

consistent results. The cropped images size is 1080x1080 voxels which was originally 

1920x1920 voxels as seen in Figure 4.2.2. 

  

Figure 4.2.2: top view slices, before crop (on left), and after crop to eliminate beam 

hardening (on right) 
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4.3. Image Filtering  

The first step in image post-processing is to filter the raw data. The filtration 

allows enhancing the details of the image and corrects the artifacts or noise that might 

be induced from low exposures. The raw data in this work are three-dimensional 

intensity images reconstructed from multiple exposures of X-Ray images. This process 

of creating the image results in a group of artifacts that require filtering. Another issue 

is that each X-Ray exposure results in a projection with noise that need to be filtered. 

In order to obtain the best results, a group of filters and filter combinations were tried 

on multiple small samples, Table 4.3.1 shows the relative the strengths and weaknesses 

of the best filtering methods for the used data. Since the aim of filtering is to prepare 

the image for segmentation (binarization) through the selection of threshold values, the 

best filter must preserve the phase interfaces (edges) while blur or unify the intensity 

values inside the phases.  A combination of Anisotropic Filtering followed by Median 

filtering was found to yield the best results considering computation time, while the 

non-local mean required more computational time to yield similar results.  

 

Table 4.3.1: Relative Comparison Between Different Image Filters 

Filter 

Anisotropic 

Diffusion 

Median 

Non-

Local 

Mean  

Gaussian 

Curvature-

Driven 

Diffusion  

Computation Fast Fast Slow Average Average 

Edge 

Enhancement 

Effective Average Effective Poor Average 

White Noise  Effective Effective Effective Effective Average 

Black Noise  Effective Effective Poor Effective Average 



  

28 

 

4.4. Anisotropic Diffusion  

Anisotropic Diffusion is a non-linear space variant transformation. It is an 

image filter that uses a generalized diffusion process that utilizes the original image and 

a two-dimensional isotropic Gaussian filter. The filter is also known by its creators 

name, Perona–Malik diffusion (Malik & Perona, 1990; Perona & Malik, 1987). The 

filter works on reducing the noise in the image while preserving the contrast of the 

edges, thus conserving the features and details. The filter works as follows: it uses 

features from the original image scaler values on regions with high contrast (phases’ 

edges), while for the internal part of the phases (with low contrast), it generates 

convolutions of increasingly blurred scaler values and assign them to these regions with 

low contrast.  The result is an image with conserved edges and details while the noise 

inside of the phases is blurred. Hence the name is anisotropic diffusion, because the 

filtering is not done isotopically without considering the edges. 

The filter will continue smoothing until a given criteria is met, (Bernard et al., 

2011). In order for the algorithm to determine the new value of specific voxel, it 

compares the value of that voxels with its six neighboring voxels on the faces of the 

cube; if the difference between the new value and old value is more than the limit it 

stops. In this way, the edges are preserved while the internal parts of the image inside 

of the same material are blurred.  

The following formula Equation 4.4.1 controls the algorithm: 

 

𝑑𝐼𝑚𝑔𝑡

𝑑𝑡
=  ∇(𝐷( 𝐼𝑚𝑔𝑡, 𝑡)∇𝐼𝑡)             Equation 4.4.1 

 

Where: 𝐼𝑚𝑔𝑡 is the image at time; while D is the diffusion function. 
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The discretization with respect to time is represented in Equation 4.4.2: 

 

𝐼𝑚𝑔𝑡+1 = 𝐼𝑚𝑔𝑡 +
𝑑𝑡

𝑐
∑ (𝐷𝑚∇ 𝐼𝑚𝑔𝑡) ∙ 𝑛𝑚

6
𝑚=1    Equation 4.4.2 

 

Where: c is a voxel side; Dm is diffusion function for the m face of the voxel's; nm is the 

face m normal vector; 

 

Equation 4.4.3 represents the 3D spatial values as follows: 

 

 

𝐼𝑚𝑔𝑖,𝑗,𝑘
𝑡+1 =  𝐼𝑚𝑔𝑡(1 − 𝛾 ∑ 𝐺𝑚

6
𝑚=1 ) + 𝛾(𝐺1𝐼𝑚𝑔𝑖−1,𝑗,𝑘

𝑡 + 𝐺2𝐼𝑚𝑔𝑖+1,𝑗,𝑘
𝑡 +

𝐺3𝐼𝑚𝑔𝑖,𝑗−1,𝑘
𝑡 + 𝐺4𝐼𝑚𝑔𝑖,𝑗+1,𝑘

𝑡 + 𝐺5𝐼𝑚𝑔𝑖,𝑗,𝑘−1
𝑡 + 𝐺5𝐼𝑚𝑔𝑖,𝑗,𝑘+1

𝑡 )  Equation 4.4.3 

 

Where: 

𝐼𝑚𝑔𝑖,𝑗,𝑘
𝑡  is voxel value at (i,j,k) coordinates for time t; 

Gm = Dm/Do is a diffusion function with values between 0 and 1; 

𝛾 =  
𝑑𝑡 𝐷0

𝑐2  is time evolution and is fixed to 1/6 for system's stability; 

 

Noting that G is a function of the difference between present voxel and its neighbor’s 

m. G is defined as: 

𝐺(α) =  {
1, α ≤  β
0, α >  β

};  

where β is the diffusion stop threshold; 

Figure 4.4.1 shows an example of the filter stop condition; when the diffusion stop 

threshold is set to 5, if the difference between the present and the neighboring voxels is 

less than the limit, the values of the neighboring voxels will be used in the next cycle 

of the algorithm.  
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Figure 4.4.1: anistropic diffusion threshold stop criteria 

 

The anisotropic diffusion filter have the advantage of filtering both black and 

white noise voxels, this is something that powerful algorithms like non-local means do 

not do as it is only effective on white noise (Buades et al., 2005), additionally the filter 

can run on multiple graphic cards, exponentially decreasing the computer processing 

time. The threshold limit was set to 600 CT Number, while the filter was made to run 

for 5 iterations. 

 

4.5. Median Filter 

The median filter works by taking the scaler values of a specific voxel and its 

neighbors, it then reorders the values from small to large; finally it takes the median 

number and assigns it to that original voxel. The algorithm runs on three-dimensional 

basis taking the mean value for the 26 voxels neighboring the targeted voxel. 

Given the following example in Figure 4.5.1 for a 2D image with 8 neighboring 

voxels with values: 
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9 1 8 

2 7 3 

6 4 5 

 

Figure 4.5.1: pixels vaules of a 9 pixels 2D image, median filter changes 7 to 5 

 

When reordering the values as {1,2,3,4,5,6,7,8,9], the median value is 5 and it 

will replace the old value of 7 for this iteration. Figure 4.5.2 (c) shows how the median 

filter is effective in removing speckle impulsive noise (both seen as black and white 

dots) while not wiping away the edges.  

The filter reduces the contrast using a low pass filter that attenuates high 

frequencies, making each phase more distinct than the previous image (Bernstein, 1987; 

Brownrigg, 2002; Kundu et al., 2004; Pratt, 2013; Sun & Neuvo, 1994) This is evident 

in Figure 4.5.2 that shows the frequency relative to grayscale values for an image of 

5% montmorillonite, (a’) shows a raw image distribution, (b’) show the distribution 

after the anisotropic diffusion, while (c’) show the final image after passing through a 

median filter. Having these distinguished ranges of CT Numbers with higher 

frequencies for each phase will ease the process of segmentation as follows. The filter 

was executed with 3 iterations each considering the 26 neighboring voxels in the 3D 

space. Figure 4.5.2 (a) shows the raw image before and (b) after passing it to 3D 

Anisotropic Diffusion Filter, while (c) after the Median filter. In (c’) the highest peak 

represents sand, the middle is for brine and the shortest is for gas phase. 
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(a) 

(b) 

(c) 

(a’) 

(b’) 

(c’) 

Figure 4.5.2: filtration sample showing image and the corresponding histogram, (a) 

raw image, (b) after using anisotropic diffusion, (c) median filter 



  

33 

 

4.6. Segmentation 

Segmentation is the process of dividing certain regions of an image and 

assigning meaningful values to it. Many approaches to segmentation can be used from 

manual to automatic thresholding, also feature detection and artificial intelligent 

computer vision can be applied. To insure the best results, manual segmentation 

approach was utilized. The image greyscale range was manually segmented by entering 

CT Number values, the range with high CT Number values resulting from the images 

of below the KI edge was used to select sand, then the range with low CT Number 

resulting mainly from the scan above KI edge was used to select the gas, while the 

resulting unselected range was assigned to brine. Additionally, the fine particles were 

allocated by selecting a narrow range between brine and sand. After the selection, 

morphological operations were employed to ensure the best possible segmentation 

outcomes. As with rest of the analysis, Pergeos software and its algorithms from 

vsg3d.com Group was used. 

 

4.6.1. Gas Segmentation 

The interactive overly thresholding tool was used to select voxels with specific 

values for each system, for all the kaolinite columns, values less than -150 CT Number 

were binarized as gas, while values less than -200 CT Number for all the 

montmorillonite columns were segmented as the gas phase. The selected voxels were 

given the value of 1 representing the first phase. 

 

4.6.1.1.Gas Morphological Operations  

Knowing that there is an overlap in the CT Number range for each phase as 

shown in green in Figure 4.6.1, and that this experiment imaged immiscible fluid 

movement through sand; this means that the different phases do not mix. From visually 
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inspecting the images, small artifacts were present even after filtering and 

segmentation, something common for tomography images, (Van Gompel et al., 2011). 

Morphological operations were used to give consistent phases in the image, 

representing what can be observed visually. For the gas phase, the fill holes then the 

opening tools were applied, followed by removing small spots.  

Fill Holes: when an artifact inside a gas bulb is present and is fully within the body of 

the bulb, the Fill Holes tool identifies it and assigns it to gas with value of 1, changing 

the material at that voxel cluster. 

Opening: artifacts from X-Ray shadowing effect, resulting from passing materials with 

higher to lower refractive index instantly, these are removed using the opening tool, the 

tool removes thin regions that do not represent a gas blub and delete the value of 1 from 

the selected voxels. 

Removing Small Spots: when imaging at 3.89 voxels resolution even microbubbles 

appear as big spheres, anything smaller than a certain value can be safely considered as 

artifact, gas blubs with diameter smaller than 2 voxels (7.78 micron where removed). 

The outcome of these operations was relatively an accurate representation of the 

gas phase, with no to minimal artifacts. In one image, 6% kaolinite at stage 2, about 

20% of the gas bulbs were found to be artifacts and were cleared using the 

morphological operations. 
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Figure 4.6.1: overlap in CT numbers for phases represed in green, which is an artifcat 

from tomography 

 

4.6.2. Solids Segmentation 

Interactive overly threshold tool was used also to select voxels with CT Number 

in the range that represented sand. For all the kaolinite columns, voxels with values 

more than 185 CT Number was segmented as sand with a value of 3. Similarly, for fine 

particles partitioning (binarization), the range of 120 to 185 CT Number was assigned 

a value of 4. The remaining volume which represent void occupied by brine was given 

the value of 2. Water required no morphological operation as all the other phases was 

processed for artifacts. 

 

4.6.2.1 Solids Morphological Operations  

Voxels representing the segmented sand phase were treated with two 

morphological operations, fill holes and removing small spots;  

Fill Holes: help in eliminating any artifact that passed filtering to the segmentation, any 

individual sand grain is assumed to have solid interior (filled with only sand), the 

algorithm finds other phases that are present inside and fully surrounded by the sand 
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phase (inside a sand grain), and change voxels values to be a sand phase with binarized 

value of 3. 

Remove Small Spots: Knowing that the sand grains were sieved and have dimensions 

between 210 and 250 microns, any individual voxels cluster (sand grain) with 

dimensions less than 20 voxels (78 micron) is removed. This is evident as the possibility 

of a single sand grain to break into smaller shatters is weak, given that no high stresses 

are applied on the sand, nor enough stress from gas movement could be generated. 

The study aims at understanding fine particles effect on pore networks, thus 

fines that are attached to sand and reducing the throat and pore sizes are considered. On 

the other hand, fines that are suspended in the brine phase are removed, as those will 

result in inaccurate divided pores when generating a pore network. Hence for fines, the 

“remove spots morphological operation” was used to remove spots (clusters) in the 

brine, the removed parts were considered as brine were given the value of 2. While the 

remaining voxels which represent fines attached to sand are kept with a value of 4. 

Figure 4.6.2 shows segmentation process for kaolinite cells in (a-c) Column and 

montmorillonite cells in (d-f) Column, the first row represents raw images, while the 

second shows filtered counterparts, finally the last row illustrates the segmented 

corresponding images; Column (g-i) display corresponding histograms. 

Although it was demonstrated that fine agglomerate can be segmented, the 

results will be discussed for only systems with three phases of Sand, Brine and Gas. 

This is because fines are assumed to be dispersed in the brine; and given that the micro-

CT imaging resolution is less that of individual fine particles diameter, in addition to 

that the brine content of agglomerate cannot be defined without SEM imagery; it is 

therefore better to assume that fines are dispersed in the brine and focus on studying 

the effect of sand movements and change in pore morphology due to fines. 
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Figure 4.6.2: summery of segmentation for kaolinite cells in (a-c) column and 

montmorillonite cells in (d-f) column, while corresponding histograms change is in 

(g-i) column 
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4.7.  Pore Network 

The void space is where fluid movement takes place, it has a very complex 

geometry; pore networks are used to fill this irregular space with simple spheres (pore) 

and connecting cylinders (throats). This approach simplifies efficiently the complex 

geometry while keeping important geometrical and spatial information of the void 

space. Knowing that fluid movement between sand grains is at the capillary level and 

is governed by capillary pressure expressed in Equation 4.7.1, the geometrical 

parameter that governs the flow is the radius of the space in which fluids flow into. 

Thus, spheres and cylinders are the simplest geometrical shapes that can be used to 

simplify the void space (one radius). This is also evident for the importance of pore 

networks as they are the most efficient way to describe the connectivity of the void 

space. A pore network was generated for each segmented image of the 22 systems; sand 

was considered as solid, while gas and brine were considered as void space. This was 

done with the aim to study the change in the pore morphology due to gas flow at 

different fines concentration, thus only sand grains where assigned as non-void, to see 

how their transformation will affect the pore space and will alter the flow regimes in 

unconsolidated media.  The generated pore networks provide statistics that gives 

insights to the pore morphology, additionally the networks are used in the two-phase 

flow experiments.  

 

𝑃 𝑐  =  
2𝜎 cos 𝜃

𝑅
    Equation 4.7.1 

 

4.7.1. Algorithm (Grain-Based) 

Many different approaches were developed for pore scale modeling using 3d 

images. These include statistical modeling (Adler et al., 2002); medial axis (Al-Raoush 

& Willson, 2005), maximal ball (Al-Kharusi & Blunt, 2007). The most effective models 
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in predicting the properties of sand and sandstones are those that use grain-based 

approaches(Bakke & Øren, 1997; Bakke & Øren, 2002). The used algorithm starts by 

creating a skeleton (tree) of the connected void space, lines passing at the center of void 

regions are generated using slices from the bottom to the top of a binarized 3d image. 

The junctions at which these lines meet are considered seeds for pores, while a line 

connecting two pores is a throat. The seeds for each pore are expanded individually 

until the surface of the sphere touches a sand grain (or an edge of the void space) hence 

the name grain-based. The generated sphere is an inscribed sphere (by the sand grains) 

and its radius is used in Equation 4.7.1 for flow simulations. Similarly, the line 

connecting the two pores pass through a void space; in the region where the line pass, 

the smallest radius is considered the throat radius and is assigned over the full length of 

the line, creating inscribed throat body. The radius of the throats is also used in the flow 

simulations governed by Equation 4.7.1, for capillary pressure calculations. 

 

4.7.2. Verification  

 

To verify that the used model generates inscribed spheres in precise manner 

without overlapping with the sand grains, samples of sections from a test image were 

inspected, Figure 4.7.1 displays how the spheres generated from the grain-based 

algorithm are centered in the void without overlapping the glass beads. Further the 

statistics for all pores were examined against overlapping with the sand, the result is an 

overlap less than 7% for majority of pore volumes, Figure 4.7.2 illustrates the statistics 

for all the pores for system 5% montmorillonite stage 3, the majority of pores have an 

overlap with sand less than 6% of the pore volume. 
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Figure 4.7.1: pores (in white), filling the void space (represented by black), without 

intersecting the glass beads (in gray)  

 

 

Figure 4.7.2: disterbution of overlap of genrated pores with existing sand 

 

  



  

41 

 

Additionally, throats were inspected visually to assure that they precisely fill 

the pore space, in Figure 4.7.3 a critical case can be seen in which the throat have a 

radius similar to its pores, this is an accurate simplification for a fractured region, 

showing the capability of the grain passed algorithm in sand medium, (a) represents the 

sand, (b) the void space, (c) the corresponding pore network and in (d) an accurate fit 

between the sand and the pore network is demonstrated.     

 

 

  

(a) (b) 

Figure 4.7.3: a cut from kaolinite 6% stage 4, (a) sand grains, (b) pore space, (c) pore 

network, (d) sand grain and pore network. 

(c) (d) 
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4.8. Two-Phase Fluids Flow 

The permeability of a medium whether sand or sandstone, is the single most 

important parameter in predicting the fluids ability to flow through it. Porosity, 

connectivity and geometry of the pores are strongly associated with permeability 

(Al-Raoush & Willson, 2005); thus the use of pore networks to calculate the 

permeability is a very effective flow prediction approach, especially when such a flow 

is dependent on capillary properties of the void space. Absolut permeability describes 

a specific fluid ability to cross certain medium, driven by a given pressure difference. 

Equation 4.8.1 expresses the absolute permeability k, in terms of fluid viscosity μ, the 

average velocity of the fluid 𝜈, the displacement distance ∆x and pressure difference 

∆p.  

 

𝑘 = ν
μ∆x

∆p
         Equation 4.8.1 

 

The study aims at understanding the two-phase flow properties, accordingly 

relative permeability experiments are studied. A flow of two immiscible fluids in a 

porous media can be accurately represented using pore networks and simulations of 

two-phase flow experiments. This was first demonstrated by (Bryant et al., 1993a; 

Bryant et al., 1993b; Bryant & Blunt, 1992), and by using grain-based pore networks 

(Bakke & Øren, 1997; Bakke & Øren, 2002).  

- The simulations use the geometry of the void space and pore-throats,  

- The medium wettability and the contact angle with the sand phase,  

- Also, the saturations of the different fluids in the medium.  

The relative permeability for a specific phase is defined as the ratio of effective 

permeability of specific fluid with given saturation divided by the absolute permeability 
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of the fluid at a theoretical full saturation as in Equation 4.8.1. The definition is 

formulated in Equation 4.8.2, where kri is the relative permeability for phase i. 

 

k𝑟𝑖 =  
k𝑖

k
;       Equation 4.8.2 

 

Where  k𝑖 = 𝑣𝑖
μ𝑖∆x𝑖

∆p𝑖
       Equation 4.8.3 

 

The resulting outcome are relative permeability curves where Equation 4.8.3 is 

calculated at different saturations of the phase i, whether i is gas or brine. This is done 

by coupling the effect of capillary pressure from Equation 4.7.1 where the radius of the 

pores and throats come to affect, also the wettability characterized in the contact angle 

is implied; the contact angle is assumed to be as quasi-static as the flow in the 

experiment was slow to the degree that interfaces can be assumed at equilibrium.  

 

4.8.1. Algorithm 

 

A commercial algorithm developed by (Ruspini et al., 2017), was used to 

compute the relative permeability curves. They consist of relative permeability 

measurements of both gas and brine versus changing water saturation, about 40 point 

of measurement was generated for each curve. The algorithm calculates the capillary 

pressure at entry for pores and throats; accounting for topology of each fluid and uses 

the spatial information from the representative pore network; The entry pressure is 

expressed in Equation 4.8.1.1: 
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𝑃𝑛 𝑐  =  
2𝜎

𝑅𝑛
         Equation 4.8.1.1 

 

Where σ is the interfacial tension, while Rn is the radius of curvature which is a 

function of the angle between the throats, pore and throat radii, and contact angle of 

fluids.  

The algorithm divides any pore-throats coordination into three cases: 

- Symmetric pore-throat 

- Non-symmetric throat sizes 

- Non-symmetric contact angles 

Then in order for the algorithm to solve Equation 4.8.1.1 for each pore, the 

second and third cases are geometrically mapped to equivalent symmetric case and 

represented by the radius of curvature Rn, the result is a simulation for imbibition and 

drainage with accurate measurements for relative permeability and capillary pressure, 

that is done using a pore network that accurately represent the void space of the 

unconsolidated porous media.  

 

4.8.2. Model Sensitivity to Contact Angle 

The used algorithm is very responsive to changes in fluids density, interfacial 

tension, wettability and the geometry of the pore network. However, there is a lack of 

sensitivity for changes in the input of the contact angle, this is evident in the sensitivity 

analysis done for contact angle. Figure 4.8.1 shows no reasonable changes upon 

dramatically changing the value of the contact angle. Anyhow, given the aim of this 

work is to study the effect of fine on the morphology of the pore space, this algorithm 

can accurately serve this purpose as it is sensitive to geometry changes of the pore 

network.  
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4.8.3. Experiments for Primary Drainage 

When the gas flows through unconsolidated porous medium, it can change the 

geometry of the pore space by moving sand grains. This change also depends on the 

fine concentration in the medium; therefore two phase flow experiments are done for 

each system of the 20 cases where gas flow in 5 different columns, to understand how 

changing the morphology of the pore space will impact two phase flow.  

The simulation is firstly carried on the sample when it is fully saturated with brine Sw 

= 1, then the pore network is fully drained reaching to the residual saturation of the 

water (entrapped water fraction). In the simulation, the sample was setup at 90o 

vertically and the flow is from bottom to top to simulate the actual experiment and 

eliminate any small effect from gravity. The interfacial tension between water and gas 
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is 0.05 N/m from (Saraji et al., 2013), while the density of gas and brine are entered 

from Table 4.8.1., (Span & Wagner, 1996), brine density was assumed as water given 

the low concentration of KI salt.  

 

Table 4.8.1: CO2 and Brine Density at Given Tempreture and Pressure 

Phase Pressure (psi) Temperature (Co) Density(kg/m3) 

Water 

4 23.560 997.373 

6 23.560 997.380 

CO2 

4 23.560 0.493 

6 23.560 0.740 

 

 

4.8.4. Experiments for Water Flooding (Imbibition) 

Due to the limitation of the pore network generation algorithm, the location of 

gas and brine in the pores was distributed randomly, however the fraction of gas and 

brine was accurately represented in the distributed volumes. After each pore and throat 

had their initial saturation the relative permeability experiment was executed to give 

the curves for capillary pressure and relative permeability measurements. The other 

parameters are the same as for the primary drainage.  
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CHAPTER 5. RESULTS  

In this chapter the results from every step of the analysis are shown, raw images 

are compared with the filtered then the segmented counterparts. The volume fraction 

measurements are shown for each system, and a 3D visualization for the gas flow 

patterns in the full volume of the samples are displayed.  Representative results of the 

pore networks statistics, and the two-phase flow experiment are shown. Results for the 

2% montmorillonite column are not presented as the third and fourth stages of gas 

injection were not captured. Nevertheless, the trends for the 3% and 5% 

montmorillonite fines concertation show comparable trends to that of the kaolinite 

columns, so it is of great scientific value to discuss them. 

Although clusters of fine particles are visible using the micro-computed 

tomography, knowing that an individual fine particle has a diameter of 0.6 micron, 

which is less than the voxel resolution of 3.89 micron; the results hereafter are only for 

systems with three phases of sand, brine and gas. Since fines are suspended in the brine, 

all the fines were assigned to the brine phase. (Jarrar et al., 2018) demonstrated that 

when this approach is used, how increasing fines concentration in different columns 

can be detected using the average CT number of the brine phase. This indicates the 

capacity to accurately predict the phases from the image data CT Numbers.  

Pore networks and the two phases flow experiments are as well discussed for 

systems with three phases of sand, brine and fines.  

 

5.1.    Filtration and Segmentation 

A representative set of 2D sections are selected, the sections show the full height 

of the sample and the different phases from sand, brine and gas. All the sections show 

the xz axes and are at the center of the sample’s y-axis, being at 540 voxel (out of 1080) 

or 2100 microns from the side. All sections are 1080 voxels in width (4201 microns) 
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by 2356 voxels in height (9165 microns). Figure 5.1.1 represents the column for 2% of 

kaolinite at the initial (fully saturated) and final stages of gas injection, at top and 

bottom respectively. From left to right, first the reconstructed raw image is displayed 

followed by the filtered image and finally the segmented counterpart; the images show 

how the gas is able to cause small movements of the sand grains in order to create 

pathways for its flow, it is evident in the image how the gas is able to create many small 

pathways that are distributed all over the section. This case is representative to the 

scenarios for the 3% montmorillonite and 4% kaolinite columns, with the only 

difference being that in the two aforementioned columns more movement of sand grains 

occurred, and more gas penetrated the sample. At the highest concentration of kaolinite 

for the column with 6% fines in Figure 5.1.2, a gas driven fracture developed; at 

increased fines concentration, phenomena like throat clogging causes gas pressure to 

increase locally mobilizing the grains, the figure shows a noticeable dislocation of the 

grains opening a main path for the gas to flow. It is noted that because of throat clogging 

due to fines, there is no percolation of the gas other than the main branch of fracture. 

Similarly, for Figure 5.1.3 representing the 5% montmorillonite cylinder, fines possibly 

caused throats to be clogged as gas was not noted to evenly percolate the sample, a 

major displacement of sand grains after gas injection is noted, opening a main branch 

for the gas to move.  
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Figure 5.1.1: image analysis for initial and final stages of 2% kaolinite column 
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Figure 5.1.2: image analysis for initial and final stages of 6% kaolinite column 
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Figure 5.1.3: image analysis for initial and final stages of 5% montmorillonite column 



  

52 

 

5.2.Volume Fraction 

Using the segmented images, the voxels of each binarized phase can be counted 

and divided over the total size, this gives the volume fraction of a certain phase in the 

image. The experiment targeted a porosity of 40% (sand fraction of 60%). Table 5.2.1 

shows that the targeted porosity was achieved with a margin of ± 3%. The table show 

the fraction of each phase for all the scanned systems representing the stages of gas 

injection from 1 to 4 for each percentage of fines. Similarly, Figure 5.2.1 is a visual 

representation of the volume fractions, showing the water and gas ratios as they change 

with each step of gas injection.  

 

Table 5.2.1: All Systems Volume Fractions, (K) Kaolinite, (M) Montmorillonite 

Volume Fractions Volume Fractions 

System Brine CO2 Sand System Brine CO2 Sand 

K2%1 0.400 0.001 0.599 K6%1 0.422 0.006 0.572 

K2%2 0.375 0.024 0.601 K6%2 0.393 0.032 0.575 

K2%3 0.373 0.026 0.601 K6%3 0.385 0.041 0.574 

K2%4 0.363 0.039 0.598 K6%4 0.359 0.064 0.577 

K4%1 0.379 0.001 0.620 

 

K4%2 0.371 0.008 0.621 

K4%3 0.266 0.105 0.629 

K4%4 0.209 0.158 0.633 

M3%1 0.322 0.086 0.592 M5%1 0.394 0.015 0.591 

M3%2 0.307 0.100 0.593 M5%2 0.408 0.020 0.572 

M3%3 0.279 0.126 0.595 M5%3 0.370 0.036 0.594 

M3%4 0.234 0.168 0.598 M5%4 0.360 0.045 0.595 
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The figure illustrates the increased gas volume for all gas injection stages for 

each cylinder. It is not the quantity but rather the pattern of gas fraction increase is what 

gives indications of the phenomenon that happened at varying fines contents. For 

instance, the 3% montmorillonite column have high fraction of gas that increases 

gradually with each step, but no major displacement of sand grains developed in the 

sample, yet for the 5% montmorillonite the first and second stages showed little 

increase in gas fraction, while a jump is observed in the third stage. This indicated a 

rapid displacement of the sand grains due to high fines content. The patterns indicate 

that phenomenon is taking place rather than the quantities, as the scan represents only 

part of the sample volume.  

  

Figure 5.2.1: volume fraction for all cylinders showing gas injection stages 
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5.3. Gas Flow Patterns Visualization 

Using the segmented images from the 3D micro-computed tomography, each 

phase can be visualized by using the voxels’ location and value. The visualization of 

gas flow patterns and their change with respect to fines concentrations can be done at a 

microscopic scale; allowing the observation of gas flow through individual throats of 

the permeable media. The ability to see gas in three dimensions gives deterministic 

information about the change in gas flow due to fine particles changing the void space 

morphology. Figure 5.3.1 shows that the 2% kaolinite column have the least fines 

concentration. Capillary fingering phenomena is observed at stage 2 in the figure, the 

CO2 gas follows paths that percolate through bigger throat sizes with the least capillary 

resistance; as gas injection progresses in stages 3 and 4, more small paths are filled with 

gas. It is noted that an individual path is not observed to have major growth in diameter 

which indicates no major sand grains movement. A visualization of 4% kaolinite 

column appears in Figure 5.3.2 the second stage shows gas flowing in but with 

discontinuities in the gas bulbs in the last two stages, the gas filled the scanned section 

of the column, an evidence of the gas ability to further percolate in the sand without 

major movements in the sand grains. This was not the case for the column of 6% 

kaolinite with the highest concentration of fines visualized in Figure 5.3.3. Here CO2 

did not percolate, rather it mobilized the sand grains creating one main branch (fracture) 

as illustrated in stage 2. As the injection continues in stages 3 and 4, the body of the gas 

driven fracture increases in size, this is evident that the fines prevented CO2 from 

percolating in the sample by blocking small throats. 

For the montmorillonite columns, first the 3% cylinder in Figure 5.3.4 shows 

that the scanned part had more gas injected, nonetheless the aim is to study the pattern 

not the gas quantity. By viewing the second stage, gas is percolating in a manner similar 

to the 4% kaolinite, CO2 is able to percolate without major movements of the sand 
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grains, forming many small channels as seen in the 3rd and 4th stages. In Figure 5.3.5 

the 5% montmorillonite image is displayed for all the stages. Gas is observed to 

percolate through the pore space in stage 2. Yet upon injecting more gas in stage 3, a 

major snap off the gas body is observed, indicating a change in the pore space (grains 

displacement). The body of gas is shown to stay discontinued even when increasing the 

pressure at stage 4, the gas body increased in size visually indicating the movement of 

sand grain.  

Both the columns with highest fines content 6% kaolinite and 5% 

montmorillonite showed high mobilization of sand, but with major differences in the 

flow patterns. The kaolinite had one major bath (a fracture) while the montmorillonite 

flooded few major paths which had wider diameters. This is expected as kaolinite is 

hydrophobic while montmorillonite is hydrophilic, where the last accumulate on the 

gas brine interface (Jung et al., 2018b). Having higher concentration of fine particles at 

the brine-gas interface may induce ganglia snap off, hence explaining the behavior at 

5% Montmorillonite cylinder.  
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Stage 1 Stage 2 

Stage 3 Stage 4 

Figure 5.3.1: 3D visualization of segmented gas phase for all injection stages of 2% 

kaolinite column 
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Stage 1 Stage 2 

Stage 3 Stage 4 

Figure 5.3.2: 3D visualization of segmented gas phase for all injection stages of 4% 

kaolinite column 
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Figure 5.3.3: 3D Visualization of Segmented Gas Phase for All Injection Stages of 6% 

Kaolinite Column 
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Figure 5.3.4: 3D visualization of segmented gas phase for all injection stages of 3% 

montmorillonite column 
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Figure 5.3.5: 3D visualization of segmented gas phase for all injection stages of 5% 

montmorillonite column 
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5.4.  Pore Networks Statistics  

For each of the segmented images a pore network was generated to simplify the 

geometrically complex pore space. The brine and gas are considered as pore spaces 

while the sand was not. Having a pore network generated for every column four times 

at each gas injection stage helps in quantifying the change that the gas flow caused to 

the unconsolidated pore space, at different fines concentrations. Twenty pore networks 

were generated at full image size of 1080x1080x2356 voxels (2748 Million voxels). 

The size of one scanned raw image is 32 GB, segmented results are 6 GB per image, 

using the pore network to simplify the pore space results in 50 MB per image (≈ 0.050 

GB), at a scale 120 times smaller than a segmented image in file size. The generated 

pore network benefits from accelerating computation for the reminder of the analysis. 

Most importantly, the resulted statistics aid the understanding of the pore space, and 

the impact of fines on two-phase flow.  

First a summary of the results showing averaged statistics of each system will 

illustrate the effect of fines on different columns as gas is injected, then representative 

full distributions of different pores and throats are displayed. Figure 5.4.1 displays in 

(a) the total number of generated pores to represent the void space of each system, 

hereafter the systems are organized by the gas injection stages from 1 to 4 and are 

ordered as K2%, K4% and K6% with (K) stands for kaolinite, while M3% and M5% 

with (M) for the montmorillonite columns, (b) Displays the total number of throats per 

system. In both of pores and throats counts, the behavior is similar, the K4% and M3% 

show a gradual increase in the count, while K6% and M5% show a rapid increase then 

a drop followed by gradual increase. This can be related to rapid movements of sand 

grains that divide the pore and throats, thus increasing their count. It is noted in most 

of the systems that as gas flows, it increases the number of both pores and throats. 
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Figure 5.4.2 displays a pattern for both throats radii and lengths, in (a) and (b) 

respectively; it is noted that at low to middle fines concentration the averaged 

dimensions of the throats gradually decrease. While in the columns with high fines 

concentration, a rapid drop in the throats dimensions is observed at the first gas injection 

in stage 2, then a rapid increase with more gas entering the system in stage 3. This is 

followed by a gradual drop when increasing the gas pressure at the last stage. This is 

compatible with the result for the averaged inscribed pore radii in (a) at Figure 5.4.3, 

which shows the exact patterns. Having multiple columns confirms this unique pattern 

due to fines, which is observed for the first time and of considerable scientific value. In 

the same figure at (b), the coordination number which describes the number of throats 

connected to a pore had an averaged value of about 6 over the 5 columns. There is no 

major relation observed for the change of averaged coordination number with injecting 

gas at different fines concentration, which may be due to the huge number of pores in 

the system.  
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Figure 5.4.1: pores and throats numbers for every system 
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(a) 

(b) 

Figure 5.4.2: averaged throat radius (a) and length (b) for every system 
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(a) 

(b) 

Figure 5.4.3: averaged pore radius (a) and coordination number (b) for every system 
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Understanding the distribution of the pore space statistics gives more insight 

about the pore space and the impact of other parameters on it. Previously it was 

documented that the averaged coordination number was around 6. Examining the 

distribution illustrated in Figure 5.4.4 proves that the most dominant coordination 

number is 4 and 5 for all the columns, it also shows how the pore count increases with 

the increase of fines in kaolinite 2%,4% and 6%, and likewise for montmorillonite 3% 

and 5%. This is an indication of the importance of the distributions of the pore space 

statistics. The aforementioned figure showed all columns at the final stage of gas 

injection. 

 

 

  

Figure 5.4.4: final stage coordination number for all columns 
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Figure 5.4.5 presents a zoomed part of the pores volume distribution for all the 

columns at stage 3, it is noted that increasing the fines content results in higher numbers 

of smaller pores, with the results being consistent for all the columns. This might be 

due to gas moving the grains, which produces few wide paths but results in smaller 

voids for the remainder of the system.  

 

 

Figure 5.4.6 in (a) demonstrates a complex effect of fines and multi-phase flow 

on the pore morphology (sediment structure), it shows that at the column of 4% 

kaolinite, the inscribed pores radius and pores count decrease with the increased 

injection of CO2. The added scientific value of using this distribution is embodied in 

the quantification of such pattern; on the 4% kaolinite, the mode of pore radius dropped 

Figure 5.4.5: the distribution of pore volume for all fines concentrations at stage 3 of 

CO2 injection 
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from 28 microns at the initial stage to 25 microns at the final step with the pore counts 

decreasing from 4000 to 3750 pores.  

 

(a) 

(b) 

Figure 5.4.6: distributions of  (a) pore radius, (b) throat raduis, for 4% kaolinite 

column at all CO2 injection stages 
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Correspondingly, Figure 5.4.6 (b) shows the distribution of throats radii for the 

same column. As more gas is injected, the most frequent radius size dropped from 17 

microns to 13 microns, with the count increasing from 16 thousand to 18 thousand 

throats. This indicates that throats contracted and were divided due to the change in the 

void’s morphology from gas injection. Finally Figure 5.4.7 quantifies the change in 

throats length for all columns due to altering fines concentration. The results are 

displayed for the 3rd stage of gas injection; it is obvious that increasing the fines 

concentrations increased the throats count, reportedly increasing the fines decreased the 

throats lengths.  

 

 

Figure 5.4.7: the distribution of throat lengths for all fines concentrations at stage 3 of 

CO2 injection 
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5.5 Two Phase Fluids Flow 

The simulations for the two-phase flow experiments utilized the generated pore 

networks. Primary drainage and water flooding experiments were used to generate 

relative permeability and capillary pressure curves for each of the 20 systems, resulting 

in 120 curves, each made of 40 simulation points.  The results show in a quantitative 

manner, the impact of the different parameters on the two-phase flow through the 

unconsolidated porous media. Twenty curves for relative permeability of water krw; 20 

curves for relative permeability of gas krg and 20 capillary pressure Pc curves were 

generated once for the primary drainage, then another time for water flooding. 

Moreover, porosity, permeability and maximum capillary pressure were calculated for 

each system.  

Knowing that porosity and permeability are critical factors in determining two 

phase flows, their results are first shown along with the maximum capillary pressure in 

each system, then the results for the two-phase flow experiments are presented. Porosity 

for every system is displayed in Figure 5.5.1, the figure illustrates the porosity with 

respect to gas stages and fines content and type. With the exception of few cases, a 

trend is noted when CO2 gas is injected, the porosity decreases. Consequently Figure 

5.5.2, shows that permeability decreases as more gas enters the systems. This is 

excluding the 6% kaolinite (with the highest fines content), where a fracture developed, 

thus as more gas is injected, the fracture body grows, thus increasing the permeability. 

The values of permeability are an indication of the accuracy of the used algorithm as 

sand have a permeability ranging between 1 μD to 100D, (Bloomfield, 1995). 

Maximum capillary pressure of each system is showen in Figure 5.5.3, 2% and 4% 

kaolinite show a gradual increase with gas injection, while the rest of the systems show 

a common pattern of rapid increase in capillary pressure at stage 2 where gas is first 

injected, then a steady drop as the stages develop.  
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Figure 5.5.1: porosity for all systems showing effect of gas injection on pore 

morphology when changing fines type and quantity 

 

 

 

Figure 5.5.2: permability for all systems showing effect of gas injection on pore 

morphology when changing fines type and quantity 
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Figure 5.5.3: maximum capillary pressure for all systems showing the effect of gas 

injection on pore pressure when changing fines type and quantity 
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the initial state to the first gas injection. This agrees with the increased relative 

permeability of gas (krg) at Sw,=0.1(correspond for Sw=0.9 for krw), additionally at 0.5 

Sw the krg can be seen to increase as the stages develop from 1 to 4.  

Figure 5.5.7 shows water flooding of all the columns at the stage where gas is firstly 

injected. Increasing the fines content resulted in increased krg as revealed in (a), while 

(b) compliments this result by showing that it reduces krw at water flooding for both 

the types of fines studied. Figure 5.5.8 shows capillary pressure curves at stage 3 for all 

the columns. The curves express how the content increase of any fines type resulted in 

increased capillary pressure for all the cases excluding the 6% kaolinite column due to 

the developed fracture. In Figure 5.5.9 for the 4% kaolinite column, as gas injection 

stages develop from 1 to 4, the krw increase by 5% while the krg decreased, indicating 

that as more gas flow in the unconsolidated media, the krg is reduced for water flooding 

experiments.  

 

Figure 5.5.4: water relative permeability krw, all fines concentrations at final stage of 

CO2 injection 
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Figure 5.5.5: relative permeability of water krw and gas krg, for all CO2 stages at 5% 

montmorillonite column  

Figure 5.5.6: krw curves for all stages of CO2 injection at 6% kaolinite column 
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(a) 

(b) 

Figure 5.5.7: krg at (a) and krw at (b) for all columns at stage 2 of CO2 injection 
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Figure 5.5.8: capillary pressure Pc curves for all columns at stage 3 of CO2 injection 

Figure 5.5.9: krw and krg curves for all co2 stages at 4% kaolinite column 
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CHAPTER 6. Discussion and Conclusions  

 

6.1. Review 

Understanding the fluid physics of fines migration in porous media due to 

multiphase flow, is a complex longstanding problem in many applications including 

underground water storage, irrigation, oil and gas recovery, contaminates transport.    

(Rodriguez-Pin, 2010) studied flow and retention of both micro and nano fine particles 

in glass beads, followed by (Yu et al., 2015) who studied fines dispersion in 12 

sedimentary rock cores.  (Khan, 2016: Khan et al., 2017;) linked micro computed 

tomography images to flooding experiments of fines retention in glass beads. Utilizing 

pore networks and water flooding experiments to quantify the impact of fines and 

predict permeability. While recently (Gyeol Han et al., 2018) used CT scans at 107 μm 

resolution to study fines migration due to depressurizing hydrates in sandy sediments . 

Given that flow phenomenon are controlled by transport at pore-scale, this work 

arguably for the first time, study the effect of different fines types and contents on real 

sand packs imaged using μ-CT from synchrotron radiation, imaging the gas flow as it 

progresses through sediments. High brilliance synchrotron X-ray microcomputed 

tomography was used, allowing fast reconstruction of the spatial information which is 

an advancement over other scanning methods. This technique was used to image live 

experiments of CO2 gas flow in unconsolidated fully saturated sand column with 

different fine particles content (Jarrar et al., 2018). 

 

6.2. Experimental setup 

Five columns of packed silica sand with 2%,4,6% of kaolinite and 3%,5% 

montmorillonite as weight of sand were fully saturated. The saturating brine is 

deionized water with 2% potassium iodide by weight of water. Acrylic cylinders 9.52 
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mm in internal diameter and 50.80 mm in height were filled with silica sand sieved 

between 250 μm and 210 μm. The sand was mixed with hydrophobic and hydrophilic 

fines, kaolinite and montmorillonite respectively, then packed in 5 layers while brine 

was added during packing. Each column is initial fully saturated, then CO2 gas was 

injected from the bottom of the cylinders with 0.4 ml then another 0.6 ml both at a 

pressure of 27.6 kPa while ejecting water from the top. Finally, CO2 injection pressure 

was increased to 41.4 kPa without ejecting water.  

 

6.3.  Scanning 

The experiments were conducted while scanning the sample at Beamline 13D 

in APS ANL. High brilliance synchrotron X-Ray micro-computed tomography was 

used to capture the experiments as it progressed. Scans where taken 4 times for each 

column as CO2 was injected. The injection stopes and the system is imaged at quasi-

static state each time, imaging takes 30 min; 20 scans are used for analysis. The scanned 

sections are 1080x1080x2356 representing 4.2x4.2x9.2 mm3 at a voxel resolution of 

3.89 μm3. This eliminates the boundary condition and gives results that represent actual 

marine conditions. 

 

6.4.  Image Filtration and Segmentation 

Images were reconstructed using reverse radon transformation creating 3D 

intensity images, then were filtered by Anisotropic Diffusion followed by a Median 

filter. Segmentation was done by manually, assigning intensity values to specific 

phases, then using morphological operations to remove any artifacts ensuring the best 

results. Sand, brine and gas were segmented while suspended fines were assigned as 

brine. The used method was successful in representing the finest details. Quantity and 

location information of each phase were used to show that increased fines content 
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reduces the porosity due to gas injection by dislocating sand grains as in Figure 6.4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Sequentially due to fines migration, gas driven fracture was observed at the highest 

fines content of 6% kaolinite; complemented with increased sand grains dislocations at 

increased fines content at 5% montmorillonite. This is due to fines clogging at throats 

of the permeable media, which when injecting gas results in stresses high to the degree 

it displaces the grains of an unconsolidated porous media. All the analysis was carried 

on using Pergeos software and its implemented algorithms. 

 

6.5.  Pore Networks 

Grain passed pore network model was used, brine and gas were assigned as void 

space, results accuracy where validated visually and statistically. A pore network was 

generated for each system to simplify the geometry of the porous media as it changes 

during the experiment. The sand grains movement due to gas injection and fines 

clogging at throats, were quantified by comparing the generated pore networks 
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Figure 6.4.1: porosity change for each system based on initial state 
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statistics. Because of fines, when gas flows it reduces pores and throats radii (a seen in 

(a) Figure 6.5.1) and throats lengths by dividing them; which increases the coordination 

number, pore and throats counts (as seen in (b) Figure 6.5.1). This effect was shown to 

be proportional with the fines content and is consistent with fractures formation. 

  

(a) 

(b) 

Figure 6.5.1: change in averaged throat radius (a) and pores number (b) for each 

system 
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6.6.  Two Phase Flow 

120 curves were generated from the primary drainage and secondary water 

flooding two-phase flow experiments simulations, in addition to the measurements of 

porosity, permeability and maximum capillary pressure for the full networks. Unless a 

fracture or rapid movement of sand occur, a general trend of decreased permeability 

was observed due to fines migration because of gas flow as seen in Figure 6.6.1. 

 

 

Figure 6.6.1: change in permeability for full pore networks, representing effects of 

sand dislocations 

 

Primary drainage experiments were simulated using pore networks that are 

initially filled with water then fully drained. While during water flooding experiments, 

the real gas fraction of each system was obtained from the images, it was then used to 

wet the pores randomly, flooding was done by injecting water to the pore networks 

containing CO2 gas, the simulation stops when no more gas can be recovered by 

injecting water, (unrecoverable) gas was quantified.  
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For primary drainage at kaolinite columns, increasing fines resulted in reduced 

gas relative permeability krg, but when a fracture form, gas permeability increases; for 

montmorillonite krg dropped when increasing fines, also as gas was injected the 

sediment moved in a manner that reduced krg.  

In the water flooding, krg increased when increasing fines for all tested 

columns, while capillary pressure increased when increasing fines content. Most 

importantly it was shown that in unconsolidated media when more gas is injected in a 

system it reduces the recoverability by moving the sand grains. This was manifested in 

a drop in krg when using the pore networks for stage 1 to 4 resulted from the imaged 

real systems. These trends are compatible with the work done on different experiments 

simulator showing the same general trends but for  theoretical cases (Boujelben, 2017; 

Boujelben et al., 2018) 

Ganglia analysis: it is noted that during gas flow in unconsolidated media, the gas 

follows the path of the least capillary resistance (capillary fingering). When fines 

content is increased, the gas ability to percolate smaller throats decreases, this results 

in local gas pressure increase. Consequently when the pressure increases, the size of 

the paths that the gas penetrated increases, this dislocates the sand grains. The process 

results in bigger throats and pores inside the few gas flow paths, but also results in 

decreased perviousness for the reminder of the system, as size of the rest of pores and 

throats radii decreases by the dislocated sand. When further increasing the fines content 

this effect continues resulting in one large path (a fracture body) and there was no gas 

percolation for the reminder of the system. it is noted that when rapid movements and 

fracturing occurred, highest fines content were added to the systems. A difference 

between kaolinite and montmorillonite is observed, in kaolinite 6% a main fracture 

body represents the main flow path as it has low capillary pressure; while in 5% 
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montmorillonite, it is noted that gas ganglia disconnect and tend to form big divided 

ganglia rather than one connected body. This effect may be related to kaolinite being 

hydrophobic attaching to sand, whereas montmorillonite is hydrophilic attaching to the 

interface of gas and brine hence inducing snap off.  

 

 

6.7.  Conclusions 

1- Synchrotron X-Ray micro-computed tomography, is an effective tool in 

uncovering the effects of fines migration in multi-phase flow. Workflows 

were developed to quickly (under one day) transform a raw data to 

segmented (binarized) image, and calculate a wide range of predictive flow 

properties, including but not limited to porosity and volume fraction, pore 

networks, single and multi-phase flow.  

2- Pore Networks and Computer-Based Two-Phase Flow Simulations can 

effectively be used to characterize flow in porous media. For flow in 

unconsolidated media the pore space geometry will change due to sand 

grains movements (Jarrar et al., 2018; Jarrar et al., 2019), Pore Networks 

simplify fluid simulation in a changing void space, easing the effort to 

characterize the flow.   

3- At high concentrations, different fine types produce altered gas flow 

regimes. Kaolinite resulted in fractures, while montmorillonite resulted in 

detached gas ganglia.  

4- Two-phase flow experiments from pore networks, showed trends that 

can be used in predicting fines impact on gas flow in sand, increasing fines 

reduces gas percolation and further injection of gas reduced permeability. 
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