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ABSTRACT 

ALABBASI, SATEH, A., Masters: June : 2019,

Masters of Science in Civil Engineering 

Title: A Numerical and Experimental Investigation of A Special Type of Floating-

Slab Tracks 

Supervisor of Thesis: Dr. Mohammed, F, Hussein. 

This thesis presents a research study on the dynamic behavior of a special type 

of FST used in recently built subway system in Doha, Qatar. The special FST has a 

continuous concrete slab with periodic grooves for which the track can be modeled as 

periodic structure with a slab unit having two elements with different cross sections. 

Extensive numerical and experimental investigations were conducted on a multi-unit 

full-scale mockup track. The numerical investigations were carried out using both a fast 

running model based on the Dynamic Stiffness Method and a detailed Finite Element 

model. In the experimental campaign, experimental vibration test was performed to 

identify the actual vibration response of the mockup track. Results from the 

experimental investigations were then used for verifying the numerical models and 

carrying out a model updating exercise for the fast running model. The model updating 

process was carried out according to an automated hybrid optimization approach. 

Finally, the updated model was extended to an infinite model and used in a parametric 

study to investigate the influence of varying groove’s thickness on the dynamic 

behavior of the special track with infinite length for both bending and torsion scenarios. 

The parametric study suggested that reducing the thickness below 50% of the full 

thickness of the slab significantly affects the dynamic behavior of the special FST.  
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CHAPTER 1:RESEARCH BACKGROUND 

1.1 Introduction 

The main purpose of railway trains is to transport large number of passengers 

and goods. The rate of degradation of railway tracks should be reduced to minimize the 

maintenance activities and the associated financial and social impacts. Degradation of 

tracks are influenced by the track dynamics. Track dynamics also affects the ride quality 

and the levels of emission of noise and vibrations perceived by passengers. The 

dynamic interactions between the components of railway tracks influence the structural 

integrity of the track and the levels of noise and vibrations transmitted to buildings in 

proximity. Several studies have shown that such vibrations have significant effects on 

human health and comfort [1-4]. Railway-induced vibrations can also damage sensitive 

equipment [5, 6] and historical buildings [7].  

Investigating the dynamic behavior of railway tracks is important to preserve 

and maintain the track in a good condition and reduce the results of the track dynamics 

on the track’s structure, trains’ passengers and the nearby structures. To improve the 

understanding of the dynamic behavior of the railway track and its components, the 

railway tracks are modelled using different numerical methods and techniques. Railway 

numerical models can capture the dynamic behavior of railway tracks. 

There are two main types of railway tracks, ballast tracks and slab tracks. The 

obvious difference between the two types of tracks is the material used for the track 

bed. In the ballast tracks the rails are mounted on a discontinuous rail pads supported 

via horizontal sleepers resting on a graded granular gravel called ballast (Figure 1). For 

slab tracks the rails are supported via rail resilient elements rested on a concrete slab 

supported by track foundation (Figure 2). 
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Figure 1: Cross section view of ballast tracks [8]. 

 

Figure 2: Cross section view of slab tracks [8]. 

Floating-slab tracks (FSTs) are commonly used for controlling railway-induced 

vibrations. In FSTs, the concrete slab rest on resilient elements called slab bearings. 

Slab bearings have an important role of improving levels of vibration isolation [9-12]. 

The concrete slab can be either continuous or discontinuous. In continuous concrete 

FSTs, the concrete is poured in site. While for discontinuous FSTs, precast concrete 

units are used. The continuous slab system in Washington DC is an example of 
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continuous FST. New York subway (7 m slab units ) is an example of discontinuous 

FST [13].  

A special FST design was adopted in the State of Qatar railway network (Doha 

Metro) that consists of 100 stations and 4 lines with a total distance of 300 km. The 

track consists of a continuous slab with periodic grooves along the track as show in 

Figure 1. The repeating concrete slab unit consist of two segments with different cross 

sections. The purpose of this track design is to allow cables crossings and to facilitate 

the installation of shuttering required for casting of grout in between the slabs.  

 

 

 

Figure 3: Groove in the concrete floating slab. 

1.2 Problem Statement 

A special FST that has a continous concrete slab with intervallic grooves need 

to be investigated. This type of FST cannot be accurately modeled using the previous 

reported continuous and discontinuous numerical models which assume a constant 
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cross-section along the slab unit. The slab unit in this type of track is consisting of two 

segments with different cross sections. 

1.3 Aim of The Thesis 

This thesis aims to investigate the influence of varying the groove thickness-

which in turn is going to vary the slab segments’ parameters- on the dynamic behavior 

of full infinite track.  

1.4 Thesis Outline 

The rest of the thesis is organized as follows. Chapter 2 reviews the related 

reported work in the literature. Chapter 3 describes the numerical model’s formulation 

for the fast running model and Finite Element (FE) model. Chapter 4 shows the 

verification of the numerical models by comparing obtained results from the fast 

running model with the FE model. Also, it shows the validation of the results of the fast 

running model with the experimental test results conducted on the mockup structure. 

Furthermore, it includes the updating process of the fast running model. Chapter 5 

describes the parametric study conducted to understand how the vibration response of 

the railway track is affected by varying grooves thickness along the track. Finally, 

Chapter 6 concludes the work of thesis. 
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CHAPTER 2:LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the literature that is relevant to this thesis. This includes 

the previous work related to the numerical models of the railway tracks and the 

conducted experimental vibration measurements on different railway tracks. 

2.2 Numerical Models 

This section reviews the relevant numerical models reported in the literature. 

The section is organized in the following sub-sections: beam theories used in the 

numerical railway track models, numerical models of railway track as single continuous 

and discontinuous beam, double beam layer railway track models and FSTs numerical 

models for continuous and discontinuous FSTs.  

2.2.1 Beam Theories Used for Track Models 

Hetényi [14] showed that Winkler modeled the railway track as an infinite 

single beam on elastic homogeneous foundation. For the stiffness of the elastic 

homogeneous foundation used in Winkler model, Kerr [15] provided a design curves 

to determine the  empirical stiffness value based on the deflections measured under 

known axel loads. Despite the age of this model, many researchers still using it to study 

many areas related to track dynamics due to its simplicity. Winkler beam has been 

modelled for different beam theories to study dynamics of railway tracks.  

One of the most common theories used of Winkler beam model is Euler 

Bernoulli beam theory to study dynamic properties of beams [16].Jacob Bernoulli in 

the 18th century presented this theory which was later used by Leonard Euler to study 

elasticity of the beams. The theory’s main assumption is that, the plane sections 

continue plane and vertical to the neutral axis after the load application (Figure 4). If 

the cross section is less than the wavelength of the motion, this theory is applicable. 

Hence, for investigating railway tracks dynamics at high frequency above 500 Hz which 
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is approximately the maximum frequency of validity [17], this theory is not applicable 

as it overestimate the natural frequency of the beam when it is calculated. This is 

because of the rotational inertia and shear deformation effect and it is significant to be 

taken into consideration.  

 

 

 

Figure 4: Euler Bernoulli beam theory [18]. 

 

Figure 5: Timoshenko beam theory [18]. 
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Lord Rayleigh [19] included the rotational inertia effect on the previous beam 

theory. However, his model did not provide correct results of the natural frequencies 

for higher frequencies of motion, it is still overestimated. Shear deformation should be 

introduced to improve the calculations of natural frequencies of a beam. Timoshenko 

[20, 21] presented a beam theory accounting for both rotational inertial (Φ) and shear 

deformation (γ) of a beam (Figure 5) leading for better calculations of natural 

frequencies of a beam in a range of high frequency applications. Thus, this theory is 

valid for high frequency railway track applications which extend up to 5kHz [22] . For 

investigating dynamic behavior of railway tracks, frequency is dependent factor of this 

investigations. Based on the frequency range of interest the used beam theory is 

determined for example for studies interested in ground vibration the up limit of the 

interested frequency is up to 250 Hz [23], where Euler Bernoulli theory is applicable. 

In the other side, studying rolling noise occurrences is an example of an application in 

such the interested frequency range extends to 5 kHz [24], where Timoshenko beam 

theory is applied. 

Chonan [25] used Timoshenko beam theory to model a beam on elastic 

undamped foundation. In his paper, Chonan introduced small damping to the 

foundation to shift the poles to the complex domain. A comparison between responses 

of Euler Bernoulli beam and Timoshenko beam models has done by Bogacz et al. [26].  

2.2.2 Railway Tracks Models 

Railway track models can be categorized in two main categories based on the 

beam layer, aiming to represent the two main types of tracks: ballast tracks and slab 

tracks. As those with single beam models are used generally to investigate ballast 

tracks. Where, those with double beam models are used to model Slab tracks. However, 

some researchers used double beam model to model ballast tracks.  
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Single beam models 

Single beam models can be classified to two classifications based on the 

continuity nature of the beneath supporting layer (Figure 6). The supporting layer can 

be modelled as continuous or discontinuous supporting layer [17]. 

 

 

 

Figure 6: Single beam models with, (a) continuous and (b) discontinuous supporting 

layer [17]. 

Single continuous beam models 

Mathews [27] modeled Euler Bernoulli beam on infinite elastic foundation 

without damping and he used Fourier transformation method to solve the beam’s 

differential equation. For the beam response he used Contour Integrals and Residue 

Theorem to calculate closed form solution. In his paper, the results are found for the 

case of complex poles i.e. for velocities below critical velocity. In another paper 

Mathews [28] manipulate the response in the presence of viscous damping including 

moving load with all velocities and excitation frequencies. The results show that all the 

poles are complex. In his paper, he found out special characteristics for the case of a 
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beam on elastic foundation without damping effect. The first one, is for velocities above 

critical velocity, purely real poles are founded.  The other one, is that in a moving frame 

of reference, the displacements are symmetrical about non-oscillating moving. 

The steady-state solution of a damped beam on elastic foundation due to a non-

oscillating moving load is investigated by Kenny [29]. The author takes into account 

velocities overhead critical velocity in his investigations. Number of authors in the 

literature found the steady state response of non-oscillating moving load of an 

undamped foundation case [30-32].  They study the influence of moving load on an 

infinite supported beam with undamped springs. Mathews in his papers [27, 28], used 

Fourier transformation to calculate the solution for the steady-state vibration of damped 

and un damped Euler Bernoulli beam due to oscillating moving load. Duffy [33] 

calculated the solution of the combined responses of transit and steady state responses 

of a beam on elastic foundation under a moving oscillating load. The author 

transformed the differential equation of the system into space and time domains. Duffy 

used Fourier transformation to make the differential equation with respect to space and 

he used Laplace transformation to make it with respect to time. Fryba [34], studied in 

detail the models of finite and infinite beams under moving oscillating load. The author 

found the responses of different loading patterns moving on finite and infinite beams 

models. 

Viscous damping is used in the above-mentioned papers, however Kim and 

Roesset [35] used  linear hysteretic damping to investigate beam on elastic foundation 

under either constant amplitude or harmonic moving load. The authors used Fourier 

transformation methods in the study to find the response in the transformed field of 

domain. They look on the effects of velocity, damping, loaded length and load 

frequency on the deflected shape and maximum displacement. 
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Single discontinuous beam models 

All of the above beam models are modelled as continuous models without 

discontinuity, however, there are variety of methods in the literature to solve discrete 

continuous models that take into accounts the dynamic behavior of the discontinuity of 

the rails along the track such as rail joints and discrete supports (sleepers) which are 

periodically applied in the presented models. 

 An in depth study of wave propagation in two coupled systems ; mono and 

multi coupled system has been done by Mead [36, 37]. In his papers, it is found that 

there are two types of zones found for the response of the structure as a function of 

frequency. Due to the periodicity, the two zones are observed. The two noticed zones 

are, stopping band zone at where the energy does not dissipate in the structure and 

passing band zone at where the energy propagate in the structure.  

 Jezequel [38] analyzed infinite beam supported periodically by lateral and 

torsional stiffness under non-oscillating moving loads by using the generalized Fourier 

method. Using this method facilitated the process of describing the behavior of all the 

points of the beam with respect to space and time in one deferential equation. The author 

summed a series of delta function that represent the periodical discontinuities. Solutions 

of the steady state are summed as a Fourier series with unknown coefficients that are 

found by substituting the solutions back to the differential equations of motion, then the 

equations are Fourier transformed into algebraic equations that can be solved for the 

unknown coefficients. 
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Figure 7: Beam in a periodic structure subjected to a moving force [38] 

Kisilowski. et al. [39] did Jezequel’s method taking into consideration the 

moving load on a periodically supported rail, where the load applied is the wheel load. 

The wheel is modelled as mass of single degree of freedom on a spring moving with 

zero acceleration. The same method was used to study disconnectedly supported rail 

under moving wheel set and harmonic moving load by Ilias and Muller [40]. 

Krzyzynski [41] modelled Euler Bernoulli infinite beam supported discretely using 

Floquet's method under a harmonic moving load. The discreet supports under the Euler 

Bernoulli Beam consist of spring dashpot to consider the rail pad, a mass to account for 

sleeper and one more spring dashpot to take into consideration the ballast. Krzyzynski 

used Floquet’s solution of the differential equation of motion taking the benefit of the 

periodicity condition of the track in the longitudinal direction. Furthermore, he analyzed 

the wave propagated along the infinite Euler Bernoulli beam. Muller et al. [42] did a 

comparison between two semi analytical methods that are used in solving infinite 

periodic structures  using two beam formulations to account for the rail. They apply 

Generalized Fourier method using Timoshenko beam theory and Floquet’s methods 

using Euler Bernoulli beam. For Timoshenko beam, it was modelled with significantly 
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high shear stiffness, low damping and significantly low rotational inertia. The other 

beam formulation (Euler Bernoulli beam), was modelled as an un damped beam. The 

results were compared to the corresponding Timoshenko beam results and they found 

that the two methods produce similar results.  

Hildebrand [43] investigated in the vibration reduction in railway tracks. His 

model includes the two rails supported by periodical sleepers on continuous visco-

elastic foundation. The continuous visco-elastic foundation is used in his model to 

account for the ballast layer. His technique in his paper was based on considering a 

junction of the rail on the sleeper and computes the displacements. The calculated 

displacements were in terms of evanescent and propagating waves. Three groups of 

equation were taken into consideration in calculating the solution. The three set of 

equations are expressing: the compatibility conditions, the periodicity in the 

longitudinal direction and the reflection of waves from the junction on the other rail. 

Hildebrand found that at frequencies above 200 Hz, a model missing the second rail 

over calculates the attenuation. Another model of continuous discretely supported beam 

done by Nordborg [44] using Euler Bernoulli beam supported by different discrete 

supports. His model used to calculate a closed form solution under oscillating 

nonmoving load. The equations of motion used in his paper are transformed to 

wavenumber –frequency domain then solved using Floquet’s method. In another paper 

[45] he used Green’s function results [44] in the frequency- space domain to find the 

rail response under oscillating moving load. The author integrated in the space domain 

the Green’s function multiplied by frequency domain force at specific frequency in 

order to find the frequency domain response at certain rail point. The author used this 

technique to study vibration from unevenness railway under moving wheel. 
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Smith and Wormley [46] use the Fourier transform techniques which is used to 

do computations for one repetitive unit and by using the periodicity condition the 

solutions for the other units are obtained. They used Fourier transform techniques to 

model a Euler Bernoulli beam periodically supported under a constant moving load. In 

computing the beam response under spatially distributed load the convolution integrals 

are used. They did an approximation representation model of the infinite span of the 

beam by modelling finite spans supported in a periodic manner. Regarding Fourier 

transform methods, differential equations of the selected unit (finite span) is 

transformed to frequency domain and an unknown coefficient resulted from this 

transformation are solved by using the boundary conditions of the unit. The resulted 

equations are then transformed to time domain. The periodicity condition is used to 

account for the infinite beam span. Smith et al. [47] In another paper used different 

technique called an approximate modal analysis technique. In this paper, they coupled 

vehicle model with the track by modelling a finite beam as an approximation of the 

infinite beam model.  

Resilient hinges where used by Belotserkovskiy [48] to account for rail joints 

in his model. The author modeled the rails as a Euler Bernoulli beam under harmonic 

moving load. The author used Fourier transform techniques to study his model. The 

author used the same technique to analysis Timoshenko beam model with 

discontinuous supports. 

Double beam models  

Double beam models are mainly used to model slab tracks as the top beam is 

accounting for the rails and the bottom one is accounting for the slab. However, the 

literature does include many investigations on double beam system with one layer of 

resilient elements between the two beam layers.  
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For example Kessel [49] studied the resonance conditions in double beam 

system with an elastic layer in between under moving oscillating load. The double beam 

system used by Kassel is simply supported with finite length. The author found that in 

addition to the expected case of resonance- that happened when the frequency off the 

applied load corresponds to the natural frequency of the system- the load movement 

frequency also causes resonance of the system. 

 Vu et al. [50]  Investigated the vibration of double beam system under harmonic 

excitation to find the complete solution. The resilient layer is representing the 

distributed visco elastic material. In his model Euler Bernoulli formulation with viscous 

damping are used. The differential equations are solved by changing variables and 

doing modal analysis. Han and Shiu [51] modelled an elevated railway track under a 

harmonic moving loads. They modelled an elevated ballast track for three different 

cases using Timoshenko beam formulations. Two of the presented cases in this paper 

are double beam models. One is modelled as finite simply supported double beam 

system with a visco-elastic layer in between representing the ballast.  
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Figure 8: The models of an elevated railway used in [51] 

 In this model the top Timoshenko beam is accounting for the rails and the 

bottom on is accounting for the girder. The other one, is taking into account the fact of 

track infinity. They model it as a semi-infinite structure on the left and right side of the 

elevated model. The semi-infinite section is modelled as Timoshenko beam on a visco-

elastic foundation. This paper came out with the resonant curves for the three cases of 

an elevated railway tracks under moving harmonic loads.  
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Floating Slab Track 

In the floating slab tracks the concrete slab is supporting the rails via the 

fastening system and rail pads and is setting on the slab bearings. This part of the track 

(concrete slab) can be discontinuous slab units or continuous slab. If the concrete is 

poured in situ it will be continuous floating slab track. However, if it is precast concrete 

units, it will be discontinuous floating slab track.  

 

 

 

Figure 9: Double-beam models of floating-slab track with (a) a continuous slab (cast 

in-situ) and (b) discrete slabs (pre-cast sections) [52]  

Samavedam and Cross [53] modeled floating slab track to investigate vibration 

isolation. They used two Winkler beam representing rails and slab. First beam that 

represent rails, is setting on a mass of springs that account for the rail pads supported 

by the second beam that account for the concrete slab part of the track. Slab beam is 

resting on a mass of springs that account for resilient elements. In their model they deal 

with the tunnel floor as a rigid foundation. Forrest [52] modeled continuous and 

discontinuous floating slab tracks under oscillating nonmoving load using repeating 

unit method. In his model the rails and slab are modelled as infinite Euler Bernoulli 

beams. For the slab beam the author used an infinite homogenous beam to account for 

continuous floating slab tracks. For discontinues floating slab tracks, he used finite slab 

beams periodically supported by resilient bearings springs. Forrest used Dynamic 
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Stiffness method with Repeating Unit method to report the relationship between 

deformation and forces on the left and on the right of the repeating units. Then the 

Dynamic Stiffness matrix of the semi-infinite track (on the left or right of the load) is 

produced using Floquet’s method. Using the boundary condition of the semi-infinite 

track and the fact of that at infinity the responses decay to zero the track response can 

be obtained.  

Cui and Chew [54] used Receptance method to investigate the effectiveness of 

floating slab track to fixed slab track system under moving and non-moving harmonic 

loads. Floating slab track in this paper, is modelled as double Timoshenko beams. For 

the slab part in the model, it is modeled discontinuously supported elastically by 

continuous elastic foundation. In solving the differential equations of motion, they used 

Laplace transformation techniques. When it is compared to the fixed slab track, they 

found that floating slab tracks reduce the forces transmission for frequencies above 

designed frequency.  

Hussein and Hunt [55] extend Forrest’s continuous floating slab model with 

accounting for oscillating moving loads. They used two Euler Bernoulli beams to 

account for the rails and the slab and two layers of s continuous springs. The first layer 

is to account for rail pads that are between rails and the slab. The second layer is used 

to represent the slab bearings below the slab. They used Fourier transformation method 

to compute displacements of the track. They also include in this paper a brief 

explanation of basic concepts of vibration of infinite systems. In another paper Hussein 

and Hunt [56] used different methods to model discontinous floating slab track under 

moving oscilliating load. The authors used three methods of modelling the discontinous 

floaing slab track. The three methods used are: Repating Unit method, the Periodic 

Forier method and the Modified Phase method. The authors found out that velocitices 
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less than 100 Km/hr has an insignificant effect on the displacment of the floating slab 

track. In another paper [57], they modelled discontinous floating slab track to study the 

dynamic effect of slab discontinuity in the underground railway on the running trains. 

The authors used Fourier series techniques to develop a method to couple moving train 

to a discontinous floating slab track.It is found that dynamic behaviour due to slab 

discountuinty is affected if the heavy trains or high speed trains are running in the 

underground railway tracks.  

Hussein and Costa [58] accounts for discontinuous floating slab tracks with end 

bearings and they study its dynamic behavior. They used the same model of 

discontinues floating slab track mentioned in the previous works. They applied an end 

bearing between discontinuous slab units under harmonic moving load. They aimed to 

explain the effect of the vertical stiffness of the end bearings on the dynamic response 

of the tracks. They found that, the use of the end bearings between discountinous slab 

units reduce vibraton at free-free slb reasonance.    

Yang et al. [59] applied stiffness Enhancement Measure (SEM) of slab end for 

discontinuous FST. They coupled dynamic model for train and FST to investigate the 

dynamic behavior of SEM on the train and FST. SEM can be done by increasing the 

supporting stiffness at the slabs ends and/or applying of end slab bearings between 

consecutive slab units. They studied the dynamic influence of each SEM on the train 

and FST. In their paper they determined optimal parameters for both SEMs to be used 

in the design of FST. They found that SEM at positions of slab ends has considerable 

significance on dynamic behaviors of FST. Elsewhere in the trach it has negligible 

effect. Also, using end bearings allow to increase service life of fasteners as it improves 

loading condition of fasteners at slab ends. Vertical displacement is significantly 

reduced by applying supportive stiffens at slab ends.  
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Wei et al. [60] used dowel joints in their discountinous FST model and explore 

its influence on the dynamic behaviour of train-FST system. The authors used two 

dowel models to model dowel joints at the ends of discountinous FST. The two dowel 

joints models  are shear spring dashpot model and bending spring dashpot model.For 

the vertical restrictions, shear spring dashpot model is appplied and for rotatinal 

restrictions bending spring dashpot model is used. The authors used modal superpoition 

method and Newtmark β method to numerically calaculate the results. The authors did 

a prarmetric analysis for three cases including no dowel model,shear dowel model and 

bending dowel model. The authors found out that vibration is reduced by using  both 

shear and bending dowel models. The displacement difference of adjacent FS is reduced 

significantly in shear dowel model with out decreasing displacment amplititude.Where, 

it is the opposite for bending dowel model. The stiffness of the both dowel model 

influence significantly the analysis for train-FST system, where damping coffecitns 

have almost negligble effect. 

2.3 Experimental Vibration Measurements 

A experimental vibration measurements provide a valuable data of vibrations 

induced by running trains. Number of researchers measured vibrations from an in situ 

FSTs; and Others have conducted vibration tests on FSTs prototypes in a laboratory 

environment. This section reviews the in-situ and laboratory vibration tests conducted 

on different FSTs systems. 

2.3.1 In Site Vibration Measurements 

The earliest in situ vibration measurements were done by Rücker in 1977 [61]. 

The author measured induced vibrations for Berlin Metro. London Transport Office of 

the scientific adviser measured vibrations of Jubilee line of London underground 

railway at Baker Street on 1982 [62]. 
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In 1990,vibration measurement data was collected from Beijing subway railway 

tunnel at pre-located points of the track [63]. The measurements are used to analyze 

dynamic responses of specified points on the track under moving train.  

Wolf measured induced vibration from underground light rail transit [64]. The 

author aimed to anticipate ground vibration at low frequencies. In his work, he showed 

results of predictable ground displacement of nearby structures from underground light 

rail transit operations using experimental measurements and finite model.  

From on ground and in underground level vibration measurement were obtained 

from underground tunnel of  Line 1 of the Beijing Mero in China [65].  

San Francisco Bay Area Rapid Transit (BART) system experienced many 

vibration measurements [11]. The data was collected from different forms of the Bay 

area rapid transit system. The different forms includes : resiliently supported half-

sleepers ,floating slabs and high-resilience fasteners in subway and section of floating 

slab used on ground level track. The work aimed to anticipate future vibration 

mitigation from the track. The results showed that some of the track forms used in 

BART system produced as expected results of vibrations like floating slabs and high 

resilience fasteners. The results of high resilience supported half-sleepers were not 

promising as expected. 

 The Bakerloo line of London Underground experienced an in-situ vibration 

tests [66]. The tests were within the CONVURT project at a location in Regent’s Park. 

A test train is used to do the vibration measurements. It passed 35 passages during the 

experimental tests with a speed range of 20km/h to 50km/h. Vibrations were conducted 

on the test train’s axel box, on the tunnel wall and tunnel invert and on different levels 

of the ground. For the ground vibration data, the data was collected on the ground level 

and 15 m below the ground level. Two buildings were used two conduct vibrations from 

https://www.sciencedirect.com/topics/engineering/san-francisco-bay
https://www.sciencedirect.com/topics/engineering/fasteners
https://www.sciencedirect.com/topics/engineering/subways
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floors and columns of the structures. The buildings were 70 m away from the tunnel. 

The collected data assisted to determine the dynamic soil properties, rail and wheel 

roughness and track properties. 

2.3.2 Laboratory Vibration Measurements 

 At an underground laboratory of Beijing Jiaotong University a low frequency 

vibration measurements were carried out on floating slab track[67]. SBZ30 unbalanced 

shaker was used as low frequency experiment excitation source (Figure 10 ). Vibration 

responses were collected from bogie of the shaker, the slab, the rail, the tunnel invert 

and apex. A distance of 80 m from the track and on nearby many floors building, the 

measurements were also obtained. 

  

 

 

Figure 10: Unbalanced shaker used in the experiment [67]. 

 



  

22 

 

The results of the experimental vibration test aimed to improve methods of 

controlling low frequency vibrations. The collected data can be used to develop 

efficient countermeasures to reduce low frequency vibration mitigation. 

An innovative floating slab track was used to reduce amount of vibration by 

implementing recycled rubbers as slab bearings [68]. An experimental test was carried 

out to investigate dynamic and static behavior of the railway track. The test has done 

on the floating slab track prototype of ISOLGOMMA Research Centre in Pozzuoli 

(Figure 11). The experimental results are then used to validate numerical model. The 

numerical model is used to investigate different configuration of the innovative bearing 

system with different mechanical characteristics of the recycled rubber. 

 

 

 

Figure 11: FST prototype used in the experimental measurement [68]. 

 



  

23 

 

In 2015 many laboratory tests carried out on floating slab track with different 

bearing forms. The experimental measurements were conducted at underground 

laboratory of Beijing Jiaotong University [69]. Bearing supporting forms used under 

the floating slab track in the test were: linear supporting (Figure 12), full-surface 

supporting and point supporting (Figure 13). 

 

 

 

Figure 12: Plan view of the FST with linear supporting form used in the test [69] 

 

Figure 13: Plan view of the FST with point supporting form used in the test [69]. 
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Using frequency spectrum and time history analysis they found that the first 

resonant frequency of the point supporting, and linear supporting forms is less than the 

full surface supporting form. This difference is because of the declining supporting 

stiffness beneath the track. This reason illustrated the behavior of having an increase in 

the peak values of vibration accelerating in the frequency domain and time domain for 

floating slab track with point supporting and linear supporting forms. Floating slab track 

with point bearing supporting form has the lowest transfer ratio of vibration from the 

slab to the tunnel. 

An innovative integration between floating slab track and dynamic vibration 

absorbers (DVAs) to form vibration attenuation track (VAT) was tested 

experimentally[70].VAT passed through experimental tests and theoretical model to 

verify it’s capability of mitigating vibration at low frequencies. 

 

 

 

Figure 14: Proposed vibration attenuation track [70]. 
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The parameters of VAT that include dynamic vibration absorbers with floating 

slab track are determined from theoretical model (Figure 15) by using modal analysis 

technique and fixed-point theory.  

 

 

 

Figure 15: Single degree of freedom system attached with a DVA [70]. 

The vibration reduction behavior of the VAT is studied under train dynamic 

excitations using three-dimensional model coupling train with VAT system. The 

coupled three-dimensional model is validated by experimental measurements on full 

scale VAT prototype (Figure 17) under different harmonic excitations. 
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Figure 16: Full scale VAT prototype [70]. 

Both experimental and computational results show that DVAs absorb vibrations 

effectively. This absorption of vibration helps in significantly reducing subgrade 

vibrations at low frequencies. In site experiment on elevated Hangzhou Metro Line 1 

railway track has been carried out in 2018 to experiment ways of minimizing noise 

from metro viaduct [71]. In their work, three test cases were measured: using noise 

barrier with rack bed, using noise barrier with elastic mat FST and full surrounded noise 

barrier 5.1 m length with elastic mat FST. The three situations used in the test are shown 

in Figure 17. 
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Figure 17: The applied situations for the experiment: (a) using noise barrier, (b) 5.1 m 

full surrounded noise barrier, (c) elastic mat floating slab track [71]. 

The data was collected from the measuring points on the rails, the bridge and 

on the ground. The data was analyzed to see the reduction of noise from metro viaduct 

using different way of implementing noise barrier and elastic mat. The results of using 

elastic mat show an effective decrease of transferring vibration coming from wheel rail 

interaction to the bridge, but it could increase wheel rail noise. When elastic mat is 

tested the noise, reduction was noticed to be excellent on ground and in the region 

bottom of the bridge. For the measuring points in the region above and near to the rails 

a noticeable increase in noise has been detected. For bridge born noise there were no 

difference of reducing noise between two kind of noise barriers (vertical and full 

enclosed noise barriers). The full enclosed noise barrier reduces the noise coming from 

wheel rail interaction more than vertical noise barrier. 
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2.4 Gap of Knowledge  

As presented in the literature above extensive analytical and experimental 

investigations have been conducted for both continuous and discontinuous FSTs. 

Obviously, the previous numerical models cannot be used to investigate the dynamic 

behavior of the special FST which a constant cross-section assume along each slab unit. 

Furthermore, the actual behavior -that can be obtained by experimental measurements-

of the special FST is not provided in the previous reported experimental investigations.  

2.5 Thesis Novelty 

 In this thesis, the previous numerical models of FST is going to be modified to 

take into consideration the existence of the periodic grooves along the slab. The model 

is going to account for the changing cross sections of each slab unit. Dynamic behavior 

of this special FST model is going to be investigated under harmonic non-moving 

excitation in both bending and torsion. Besides, the special type of FST is going to be 

investigated experimentally by an in-situ vibration tests on a full-scale finite length 

mock up structure representing the special FST. 

2.6 Thesis Objectives 

As mentioned in Section 1.3, the aim of this work is to explore the influence of 

changing the groove thickness on the dynamic behavior of the special infinite FST. To 

do so, the infinite continuous FST model proposed in [52] is modified taking into 

account the changed cross sections of the slab unit -due to the existence of the periodic 

groove in the slab unit-  along the track. A full-scale mockup structure of the special 

FST with finite length is used for numerical and experimental investigations. For the 

numerical investigations, a fast running model based on the Dynamic Stiffness method 

and three-dimensional FE model are created where, the research assistant developed 

the FE model. The vibration response of the fast running model is then compared with 
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responses obtained from FE model for verifying the both numerical models. For the 

experimental investigations, an impact test is performed to identify the actual transfer 

functions of the mockup structure and to validate the fast running model. Then, the fast 

running model initial parameters are fine-tuned through model updating procedures 

done by the research assistant. The updated model is utilized in a parametric study to 

evaluate the influence of varying the thickness of the grooves on the dynamic response 

of the infinite special FST. The work carried out in this thesis is summarized in Figure 

18. 

 

 

 

Figure 18:Flow chart of the work of this thesis. 
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CHAPTER 3:MODELS’ FORMULATION 

3.1 Introduction 

In this chapter a fast running model based on the Dynamic Stiffness Method and 

a three-dimensional FE model are developed to model the special FST.  

For the fast running model, the model presented in [52] is modified to account 

for the cross sections variations along the slab units. The formulation of the fast running 

model includes the following subsections. The formulation of the equations of motion 

that describe the bending and torsional behavior of the track. Also, the computational 

process of the Dynamic Stiffness Matrix using Dynamic Stiffness Method. Then the 

development of the finite model of the special FST. Finally, the formulation of the 

infinite case of the special FST using Floquet’s Theorem.  

The FE model of the special FST, Abaqus 6.14 FE software [72] is used to 

develop the Three Dimensional (3D) FE model. The FE model formulation section in 

this chapter defines the characteristics used in the Abaqus 6.14 FE software that is 

operated to develop the 3D FE model.  

Furthermore, the multi-unit mockup structure representing the special FST is 

described at the beginning of this chapter, as its features are going to be used in the fast 

running model of the mockup and in the FE model for the verification process that is 

carried out in Chapter 4. The case of infinite special FST is going to be used in the 

parametric study shown in Chapter 5. 
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3.2 The Mockup Track 

The authors were given access to a full-scale mockup structure that represents 

the special FST system used in Doha metro. As shown in Figure 19, the mockup FST 

consists of 4 precast slab unit resting on heavy mass concrete. The floating slab is 

supported on 24 rubber point bearings distributed along the track underneath the heavy 

mass concrete. The precast slab units are 4.1-m-long spaced at 0.1 m intervals resulting 

in a total track length of 16.7m. The rails were attached to the precast slabs at 0.7 m 

intervals using 24 fasteners per rail. 

As depicted in Figure 20, four cross-sections with different geometries can be 

found along the floating concrete slab: 

Cross Section 1: precast slab unit and heavy mass concrete with shoulders. 

Cross Section 2: precast slab unit and heavy mass concrete without shoulders. 

Cross Section 3: heavy mass concrete only. 

Cross Section 4: heavy mass concrete with shoulders. 
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Figure 19: The mockup FST. 

 

Figure 20: Dimensions and cross-sections of the concrete slab of the mockup track. 
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3.3 The Fast Running Model Formulation 

Modeling the special FST utilizing Periodic Structure theory, improves 

understanding of its dynamic behavior with less computational time compared to the 

FE model. As illustrated in Figure 21, the model is consisting of three Euler Bernoulli 

beams. The upper two beams are representing the rails. The lower one is representing 

the slab part of the track. The slab part of the track consist of two segments to account 

for the changing of the slab cross sections. There are four continuous elastic layers 

(springs and dashpots) representing rail pads and slab bearings. The Track is resting on 

a rigid foundation. In this section special FST is going to be modelled using Dynamic 

Stiffness Method for a  non moving concetrated harmonic load applied on the rails. The 

slab is modelled in both bending and torsion. The whole track is divided into number 

elements and the Dynamic Sifness Matrix (DSM) is going to be computed for each 

element. 

 

 

 

Figure 21: Illustration of the model. (a) Cross section view. (b) Side view. 
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3.3.1 Equations of Motion 

To start modelling the special FST, it is necessarily to know the equations of 

motion for a beam subjected to bending and torsion. For Euler Bernoulli beam the 

convention formula for bending and torsion are as the following[73]: 

For bending 

𝐸𝐸𝐸𝐸
𝜕𝜕𝜕𝜕4

𝜕𝜕𝜕𝜕4
+ 𝑚𝑚

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
= 𝑓𝑓(𝜕𝜕, 𝜕𝜕)                                                            (1) 

where 𝐸𝐸𝐸𝐸 is the flexural stiffness of the beam (𝐸𝐸  is the Young’s modulus, I is the 

Moment of Inertia), 𝜕𝜕 is the vertical displacment, 𝑚𝑚 is the mass of the beam per unit 

length and 𝑓𝑓(𝜕𝜕, 𝜕𝜕) is the external applied force per unit length of the beam. 

For torsion 

𝐽𝐽
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
− 𝐺𝐺𝐺𝐺

𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
= 𝜏𝜏(𝜕𝜕, 𝜕𝜕)                                                          (2) 

where 𝐽𝐽  is the polar mass moment of inertia per unit length, 𝜕𝜕 is the angle of twist, 𝐺𝐺𝐺𝐺 

is the torsional stifness of the beam (𝐺𝐺 is the Shear Modulus,K the Torsion Constant of 

the cross section) and 𝜏𝜏(𝜕𝜕, 𝜕𝜕) is the external applied torque per unit length. 

Applying the conventional bending and torsional equations for Euler-Bernoulli 

beam on the beams of the special FST model as shown in Figure 21 obtain the following 

equations: 

For the left rail, the governing bending equation is  

𝐸𝐸𝐸𝐸𝑟𝑟,1
𝜕𝜕𝜕𝜕1

4

𝜕𝜕𝜕𝜕4
+ 𝑚𝑚𝑟𝑟,1

𝜕𝜕𝜕𝜕1
2

𝜕𝜕𝜕𝜕2
= 𝑓𝑓(𝜕𝜕, 𝜕𝜕)1                                                             (3) 

where 

𝑓𝑓(𝜕𝜕, 𝜕𝜕)1 =  −𝐺𝐺1 �𝜕𝜕1 − �𝜕𝜕3 + 𝜕𝜕
𝑏𝑏
2
�� − 𝐶𝐶1 �

𝜕𝜕𝜕𝜕1
𝜕𝜕𝜕𝜕

−
𝜕𝜕(𝜕𝜕3 + 𝜕𝜕 𝑏𝑏2)

𝜕𝜕𝜕𝜕
�           (3.1) 
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For the right rail, the governing bending equation is  

𝐸𝐸𝐸𝐸r,2
𝜕𝜕𝜕𝜕2

4

𝜕𝜕𝜕𝜕4
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𝜕𝜕𝜕𝜕2
2

𝜕𝜕𝜕𝜕2
= 𝑓𝑓(𝜕𝜕, 𝜕𝜕)2                                             (4) 

where 
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𝜕𝜕𝜕𝜕
�          (4.1) 

For the slab there are two governing equations. One for bending and the other 

one is for torsion. For the bending, the slab governing bending equation is 

𝐸𝐸𝐸𝐸3
𝜕𝜕𝑢𝑢3
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where 
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For the torsion, the slab governing torsion equation is  

𝐽𝐽3
𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
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𝜕𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
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where 

𝜏𝜏(𝜕𝜕, 𝜕𝜕)3 = 
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The general solution for bending equations (3), (4) and (5) in time and space 

domain is as the following: 

𝜕𝜕 = �
𝜕𝜕1
𝜕𝜕2
𝜕𝜕3
� 𝑒𝑒𝑖𝑖(𝜔𝜔𝜕𝜕+𝜉𝜉𝜕𝜕)                                                         (7) 

for the general solution for torsion equation (6) in time and space is as the following 

𝜕𝜕 = 𝜙𝜙𝑒𝑒𝑖𝑖(𝜔𝜔𝜕𝜕+𝜉𝜉𝜕𝜕)                                                                 (8) 

substituting the general solution in the equations (3), (4), (5) and (6) and equalize it to 

zero, results in the following matrix (next page). 

The below matrix can be simplified to be written as 

[𝐴𝐴] �

𝜕𝜕1
𝜕𝜕2
𝜕𝜕3
𝜙𝜙

� = 0                                                                            (9) 

where, equation (9) has two possible solutions: 

1. Trivial solution. 

2. Non-trivial solution. 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐸𝐸𝐸𝐸𝑟𝑟,1𝜉𝜉4 − 𝑚𝑚𝑟𝑟,1𝜔𝜔2

+𝑖𝑖𝜔𝜔𝐶𝐶1 + 𝐺𝐺1
0 −𝑖𝑖𝜔𝜔𝐶𝐶1 − 𝐺𝐺1

𝑏𝑏
2

[−𝑖𝑖𝜔𝜔𝐶𝐶1 − 𝐺𝐺1]

0 𝐸𝐸𝐸𝐸𝑟𝑟,2𝜉𝜉4 − 𝑚𝑚𝑟𝑟,2𝜔𝜔2

+𝑖𝑖𝜔𝜔𝐶𝐶2 + 𝐺𝐺2
−𝑖𝑖𝜔𝜔𝐶𝐶2 − 𝐺𝐺2

𝑏𝑏
2

[𝑖𝑖𝜔𝜔𝐶𝐶2 + 𝐺𝐺2]

−𝑖𝑖𝜔𝜔𝐶𝐶1 − 𝐺𝐺1 −𝑖𝑖𝜔𝜔𝐶𝐶2 − 𝐺𝐺2

𝐸𝐸𝐸𝐸3𝜉𝜉4 −𝑚𝑚3𝜔𝜔2

+𝑖𝑖𝜔𝜔𝐶𝐶3 + 𝐺𝐺3
+𝑖𝑖𝜔𝜔𝐶𝐶4 + 𝐺𝐺4
+𝑖𝑖𝜔𝜔𝐶𝐶1 + 𝐺𝐺1
+𝑖𝑖𝜔𝜔𝐶𝐶2 + 𝐺𝐺2

𝑏𝑏
2
�

𝑖𝑖𝜔𝜔𝐶𝐶3 + 𝐺𝐺3
−𝑖𝑖𝜔𝜔𝐶𝐶4 − 𝐺𝐺4
+𝑖𝑖𝜔𝜔𝐶𝐶1 + 𝐺𝐺1
−𝑖𝑖𝜔𝜔𝐶𝐶2 − 𝐺𝐺2

�

𝑏𝑏
2

[−𝑖𝑖𝜔𝜔𝐶𝐶1 − 𝐺𝐺1]
𝑏𝑏
2

[𝑖𝑖𝜔𝜔𝐶𝐶2 + 𝐺𝐺2]
𝑏𝑏
2
�

𝑖𝑖𝜔𝜔𝐶𝐶3 + 𝐺𝐺3
−𝑖𝑖𝜔𝜔𝐶𝐶4 − 𝐺𝐺4
+𝑖𝑖𝜔𝜔𝐶𝐶1 + 𝐺𝐺1
−𝑖𝑖𝜔𝜔𝐶𝐶2 − 𝐺𝐺2

�
𝑏𝑏2

4
�

𝑖𝑖𝜔𝜔𝐶𝐶3 + 𝐺𝐺3
𝑖𝑖𝜔𝜔𝐶𝐶4 + 𝐺𝐺4
𝑖𝑖𝜔𝜔𝐶𝐶1 + 𝐺𝐺1
𝑖𝑖𝜔𝜔𝐶𝐶2 + 𝐺𝐺2

�

−𝐽𝐽3𝜔𝜔2 + 𝐺𝐺𝐺𝐺3𝜉𝜉2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝜕𝜕1
𝜕𝜕2
𝜕𝜕3
𝜙𝜙

� = 0. 

For the trivial solution, the matrix of �

𝜕𝜕1
𝜕𝜕2
𝜕𝜕3
𝜙𝜙

� = 0, in this case this means that there 

are no displacement responses for the rails and slab. This solution is rejected as it not 

the appropriate solution for our case. 

For the non-trivial solution, determinant of  [𝐴𝐴] is equal to zero. This solution 

is going to be handled to find the general solution expression. The general solution 

expression is presented below in the coming section.  

 Determinant of  [𝐴𝐴] is a function of 𝜉𝜉,𝜔𝜔 and prescribed track parameters : 

𝐸𝐸𝐸𝐸r,1,𝐸𝐸𝐸𝐸r,2,𝐸𝐸𝐸𝐸3,𝑚𝑚r,1,𝑚𝑚r,2,𝑚𝑚3,𝐺𝐺1,𝐺𝐺2,𝐺𝐺3,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4,𝐶𝐶3,𝐺𝐺𝐺𝐺3 𝑎𝑎𝑎𝑎𝑎𝑎 𝐽𝐽3. The equation is 

of the 14th order. This means that, there are fourteen values of 𝜉𝜉. The excitation 

frequency (𝜔𝜔�) must be equal to angular frequency. This equalization will satisfy the 

boundary conditions of the track under the load when it is divided into two semi-infinite 

tracks.  
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3.3.2 Computation of The Dynamic Stiffness Matrix 

The track is divided into many elements. For each element the Dynamic 

Stiffness Matrix (DSM) is obtained. DSM is obtained for each element using the 

general solution expression for the response vector and boundary conditions of the 

element. 

The general solution expression is  

𝜕𝜕 = 𝐵𝐵1𝑉𝑉1𝑒𝑒𝜉𝜉1𝜕𝜕 + 𝐵𝐵2𝑉𝑉2𝑒𝑒𝜉𝜉2𝜕𝜕 + ⋯+ 𝐵𝐵14𝑉𝑉14𝑒𝑒𝜉𝜉14𝜕𝜕                                   (10) 

where, 𝜕𝜕 = �

𝜕𝜕1
𝜕𝜕2
𝜕𝜕3
𝜙𝜙

� is the response vector,   𝐵𝐵1, … ,𝐵𝐵14  are the constant coefficients and 

𝑉𝑉  is the eigenvector values of the matrix 𝐴𝐴 with zero eigenvalue, where for each value 

of 𝜉𝜉 there is a corresponding vector of 𝑉𝑉; and this because the matrix 𝐴𝐴 is already 

singular whenever the values of 𝜉𝜉 is substituted. 

The general solution equation is used to write the Dynamic Stiffness Matrix for 

single element using boundary conditions of the element. As illustrated in Figure22 and 

Figure 23, for a general element of the special FST, the left and right forces and 

displacements are: 

𝑄𝑄1𝐿𝐿 ,𝑄𝑄2𝐿𝐿 ,𝑄𝑄3𝐿𝐿 ,𝑀𝑀1𝐿𝐿 ,𝑀𝑀2𝐿𝐿 ,𝑀𝑀3𝐿𝐿 ,𝑇𝑇3𝐿𝐿 ,𝜕𝜕1𝐿𝐿 ,𝜕𝜕2𝐿𝐿 ,𝜕𝜕3𝐿𝐿 ,𝜃𝜃1𝐿𝐿 ,𝜃𝜃2𝐿𝐿 ,𝜃𝜃3𝐿𝐿 ,𝜕𝜕3𝐿𝐿 

𝑄𝑄1𝑅𝑅 ,𝑄𝑄2𝑅𝑅 ,𝑄𝑄3𝑅𝑅 ,𝑀𝑀1𝑅𝑅 ,𝑀𝑀2𝑅𝑅 ,𝑀𝑀3𝑅𝑅 ,𝑇𝑇3𝑅𝑅,𝜕𝜕1𝑅𝑅 ,𝜕𝜕2𝑅𝑅 ,𝜕𝜕3𝑅𝑅 ,𝜃𝜃1𝑅𝑅 ,𝜃𝜃2𝑅𝑅 ,𝜃𝜃3𝑅𝑅 ,𝜕𝜕3𝑅𝑅 

where 𝑄𝑄 is the shear force, 𝑀𝑀 is the moment, 𝑇𝑇 is the torque, 𝜕𝜕 is the vertical 

displacement, 𝜃𝜃 is the rotation angle and 𝜕𝜕 is the twist angle.  Subscripts 1,2,3 

represents the left rail, the right rail and the slab respectively. Subscripts L and R 

represents the left and right hand-side of the special FST element. 
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Figure 22: Boundry forces of an element of the specail FST (Right hand role is used 

to represent moment and torque). 

 

Figure 23: Boundary displacements of an element of the special FST (Right hand role 

is used to represent angle of rotation and angle of twist). 
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The special FST element as shown in Figure 22 or 23 is divided into two sub 

elements to account for the groove. In other words, the two sub elements have different 

slab segment’s characteristics and similar rail characteristics as illustrated in Figure 24. 

DSM is going to be obtained for the sub elements and then by using joint boundary 

condition between two sub elements, the DSM for the whole element is computed.  

 

 

 

Figure 24: Boundary conditions of the special FST element and its two sub-elements 

(Side view). 
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The bar is used in Figure 24 to represent the condensed boundary conditions. 

Where 𝑄𝑄�  is including shear force, moment and torque (for the slab beam). The 𝜕𝜕� is 

including vertical displacements, rotation angle and twist angle (for the slab beam) at 

the ends of the element. The boundary conditions for the sub elements are shown in the 

following tables. 

Table 1: Boundry Conditions of Sub Element 1 

At L1=0 At L1=L1 

𝜕𝜕1 = 𝜕𝜕1𝐿𝐿 𝐸𝐸𝐸𝐸1
𝑎𝑎𝜕𝜕13

𝑎𝑎𝜕𝜕3
= 𝑄𝑄1𝐿𝐿 𝜕𝜕1 = 𝜕𝜕1𝑅𝑅 𝐸𝐸𝐸𝐸1

𝑎𝑎𝜕𝜕13

𝑎𝑎𝜕𝜕3
= −𝑄𝑄1𝑅𝑅 

𝑎𝑎𝜕𝜕1
𝑎𝑎𝜕𝜕

= 𝜃𝜃1𝐿𝐿 𝐸𝐸𝐸𝐸1
𝑎𝑎𝜕𝜕12

𝑎𝑎𝜕𝜕2
= −𝑀𝑀1𝐿𝐿 

𝑎𝑎𝜕𝜕1
𝑎𝑎𝜕𝜕

= 𝜃𝜃1𝑅𝑅 𝐸𝐸𝐸𝐸1
𝑎𝑎𝜕𝜕12

𝑎𝑎𝜕𝜕2
= 𝑀𝑀1𝑅𝑅 

𝜕𝜕2 = 𝜕𝜕2𝐿𝐿 𝐸𝐸𝐸𝐸2
𝑎𝑎𝜕𝜕23

𝑎𝑎𝜕𝜕3
= 𝑄𝑄2𝐿𝐿 𝜕𝜕2 = 𝜕𝜕2𝑅𝑅 𝐸𝐸𝐸𝐸2

𝑎𝑎𝜕𝜕23

𝑎𝑎𝜕𝜕3
= −𝑄𝑄2𝑅𝑅 

𝑎𝑎𝜕𝜕2
𝑎𝑎𝜕𝜕

= 𝜃𝜃2𝐿𝐿 𝐸𝐸𝐸𝐸2
𝑎𝑎𝜕𝜕22

𝑎𝑎𝜕𝜕2
= −𝑀𝑀2𝐿𝐿 

𝑎𝑎𝜕𝜕2
𝑎𝑎𝜕𝜕

= 𝜃𝜃2𝑅𝑅 𝐸𝐸𝐸𝐸2
𝑎𝑎𝜕𝜕22

𝑎𝑎𝜕𝜕2
= 𝑀𝑀2𝑅𝑅 

𝜕𝜕3 = 𝜕𝜕3𝐿𝐿 𝐸𝐸𝐸𝐸3
𝑎𝑎𝜕𝜕33

𝑎𝑎𝜕𝜕3
= 𝑄𝑄3𝐿𝐿 𝜕𝜕3 = 𝜕𝜕3𝑅𝑅 𝐸𝐸𝐸𝐸3

𝑎𝑎𝜕𝜕33

𝑎𝑎𝜕𝜕3
= −𝑄𝑄3𝑅𝑅 

𝑎𝑎𝜕𝜕3
𝑎𝑎𝜕𝜕

= 𝜃𝜃3𝐿𝐿 𝐸𝐸𝐸𝐸3
𝑎𝑎𝜕𝜕32

𝑎𝑎𝜕𝜕2
= −𝑀𝑀3𝐿𝐿 

𝑎𝑎𝜕𝜕3
𝑎𝑎𝜕𝜕

= 𝜃𝜃3𝑅𝑅 𝐸𝐸𝐸𝐸3
𝑎𝑎𝜕𝜕32

𝑎𝑎𝜕𝜕2
= 𝑀𝑀3𝑅𝑅 

𝜙𝜙 = 𝜙𝜙3𝐿𝐿 𝐺𝐺𝐺𝐺
𝑎𝑎𝜙𝜙
𝑎𝑎𝜕𝜕

= −𝑇𝑇3𝐿𝐿 𝜙𝜙 = 𝜙𝜙3𝑅𝑅 𝐺𝐺𝐺𝐺
𝑎𝑎𝜙𝜙
𝑎𝑎𝜕𝜕

= 𝑇𝑇3𝑅𝑅 
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Table 2: Boundry Conditions of Sub Element 2 

At L2=0 At L2=L2 

𝜕𝜕1 = 𝜕𝜕1𝐿𝐿 𝐸𝐸𝐸𝐸1
𝑎𝑎𝜕𝜕13

𝑎𝑎𝜕𝜕3
= 𝑄𝑄1𝐿𝐿 𝜕𝜕1 = 𝜕𝜕1𝑅𝑅 𝐸𝐸𝐸𝐸1

𝑎𝑎𝜕𝜕13

𝑎𝑎𝜕𝜕3
= −𝑄𝑄1𝑅𝑅 

𝑎𝑎𝜕𝜕1
𝑎𝑎𝜕𝜕

= 𝜃𝜃1𝐿𝐿 𝐸𝐸𝐸𝐸1
𝑎𝑎𝜕𝜕12

𝑎𝑎𝜕𝜕2
= −𝑀𝑀1𝐿𝐿 

𝑎𝑎𝜕𝜕1
𝑎𝑎𝜕𝜕

= 𝜃𝜃1𝑅𝑅 𝐸𝐸𝐸𝐸1
𝑎𝑎𝜕𝜕12

𝑎𝑎𝜕𝜕2
= 𝑀𝑀1𝑅𝑅 

𝜕𝜕2 = 𝜕𝜕2𝐿𝐿 𝐸𝐸𝐸𝐸2
𝑎𝑎𝜕𝜕23

𝑎𝑎𝜕𝜕3
= 𝑄𝑄2𝐿𝐿 𝜕𝜕2 = 𝜕𝜕2𝑅𝑅 𝐸𝐸𝐸𝐸2

𝑎𝑎𝜕𝜕23

𝑎𝑎𝜕𝜕3
= −𝑄𝑄2𝑅𝑅 

𝑎𝑎𝜕𝜕2
𝑎𝑎𝜕𝜕

= 𝜃𝜃2𝐿𝐿 𝐸𝐸𝐸𝐸2
𝑎𝑎𝜕𝜕22

𝑎𝑎𝜕𝜕2
= −𝑀𝑀2𝐿𝐿 

𝑎𝑎𝜕𝜕2
𝑎𝑎𝜕𝜕

= 𝜃𝜃2𝑅𝑅 𝐸𝐸𝐸𝐸2
𝑎𝑎𝜕𝜕22

𝑎𝑎𝜕𝜕2
= 𝑀𝑀2𝑅𝑅 

𝜕𝜕3 = 𝜕𝜕3𝐿𝐿 𝐸𝐸𝐸𝐸3
𝑎𝑎𝜕𝜕33

𝑎𝑎𝜕𝜕3
= 𝑄𝑄3𝐿𝐿 𝜕𝜕3 = 𝜕𝜕3𝑅𝑅 𝐸𝐸𝐸𝐸3

𝑎𝑎𝜕𝜕33

𝑎𝑎𝜕𝜕3
= −𝑄𝑄3𝑅𝑅 

𝑎𝑎𝜕𝜕3
𝑎𝑎𝜕𝜕

= 𝜃𝜃3𝐿𝐿 𝐸𝐸𝐸𝐸3
𝑎𝑎𝜕𝜕32

𝑎𝑎𝜕𝜕2
= −𝑀𝑀3𝐿𝐿 

𝑎𝑎𝜕𝜕3
𝑎𝑎𝜕𝜕

= 𝜃𝜃3𝑅𝑅 𝐸𝐸𝐸𝐸3
𝑎𝑎𝜕𝜕32

𝑎𝑎𝜕𝜕2
= 𝑀𝑀3𝑅𝑅 

𝜙𝜙 = 𝜙𝜙3𝐿𝐿 𝐺𝐺𝐺𝐺
𝑎𝑎𝜙𝜙
𝑎𝑎𝜕𝜕

= −𝑇𝑇3𝐿𝐿 𝜙𝜙 = 𝜙𝜙3𝑅𝑅 𝐺𝐺𝐺𝐺
𝑎𝑎𝜙𝜙
𝑎𝑎𝜕𝜕

= 𝑇𝑇3𝑅𝑅 

 

The boundary conditions of sub element 1 and sub element 2 are applied back 

in the general solution expression equation (10). Then, the displacements (𝜕𝜕) and forces 

(𝑄𝑄) matrices can be written in terms of coefficients  𝐵𝐵1, … ,𝐵𝐵14 for the two sub elements. 

𝜕𝜕 = [𝑀𝑀]𝐵𝐵                                                                     (11) 

𝑄𝑄 = [𝑁𝑁]𝐵𝐵                                                                      (12) 

for equation (11) and equation (12) the matrices of 𝜕𝜕, 𝑄𝑄 and 𝐵𝐵  are as the followings: 

𝜕𝜕 = [𝜕𝜕1𝐿𝐿 ,𝜃𝜃1𝐿𝐿 ,𝜕𝜕2𝐿𝐿 , 𝜃𝜃2𝐿𝐿 ,𝜕𝜕3𝐿𝐿 , 𝜃𝜃3𝐿𝐿 ,𝜙𝜙3𝐿𝐿 ,𝜕𝜕1𝑅𝑅 , 𝜃𝜃1𝑅𝑅 ,𝜕𝜕2𝑅𝑅 ,𝜃𝜃2𝑅𝑅 ,𝜕𝜕3𝑅𝑅 , 𝜃𝜃3𝑅𝑅 ,𝜙𝜙3𝑅𝑅]𝑇𝑇 

𝑄𝑄 = [𝑄𝑄1𝐿𝐿 ,𝑀𝑀1𝐿𝐿 ,𝑄𝑄2𝐿𝐿 ,𝑀𝑀2𝐿𝐿 ,𝑄𝑄3𝐿𝐿 ,𝑀𝑀3𝐿𝐿 ,𝑇𝑇3𝐿𝐿 ,𝑄𝑄1𝑅𝑅 ,𝑀𝑀1𝑅𝑅 ,𝑄𝑄2𝑅𝑅 ,𝑀𝑀2𝑅𝑅 ,𝑄𝑄3𝑅𝑅 ,𝑀𝑀3𝑅𝑅 ,𝑇𝑇3𝑅𝑅]𝑇𝑇 

𝐵𝐵 = �𝐵𝐵1,𝐵𝐵2,𝐵𝐵3,𝐵𝐵4,𝐵𝐵5,𝐵𝐵6,𝐵𝐵7,𝐵𝐵8,𝐵𝐵9,𝐵𝐵10,𝐵𝐵11,,𝐵𝐵12,𝐵𝐵13,𝐵𝐵14�
𝑇𝑇
. 
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Matrices [𝑀𝑀] and [𝑁𝑁] is obtained for sub element 1 and for sub element 2 using 

the general solution expression in equation (10) and the boundary conditions of each 

sub elements. Then the DSM is obtained using equation (11) and equation (12) as the 

shown below, 

𝑄𝑄 = [𝑁𝑁]𝐴𝐴 = [𝑁𝑁][𝑀𝑀]−1𝜕𝜕 = [𝐺𝐺]𝜕𝜕 

[𝐺𝐺] = [𝑁𝑁][𝑀𝑀]−1                                                         (13) 

Matrix [𝐺𝐺] elements is divided into either 3x3 or 4x4 sub matrices that results 

in 14x14 matrix. Each sub matrix is relating forces with displacements of the element. 

Where subscripts r and s are used for the rails and the slab respectively. While subscripts 

L and R are used for representing left and right hand-side of the element.  

⎣
⎢
⎢
⎢
⎡𝑄𝑄
�𝑟𝑟𝐿𝐿
𝑄𝑄�𝑠𝑠𝐿𝐿
𝑄𝑄�𝑟𝑟𝑅𝑅
𝑄𝑄�𝑠𝑠𝑅𝑅⎦

⎥
⎥
⎥
⎤

= �

𝐺𝐺𝑟𝑟𝐿𝐿−𝑟𝑟𝐿𝐿 𝐺𝐺𝑟𝑟𝐿𝐿−𝑠𝑠𝐿𝐿 𝐺𝐺𝑟𝑟𝐿𝐿−𝑟𝑟𝑅𝑅 𝐺𝐺𝑟𝑟𝐿𝐿−𝑠𝑠𝑅𝑅
𝐺𝐺𝑧𝑧𝐿𝐿−𝑟𝑟𝐿𝐿 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿 𝐺𝐺𝑠𝑠𝐿𝐿−𝑟𝑟𝑅𝑅 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅
𝐺𝐺𝑟𝑟𝑅𝑅−𝑟𝑟𝐿𝐿 𝐺𝐺𝑟𝑟𝑅𝑅−𝑠𝑠𝐿𝐿 𝐺𝐺𝑟𝑟𝑅𝑅−𝑟𝑟𝑅𝑅 𝐺𝐺𝑟𝑟𝑅𝑅−𝑠𝑠𝑅𝑅
𝐺𝐺𝑠𝑠𝑅𝑅−𝑟𝑟𝐿𝐿 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿 𝐺𝐺𝑠𝑠𝑅𝑅−𝑟𝑟𝑅𝑅 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅

� �

𝜕𝜕�𝑟𝑟𝐿𝐿
𝜕𝜕�𝑠𝑠𝐿𝐿
𝜕𝜕�𝑟𝑟𝑅𝑅
𝜕𝜕�𝑠𝑠𝑅𝑅

� 

Two DSM for the two sub-elements [𝐺𝐺i] and [𝐺𝐺ii] are obtained. Subscripts i and 

ii refers to sub element 1 and sub element 2 respectively. After computing 

[𝐺𝐺𝑖𝑖] 𝑎𝑎𝑎𝑎𝑎𝑎 [𝐺𝐺𝑖𝑖𝑖𝑖], matrix [𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜕𝜕] for the entire special FST element is obtained using 

joint boundary conditions between sub elements (Figure 25). 
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Figure 25: Boundary conditions of both sub elements (Side view). 

Since the rails have a constant cross-section across sub-elements 1 and 2, the 

[𝐺𝐺] matrix for the two sub-elements is rearranged to obtain the [𝐺𝐺element] matrix. As 

illustrated in equation (14), the rearranged [𝐺𝐺] matrix is relating slab segment’s forces 

to the slab segment’s displacements. 

�𝑄𝑄
�𝑠𝑠𝐿𝐿
𝑄𝑄�𝑠𝑠𝑅𝑅

� = �𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅
𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅

� �𝜕𝜕�𝑠𝑠𝐿𝐿𝜕𝜕�𝑠𝑠𝑅𝑅
�                                              (14) 

Then the slab boundary conditions (Figure 26) are used in the computations of DSM of 

two sub elements. 
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Figure 26: Boundary conditions of slab segments of the sub elements (Side view). 

The equations for sub-elements 1 and 2 can be written as: 

�
𝑄𝑄�𝑠𝑠𝐿𝐿(𝑖𝑖)

𝑄𝑄�𝑠𝑠𝑅𝑅(i)
� = [𝐺𝐺i]  �

𝜕𝜕�𝑠𝑠𝐿𝐿(i)
𝜕𝜕�𝑠𝑠𝑅𝑅(i)

�                                                               (15) 

  �
𝑄𝑄�𝑠𝑠𝐿𝐿(ii)

𝑄𝑄�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)
� = [𝐺𝐺ii]  �

𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)
𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)

�                                                            (16) 

the whole element matrix [𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜕𝜕] should relate the following slab’s forces and 

displacements. 

�
𝑄𝑄�𝑠𝑠𝐿𝐿(i)

𝑄𝑄�𝑠𝑠𝑅𝑅(ii)
� = [𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜕𝜕] �

𝜕𝜕�𝑠𝑠𝐿𝐿(i)
𝜕𝜕�𝑠𝑠𝑅𝑅(ii)

�                                                 (17) 

Using the at joint conditions between the two sub elements (Equation 18), 

matrix [𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜕𝜕] is going to be formed from the DSM of the sub elements as the 

following: 

At joint conditions 

𝑄𝑄�𝑠𝑠𝑅𝑅(i) =  −𝑄𝑄�𝑠𝑠𝐿𝐿(ii)  and  𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖) = 𝜕𝜕�𝑠𝑠𝐿𝐿(ii)                                (18) 

 

 

𝜕𝜕�sL(i)
𝑄𝑄�sL(i)

𝜕𝜕�sR(i)
𝑄𝑄�sR(i)

L1

𝜕𝜕�sL(ii)
𝑄𝑄�sL(ii)

𝜕𝜕�sR(ii)
𝑄𝑄�sR(ii)

L2

Sub Element 1 Sub Element 2
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Writing required slab’s forces for the special FST element in an equations form  

𝑄𝑄�𝑠𝑠𝐿𝐿(i) = 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(i) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(i)                                            (19) 

𝑄𝑄�𝑠𝑠𝑅𝑅(ii) = 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖) + 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)                                        (20) 

substituting the first at joint boundary condition in equations (18)   

(𝑄𝑄�𝑠𝑠𝑅𝑅(i) =  −𝑄𝑄�𝑠𝑠𝐿𝐿(ii)) to the above equations 

𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖) =  −𝐾𝐾𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)𝑢𝑢�𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) − 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)         (21) 

using the other at joint boundary condition in equations (18)  

(𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖) = 𝜕𝜕�𝑠𝑠𝐿𝐿(ii)) and substituting it in equation 21, equation 21 can be written as: 

𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖) = 𝜕𝜕�𝑠𝑠𝐿𝐿(ii) = −�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1
𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(ii) − �𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 

𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1
𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖) 

back substitution of the above equation in equation (19) and (20) gives: 

𝑄𝑄�𝑠𝑠𝐿𝐿(𝑖𝑖) = 

𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖) �−�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1
𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖) 

−�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1
𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖)� 

𝑄𝑄�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖) = 

𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖) + 𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖) �−�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1
𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖) 

−�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖)𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖)� 

After using the at joint condition between the two sub elements, equation (19) 

and (20) turn out to represents the boundary conditions of the slab segment for the entire 

special FST element in terms of the slab’s forces and displacements (Figure 27). 
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Figure 27: Boundary conditions of the slab segment of the special FST element (Side 

view). 

Equation (19) and (20) is arranged to be written in a matrix form as the following: 

  �
𝑄𝑄�𝑠𝑠𝐿𝐿(𝑖𝑖)

𝑄𝑄�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)
�  =   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖) −𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖)

−𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)

−𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖)

𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝑅𝑅(𝑖𝑖) + 𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)�
−1

−𝐺𝐺𝑠𝑠𝑅𝑅−𝑠𝑠𝐿𝐿(𝑖𝑖𝑖𝑖)𝐺𝐺𝑠𝑠𝐿𝐿−𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝜕𝜕�𝑠𝑠𝐿𝐿(𝑖𝑖)
𝜕𝜕�𝑠𝑠𝑅𝑅(𝑖𝑖𝑖𝑖)

� 

where the above DSM is the [𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜕𝜕]. 

To construct the full DSM of the special FST element including the rails, 

[𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜕𝜕] is substituted back in the DSM [𝐺𝐺] that relates forces and displacements of 

the rails and the slab for the entire special FST element. 
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⎣
⎢
⎢
⎢
⎡𝑄𝑄
�𝑟𝑟𝐿𝐿
𝑄𝑄�𝑠𝑠𝑠𝑠
𝑄𝑄�𝑟𝑟𝑅𝑅
𝑄𝑄�𝑠𝑠𝑠𝑠⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐺𝐺𝑟𝑟𝐿𝐿−𝑟𝑟𝐿𝐿 𝐺𝐺𝑟𝑟𝐿𝐿−𝑠𝑠𝐿𝐿 𝐺𝐺𝑟𝑟𝐿𝐿−𝑟𝑟𝑅𝑅 𝐺𝐺𝑟𝑟𝐿𝐿−𝑠𝑠𝑅𝑅

𝐺𝐺𝑧𝑧𝐿𝐿−𝑟𝑟𝐿𝐿

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) −𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

𝐺𝐺𝑠𝑠𝐿𝐿−𝑟𝑟𝑅𝑅

−𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)

𝐺𝐺𝑟𝑟𝑅𝑅−𝑟𝑟𝐿𝐿 𝐺𝐺𝑟𝑟𝑅𝑅−𝑠𝑠𝐿𝐿 𝐺𝐺𝑟𝑟𝑅𝑅−𝑟𝑟𝑅𝑅 𝐺𝐺𝑟𝑟𝑅𝑅−𝑠𝑠𝑅𝑅

𝐺𝐺𝑠𝑠𝑅𝑅−𝑟𝑟𝐿𝐿

−𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

𝐺𝐺𝑠𝑠𝑅𝑅−𝑟𝑟𝑅𝑅

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

−𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝜕𝜕�𝑟𝑟𝐿𝐿
𝜕𝜕�𝑠𝑠𝑠𝑠
𝜕𝜕�𝑟𝑟𝑅𝑅
𝜕𝜕�𝑠𝑠𝑅𝑅

� 

where the DSM of the entire special FST element that is relating the boundary forces 

with displacements of the element of the special FST is: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐺𝐺𝑟𝑟𝐿𝐿−𝑟𝑟𝐿𝐿 𝐺𝐺𝑟𝑟𝐿𝐿−𝑠𝑠𝐿𝐿 𝐺𝐺𝑟𝑟𝐿𝐿−𝑟𝑟𝑅𝑅 𝐺𝐺𝑟𝑟𝐿𝐿−𝑠𝑠𝑅𝑅

𝐺𝐺𝑧𝑧𝐿𝐿−𝑟𝑟𝐿𝐿

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) −𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

𝐺𝐺𝑠𝑠𝐿𝐿−𝑟𝑟𝑅𝑅

−𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)

𝐺𝐺𝑟𝑟𝑅𝑅−𝑟𝑟𝐿𝐿 𝐺𝐺𝑟𝑟𝑅𝑅−𝑠𝑠𝐿𝐿 𝐺𝐺𝑟𝑟𝑅𝑅−𝑟𝑟𝑅𝑅 𝐺𝐺𝑟𝑟𝑅𝑅−𝑠𝑠𝑅𝑅

𝐺𝐺𝑠𝑠𝑅𝑅−𝑟𝑟𝐿𝐿

−𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖)

𝐺𝐺𝑠𝑠𝑅𝑅−𝑟𝑟𝑅𝑅

𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)

�𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖) +𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)�
−1

−𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖)𝐺𝐺𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠(𝑖𝑖𝑖𝑖) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Since the DSM for the special FST element is obtained, the DSM for finite and 

infinite special FST tracks can be computed as illustrated in Section 3.3.3 and Section 

3.3.4.   
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3.3.3 Fast Running Model of The Mockup 

Qatar Rail mock up track is divided into number of elements based on slab cross 

section configurations. Each element has different slab cross section. There are four 

configurations of slab cross section distributed along the mockup (Figure 20). In this 

finite model, the special FST DSM obtained above is used to compute DSM for each 

element of the mockup following the same procedures illustrated in the above sections. 

Since special FST DSM is used to compute the DSM of the mockup elements, 

the variation of the slab cross sections of the mockup track is taken into consideration. 

A global DSM of the mockup track is formed. The global stiffness matrix includes 

every DSM of each element of the mockup track.  

The global DSM is arranged based on FE techniques. Each element has 3 nodes 

on the left and 3 nodes on the right.  Every node in the track is given a number. The 

nodes represent the left and right end forces and displacements of each element. The 

global DSM of the track is relating forces and displacements of each element. Using 

the nodes number, the global DSM is arranged. Then, the response at any node on the 

track is obtained from the following relationship: 

[𝜕𝜕�𝜕𝜕] = [𝐺𝐺𝐺𝐺𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒]−1[𝐹𝐹𝜕𝜕]                                                 (22) 

where [F] corresponds to the external forces applied on the nodes. 

3.3.4 Fast Running Model of The Infinite Case 

For the infinite case, the special FST is modelled using Periodic Structure theory 

which is utilized by implementing the Repeating-Unit Method to calculate DSM of the 

infinite track from the DSM of an element. The infinite track is divided into two semi-

infinite tracks (Figure 28). The objective is to calculate DSM for a semi-infinite track. 

Then, DSM for the other semi-infinite track is calculated by using the boundary 
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conditions at the joint between the two semi-infinite tracks. Adding the DSMs of the 

two semi-infinite tracks together results in one DSM for the entire infinite track. 

 

Figure 28: Division of the infinite track to two semi-infinite tracks. 

Recalling the DSM of the specail FST element obtained in Section 3.3.2 to use 

it for computing DSM for the infinite track using Repeating Unit Method. The 

Repeating Unit Method uses the DSM of an element to genetrat [𝑇𝑇] matrix. [𝑇𝑇] matrix  

is called state matrix or transfer matrix. State matrix relates the state of displacements 

and forces at the left of jth+1 element to the state of displacements and forces at the left 

of jth element.Displacements and forces state of the  jth+1 and the  jth element are: 

𝑆𝑆𝑗𝑗+1 =  �𝜕𝜕�𝑟𝑟𝑠𝑠𝑇𝑇 𝜕𝜕�𝑠𝑠𝑠𝑠𝑇𝑇 𝑄𝑄�𝑟𝑟𝑠𝑠
𝑇𝑇 𝑄𝑄�𝑟𝑟𝑠𝑠

𝑇𝑇�
𝑇𝑇
 and 𝑆𝑆𝑗𝑗 =  �𝜕𝜕�𝑟𝑟𝑠𝑠𝑇𝑇 𝜕𝜕�𝑠𝑠𝑠𝑠𝑇𝑇 𝑄𝑄�𝑟𝑟𝑠𝑠

𝑇𝑇 𝑄𝑄�𝑟𝑟𝑠𝑠
𝑇𝑇�
𝑇𝑇

   (23) 

The eqilibrium conditions between two succesive elements is used to write [𝑇𝑇] 

matrix. The displacments at the right hand side of jth element is equal to that at left hand 

side of the jth+1 element. The forces at the right hand side of jth element is equal and 

opposite to that at left hand side of the jth+1 element. 
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⎣
⎢
⎢
⎢
⎡
𝑄𝑄�𝑟𝑟𝑠𝑠
𝑄𝑄�𝑠𝑠𝑠𝑠
𝑄𝑄�𝑟𝑟𝑠𝑠
𝑄𝑄�𝑠𝑠𝑠𝑠⎦

⎥
⎥
⎥
⎤

 j𝑡𝑡ℎ

= �

𝑄𝑄�𝑟𝑟𝑠𝑠
𝑄𝑄�𝑠𝑠𝑠𝑠

0
0

�

j𝑡𝑡ℎ

+

⎣
⎢
⎢
⎡

0
0

− 𝑄𝑄�𝑟𝑟𝑠𝑠
− 𝑄𝑄�𝑠𝑠𝑠𝑠⎦

⎥
⎥
⎤
j𝑡𝑡ℎ+1

= [𝐺𝐺] �

𝜕𝜕�𝑟𝑟𝑠𝑠
𝜕𝜕�𝑠𝑠𝑠𝑠
𝜕𝜕�𝑟𝑟𝑠𝑠
𝜕𝜕�𝑠𝑠𝑠𝑠

�

j𝑡𝑡ℎ

= [𝐺𝐺]

⎝

⎜
⎛
�

𝜕𝜕�𝑟𝑟𝑠𝑠
𝜕𝜕�𝑠𝑠𝑠𝑠
0
0

�

j𝑡𝑡ℎ

+ �

0
0
𝜕𝜕�𝑟𝑟𝑠𝑠
𝜕𝜕�𝑠𝑠𝑠𝑠

�

j𝑡𝑡ℎ+1

⎠

⎟
⎞

 

the above matrices can be simplified and condensed to 

�
𝑄𝑄�𝑠𝑠

j𝑡𝑡ℎ

−𝑄𝑄�𝑠𝑠
j𝑡𝑡ℎ+1

� = �𝐺𝐺𝐿𝐿−𝐿𝐿 𝐺𝐺𝐿𝐿−𝑅𝑅
𝐺𝐺𝑅𝑅−𝐿𝐿 𝐺𝐺𝑅𝑅−𝑅𝑅

� �𝜕𝜕�𝑠𝑠
j𝑡𝑡ℎ

𝜕𝜕�𝑠𝑠j
𝑡𝑡ℎ+1�                                    (24)   

 also, matrices of (23) can be condensed to be written as: 

𝑆𝑆𝑗𝑗+1 =  �
𝜕𝜕�𝑠𝑠
𝑄𝑄�𝑠𝑠
� and 𝑆𝑆𝑗𝑗 =  �

𝜕𝜕�𝑠𝑠
𝑄𝑄�𝑠𝑠
�                                                    (25) 

Equation (25) is used to make equation (24)  relates the state of displacemnts 

and forces at the left hand-side of the jth+1 element to the state of displacemnts and forces 

at the left hand side of the jth element, which will gives the transfer matrix 

�
𝜕𝜕�𝐿𝐿j

𝑡𝑡ℎ+1

−𝑄𝑄�𝐿𝐿
j𝑡𝑡ℎ+1� = � − 𝐺𝐺𝐿𝐿−𝑅𝑅−1𝐺𝐺𝐿𝐿−𝐿𝐿 𝐺𝐺𝐿𝐿−𝑅𝑅−1

𝐺𝐺𝑅𝑅−𝑅𝑅𝐺𝐺𝐿𝐿−𝑅𝑅−1𝐺𝐺𝐿𝐿−𝐿𝐿 − 𝐺𝐺𝐿𝐿−𝑅𝑅 −𝐺𝐺𝑅𝑅−𝑅𝑅𝐺𝐺𝐿𝐿−𝑅𝑅−1
� �
𝜕𝜕�𝐿𝐿ℷj

𝑡𝑡ℎ

𝑄𝑄�𝐿𝐿
j𝑡𝑡ℎ � = [𝑇𝑇] �

𝜕𝜕�𝐿𝐿j
𝑡𝑡ℎ

𝑄𝑄�𝐿𝐿
j𝑡𝑡ℎ� 

The solution of the above equation is based on Floquet’s Theorem. The states 

propagate along the structure unchanged excepting the ampliude and phase. Then from 

jth element to jth+1 element complex amplitiude modication factor (ℷ) is multiplied by 

the state of jth element 

𝑆𝑆𝑗𝑗+1 =  [𝑇𝑇]𝑆𝑆𝑗𝑗 and 𝑆𝑆𝑗𝑗+1 =  ℷ𝑆𝑆𝑗𝑗                                     (26) 

equation (24) is  presenting the statement of the Floquet’s Theorem which gives 

[𝑇𝑇]𝑆𝑆𝑗𝑗 =  ℷ𝑆𝑆𝑗𝑗                                                      (27) 

This an eignvalue-eignvector problem in [𝑇𝑇] with eignvalues ℷ and eignvectors 

𝑆𝑆𝑗𝑗. The state matrix [𝑇𝑇] is a 14x14 matrix, so there are 14 eignvalues corrosponding to 

14 eignvectors.For absolute eignvalues less than 1, i.e |ℷ| < 1, the solution is decaying 

along the track as the distance from the excitation point increases. For absolute 
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eignvalue more than 1, i.e |ℷ| > 1, the solution is growing along the track as the distance 

from the excitation point increases. There are 7 eigenvalues representing each of the 

both solutions. Since the response of the excitation at free end must vanish as the 

distance from the excitation point goes to infinity, the 7 eigenvalues with |ℷ| > 1 and 

their corresponding eigenvectors are used to obtain the DSM for the semi-infinite track. 

The coefficients of each eigenvector are expressed as 

𝐶𝐶 = [𝐶𝐶1 𝐶𝐶2 𝐶𝐶3 𝐶𝐶4 𝐶𝐶5 𝐶𝐶6 𝐶𝐶7]𝑇𝑇                              (28) 

The state at the free end of the left-hand side of the first element in the semi-

infinite track is expressed as linear equation including 7 eigenvalues, 7 eigenvectors 

and their coefficients. Splitting the 7 eigenvectors between displacements and forces at 

the free end state results in 

𝜕𝜕�𝐿𝐿@𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = [𝜕𝜕1� 𝜕𝜕2� 𝜕𝜕3� 𝜕𝜕4� 𝜕𝜕5� 𝜕𝜕6� 𝜕𝜕7�]𝑇𝑇𝐶𝐶 =[𝜕𝜕�]𝐶𝐶              (29) 

𝑄𝑄�𝐿𝐿@𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = [𝑄𝑄1� 𝑄𝑄2� 𝑄𝑄3� 𝑄𝑄4� 𝑄𝑄5� 𝑄𝑄6� 𝑄𝑄7�]𝑇𝑇𝐶𝐶=�𝑄𝑄��𝐶𝐶             (30) 

where the hat indicates eigenvector quantity. Equation (29) and equation (28) are used 

to obtain 7x7 DSM matrix for the semi-infinite track. The DSM of the semi-infinite 

track relates the forces with the displacement at the free end  

𝑄𝑄�𝐿𝐿@𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑄𝑄��[𝜕𝜕�]−1𝜕𝜕�𝐿𝐿@𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 = [𝐺𝐺+∞]𝜕𝜕�𝐿𝐿@𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒                (31) 

From DSM of one element of the track DSM for semi-infinite track is 

constructed. Using a FE technique for getting the DSM for the semi-infinite track, 

requires adding large number of elements together to obtain a converged response. 

Where, the repeating unit method involves only one simple computational step to obtain 

DSM for semi-infinite track.  

The DSM for the other semi-infinite track [𝐺𝐺−∞] can be obtained by following 

the same procedures explained above. An alternative way to calculate it, is by using the 

symmetry condition of the track. The symmetry condition is only different at free end 
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of the other semi-infinite track. The sign of the obtained semi-infinite DSM [𝐺𝐺+∞] 

elements that relates the free end forces with rotations, free end moments with 

displacements and free end torque with displacements are changed. The DSM for the 

whole infinite track is obtained by adding the both DSMs of the two semi-infinite tracks 

together.  

[𝐺𝐺+∞] + [𝐺𝐺−∞] = [𝐺𝐺∞]                                             (32) 

Then the response under the load can be obtained by using the below relation 

�
𝜕𝜕�1
𝜕𝜕�2
𝜕𝜕�3
� = [𝐺𝐺∞]−1 �

𝐹𝐹1
𝐹𝐹2
0
�                                              (33) 

where 𝜕𝜕�1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕�2 are 2x1 submatrix representing the displacements and the rotations of 

the rails. 𝜕𝜕�3 is 3x1 submatrix of displacement, rotation and angle of twist of the slab. 

External forces and moment applied on rails are F1 and F2. F1 and F2 are 2x1 sub 

matrix of �𝑓𝑓1
0
� and �𝑓𝑓2

0
� respectively. The external excitation 𝑓𝑓1 and 𝑓𝑓2 are set to equal 

to 1. There is no external moment on the rails, then it is equal to zero. There are no 

external forces, moment and torque on the slab, then it is equal to zero. 

To find the state at any point on the track, the state at n units of the excitation point 

should be known first 

𝑆𝑆𝑒𝑒 = 𝐶𝐶1ℷ1𝑆𝑆1̅ + ⋯+ 𝐶𝐶7ℷ7𝑆𝑆7̅                                           (34) 

where, 𝑆𝑆̅ and ℷ is the corresponding eigenvectors and eigenvalues of the state matrix 

[𝑇𝑇] for the decaying solutions. After finding the state at left hand side of the n unit from 

the excitation point, back substitution process can be followed to find the state at any 

point along the n unit. Obtained state matrix from equation (34) of the n unit is used to 

compute matrix [𝑁𝑁] and matrix [𝑀𝑀]  to get the constant coefficients 𝐵𝐵1, … ,𝐵𝐵7. By 

substituting the obtained constant coefficient in equation (11) and (12), the state is 

calculated at any point along the unit. 
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3.4 The Finite Element Model Formulation for The Mockup Track 

In order to verify the mockup fast running model introduced in Section 3.3.4, a 

3D FE model of the mockup FST was created using Abaqus 6.14 FE software [72]. The 

floating concrete slab was modeled using C3D8R solid elements (8-node linear brick 

with reduced integration), while the rails were modeled using B31 beam elements (2-

node linear beam in space). The vertical stiffnesses of the rail fasteners and rubber pads 

were represented by linear spring elements (SPRINGA and SPRING1, respectively), 

while the viscous damping values were modeled using linear dashpot elements 

(DASHPOTA and DASHPOT1, respectively). A fine mesh with a nominal element size 

of 0.05 m was used, resulting in a total of 232736 elements and 263203 nodes. 

The cross-sectional properties of the FST and rails along with the stiffness and 

damping values of the fasteners and pads are reported in Table 3. The values on Table 

3 are per the drawings and the specifications provided by the manufacturer. 

A frequency extraction analysis was carried out in Abaqus using Lanczos 

eigenvalue solver and the high-performance SIM architecture to identify the natural 

frequencies and mode shapes up to 80 Hz.  
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Table 3: Initial Model Parameters. 

ID Quantity Description Value 

1 𝑠𝑠𝑠𝑠,1 Length of segment 1 of the slab (m) 3.80 

2 𝑠𝑠𝑠𝑠,2 Length of segment 2 of the slab (m) 0.30 

3 𝑠𝑠𝑠𝑠,3 Length of segment 3 of the slab (m) 0.10 

4 𝑠𝑠𝑠𝑠,4 Length of segment 4 of the slab (m) 0.05 

5 𝑠𝑠 Total slab length (m) 16.7 

6 𝑚𝑚𝑟𝑟,1,𝑚𝑚𝑟𝑟,2 Rail mass (kg/m) 76.284 

7 𝑚𝑚𝑠𝑠,1 Mass of segment 1 of the slab (kg/m) 4261.68 

8 𝑚𝑚𝑠𝑠,2 Mass of segment 2 of the slab (kg/m) 3452.64 

9 𝑚𝑚𝑠𝑠,3 Mass of segment 3 of the slab (kg/m) 2508.00 

10 𝑚𝑚𝑠𝑠,4 Mass of segment 4 of the slab (kg/m) 3317.04 

11 𝐸𝐸𝐸𝐸𝑟𝑟,1,𝐸𝐸𝐸𝐸𝑟𝑟,2 Bending stiffness of the rail (Pa ∙ m4) 7.46×106 

12 𝐸𝐸𝐸𝐸𝑠𝑠,1 Bending stiffness of segment 1 of the slab (Pa ∙ m4) 1.61×109 

13 𝐸𝐸𝐸𝐸𝑠𝑠,2 Bending stiffness of segment 2 of the slab (Pa ∙ m4) 1.33×109 

14 𝐸𝐸𝐸𝐸𝑠𝑠,3 Bending stiffness of segment 3 of the slab (Pa ∙ m4) 3.98×108 

15 𝐸𝐸𝐸𝐸𝑠𝑠,4 Bending stiffness of segment 4 of the slab (Pa ∙ m4) 8.47×108 

16 𝐺𝐺𝐺𝐺𝑠𝑠,1 Torsional rigidity of segment 1 of the slab (Pa ∙ m4) 1.74×109 

17 𝐺𝐺𝐺𝐺𝑠𝑠,2 Torsional rigidity of segment 2 of the slab (Pa ∙ m4) 1.38×109 

18 𝐺𝐺𝐺𝐺𝑠𝑠,3 Torsional rigidity of segment 3 of the slab (Pa ∙ m4) 5.32×108 

19 𝐺𝐺𝐺𝐺𝑠𝑠,4 Torsional rigidity of segment 4 of the slab (Pa ∙ m4) 8.17×108 

20 𝐽𝐽𝑠𝑠 Mass polar moment of inertia of the slab (kg ∙ m2/m) 2400 

21 𝑘𝑘1,𝑘𝑘2 Stiffness of rail fasteners   (N/m/m) 2.03×107 

22 𝑘𝑘3,𝑘𝑘4 Stiffness of slab bearings   (N/m/m) 2.52×106 

23 𝑐𝑐1, 𝑐𝑐2 Damping of rail fasteners  (N ∙ s/m/m) 1.49×104 

24 𝑐𝑐3, 𝑐𝑐4 Damping of slab bearings  (N ∙ s/m/m) 3.74×104 

25 𝑏𝑏 Distance between rails (m) 1.50 
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CHAPTER 4: MODEL VERIFICATION, VALIDATION AND UPDATING 

PROCESS 

4.1 Introduction 

In this chapter the fast running model created in the previous chapter is verified, 

validated and updated. 

The verification section in this chapter includes the comparison of the transfer 

functions obtained from the fast running model of the mockup to those from the FE 

model. The transfer function of eight points due to a single harmonic concentrated load 

applied at the center of one of the rails are used in this comparison, where six points are 

located on the rails and two points are on the slab.  

For the validation process in this chapter, an experimental test is used to validate 

the fast running model. The experimental test is performed to explore the actual transfer 

function of the mock up track. Similar to the verification process, the response of eight 

points on the track due to an impulse excitation at the center of one of the rails are 

obtained. The obtained results from the experimental test are compared to those from 

the fast running model. 

Finally, this chapter contains a model updating process as an attempt to improve 

the agreement between the predicted and observed responses. A hybrid optimization 

process was carried out to automatically refine the parameters of the fast running model. 

This process merges a Genetic Algorithm (GA) as a global optimization tool with a 

local search strategy.  
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4.2 Model Verification 

A Matlab [74] function was written to carry out the computations discussed in 

Section 3.3.4 for the fast running model of the mock up track. The input parameters 

were introduced per Table 3. The acceleration response under the aforementioned 

loading scenario was computed at 8 points shown in Figure 29 (6 points on the rails and 

2 points on the slab) and then compared to the results obtained using the Abaqus FE 

model. 

 

 

 

Figure 29: The locations of the 8 points at which the response was computed. Points 1 

to 6 are on the rails. Points 7 and 8 are on the slab. The red cross represents the 

location of the concentrated harmonic load (Point 6). 

For the Abaqus FE model., the natural frequencies and mode shapes up to 80 Hz 

were obtained using frequency extraction analysis as mentioned in Section 3.4. The 

first natural frequency was 5.26 Hz corresponding to the resonance of the slab on its 

bearings, which can be estimated as:  

𝑓𝑓 =
1

2𝜋𝜋
�
𝐺𝐺bearings
𝑀𝑀slab

=
1

2𝜋𝜋
�

𝑠𝑠(𝑘𝑘3 + 𝑘𝑘4)
4𝑀𝑀1𝑠𝑠1 + 4𝑀𝑀2𝑠𝑠2 + 2𝑀𝑀3𝑠𝑠3 + 𝑀𝑀4𝑠𝑠4

                 (35) 

 

 

1 3 5 

2 4 6 
7 8 

× 
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The bending and torsional modes of the free-free slab model are presented in 

Figure 30. The frequency extraction process was followed by a mode-based 

steady - state dynamic analysis in the frequency domain to compute the dynamic 

response due to a single harmonic concentrated load applied at the center of one of the 

rails.  

The comparison provided in Figure 31 shows good agreement between the 

transfer functions computed using the fast running model and those estimated using the 

3D FE model. Discrepancies can be noticed especially around the frequency of the 3rd 

bending mode (41 Hz for the fast running model compared to 38 Hz for the 3D FE 

model). This can be attributed to the limitations of Euler-Bernoulli beam model which 

was used to formulate the numerical model. Another possible reason for this 

discrepancy is the fact that the point springs were used to represent the rail fasteners 

and slab bearings in Abaqus, while continuous layers of springs were assumed in the 

numerical model. Regardless, it can be stated that the fast running model and the FE 

model transfer functions are in very good correlation. 
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(1st bending mode: 9.14 Hz) (2nd bending mode: 20.47 Hz) 

  

(1st torsional mode: 25.36 Hz) (3rd bending mode: 38.08 Hz) 

  

(2nd torsional mode: 48.53 Hz) (4th bending mode: 66.65 Hz) 

Figure 30: The first six bending and torsional modes of the mockup computed using 

Abaqus 
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(Point 7) (Point 8) 

Figure 31: Transfer Function comparison between the results obtained using the fast 

running model and the ones computed for the Abaqus 3D FE model 

4.3 Experimental Test and Model Validation  

After the fast running model study and the FE model verification, an impact test 

was carried out to identify the vibration response of the mockup FST experimentally. 

A modal sledge hammer (B&K model 8210, Figure 32) was used to apply an impulse 

excitation at the center of one of the rails (Point 6 in Figure 29). Since the frequency 

range of interest in this work is 3-80 Hz, the soft tip of the hammer was used to avoid 

exciting higher frequencies. B&K accelerometers (model 8344) were used to measure 

the vibration response under the impulse force at the 8 points shown in Figure 29. As 

depicted in Figure 33a, PCB model 080A121 magnetic mounts were used to attach the 

accelerometers to the rails (Points 1 to 6). To attach the accelerometers to the concrete 

slab (Points 7 & 8), 1.5×1.5 cm steel plates were glued to the slab, and the magnetic 

mounts were inserted on top of them as shown in Figure 33b. 
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Figure 32: B&K model 8210 impact hammer 

  

(a) (b) 

Figure 33: B&K model 8344 accelerometers attached to: (a) the rail, (b) the slab. 

A 16-channel data acquisition device (model DT9857E-16) was used to collect 

the force and acceleration data. The modal analysis software ME’ScopeVES [75] was 

used to handle the data acquisition and processing operations. The test consisted of 10 

hammer impacts, each applied within a window of 8 s. The sampling frequency was 

taken as 2048 Hz, resulting is a frequency resolution of 0.125 Hz. Each transfer function 
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was determined by averaging the 10 records to minimize random noise. For all 

measurement points, coherence values close to 1.0 were observed across the frequency 

range of interest. This indicated a good correlation between the impulse excitation and 

the acceleration signals [76]. 

Figure 34 compares the transfer function under the load (point 6) that is obtained 

experimentally to that estimated using the fast running model of the mockup according 

to the initial parameters of Table 3. The comparison shows a mismatch between the 

experimental and numerical results. This indicates that the initial model parameters 

should be fine-tuned to improve the agreement between the predicted and observed 

response.  

 

 

 

Figure 34: Transfer function comparison between the experimental and numerical 

response at Point 6. 

  

10 20 30 40 50 60 70 80

Frequency (Hz)

-100

-90

-80

-70

-60

-50

-40

A
cc

el
er

at
io

n 
dB

re
f

 (m
/s

2
)/N

Experimental
Numerical



  

64 

 

4.4 Model Updating Process 

Model updating process utilize a hybrid optimization process to automatically 

enhance the initial parameters of the fast running model. The hybrid optimization 

process combines a GA as a global optimization tool with a local search strategy. The 

aim of this process is to improve the matching between the predicted and observed 

response by fine-tuning the parameters of the fast running model. 

A Matlab routine was written to act as the objective function of this optimization 

problem. The inputs to this routine are those related to the bending and torsional 

stiffness of the rails and the four slab cross-sections (parameters 11 to 20 in Table 3) 

along with the stiffness and damping of the rail fasteners and slab bearings (parameters 

21 to 24 in Table 3). The first output of the routine, NMSEreal, is the normalized mean 

square error between the real part of the experimental response at Point 6 and the real 

part of the response computed numerically at this point. Similarly, the second output, 

NMSEimag, represents the goodness-of-fit between the imaginary parts of the 

experimental and numerical responses at the same point. 

Matlab Optimization Toolbox [74] was then used to carry out the global 

optimization process according to a multi-objective GA [77]. Appropriate lower and 

upper bounds were imposed on the 14 optimization variables to limit the solution space 

and ensure reasonable results. The population size was taken as 200 individuals. The 

selection process was handled by a tournament selection function. The cross-over 

fraction was set as 0.8, which means that 80% of each generation was produced by 

cross-over, while the remaining individuals were obtained by mutation. The global 

optimization process converged after 43 iterations. Figure 35 presents the comparison 

of the transfer functions for the experimental real and imaginary parts of the response 

at Point 6 to those obtained numerically using the updated parameters. It is observed 
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that there is an excellent match between the numerical and experimental transfer 

functions indicating that the optimization process was successful. 

 

 

 

(a) 

 

(b) 

Figure 35: Comparison between the experimental and numerical response at Point 6 

after running the global optimization process. (a) Real part. (b) Imaginary part.  
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Using Sequential Quadratic Programming (SQP) algorithm, a constrained local 

optimization process was conducted to further refine the model parameters. This 

algorithm is implemented in Matlab under the function “fmincon”. The solution 

obtained using GA was used as a starting point for the local search process. The 

objective function was taken as the NMSE between the magnitude of the experimental 

response at Point 6 and that computed numerically at the same point. The optimization 

process converged to the solution provided in Table 4. 

Table 4: Final Results of the Model Updating Process. 

ID Quantity Description Value 

11 𝐸𝐸𝐸𝐸𝑟𝑟,1,𝐸𝐸𝐸𝐸𝑟𝑟,2 Bending stiffness of the rail (Pa ∙ m4) 8.8285×106 

12 𝐸𝐸𝐸𝐸𝑠𝑠,1 Bending stiffness of segment 1 of the slab (Pa ∙ m4) 1.5321×109 

13 𝐸𝐸𝐸𝐸𝑠𝑠,2 Bending stiffness of segment 2 of the slab (Pa ∙ m4) 9.45×108 

14 𝐸𝐸𝐸𝐸𝑠𝑠,3 Bending stiffness of segment 3 of the slab (Pa ∙ m4) 3.3×108 

15 𝐸𝐸𝐸𝐸𝑠𝑠,4 Bending stiffness of segment 4 of the slab (Pa ∙ m4) 1.0283×109 

16 𝐺𝐺𝐺𝐺𝑠𝑠,1 Torsional rigidity of segment 1 of the slab (Pa ∙ m4) 1.8329×109 

17 𝐺𝐺𝐺𝐺𝑠𝑠,2 Torsional rigidity of segment 2 of the slab (Pa ∙ m4) 1.4574×109 

18 𝐺𝐺𝐺𝐺𝑠𝑠,3 Torsional rigidity of segment 3 of the slab (Pa ∙ m4) 1.4061×109 

19 𝐺𝐺𝐺𝐺𝑠𝑠,4 Torsional rigidity of segment 4 of the slab (Pa ∙ m4) 1.2354×109 

20 𝐽𝐽𝑠𝑠 Mass polar moment of inertia of the slab (kg ∙ m2/m) 2.5781×103 

21 𝑘𝑘1,𝑘𝑘2 Stiffness of rail fasteners   (N/m/m) 6.0451×107 

22 𝑘𝑘3,𝑘𝑘4 Stiffness of slab bearings   (N/m/m) 3.0180×106 

23 𝑐𝑐1, 𝑐𝑐2 Damping of rail fasteners  (N ∙ s/m/m) 5.0527×104 

24 𝑐𝑐3, 𝑐𝑐4 Damping of slab bearings  (N ∙ s/m/m) 7.7541×103 
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Figure 36 compares between the experimental transfer functions and those 

computed numerically using the parameters obtained by the model updating process. 

While the fast running was fine-tuned based exclusively on the response at Point 6, 

Figure 15 indicates that the model was able to accurately predict the response at the 

other 7 points. This clearly shows that the fast running model developed in this work is 

successful and, given the right parameters, it can be confidently used for estimating the 

vibration response of the special FST type represented by the mockup track. 
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(Point 5) (Point 6) 

  

(Point 7) (Point 8) 

 

Figure 36: Transfer function comparison between the experimental and numerical 

response after model updating for the 8 points. 
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CHAPTER 5:PARAMETRIC STUDY 

5.1 Introduction 

In this chapter, a parametric study is conducted based on the fine-tuned 

parameters obtained by the model updating procedures in the previous chapter in 

Section 4.4. The purpose of the parametric study is to characterize the effect of varying 

the depth of the grooves on the response of the infinite special FST design.  

The study is including both bending and torsion loading scenarios. The infinite 

track model described previously in Section 3.3.4 was adopted for this study. A 

reduction factor representing the change of the slab depth with respect to the main 

cross-section is implemented in the parametric study. 

The bending and torsional response of the rails and slab is going to be 

investigated for different values of the reduction factor. Varying the reduction factor 

value is going to produce different slab segment’s parameters corresponding to the slab 

cross section at the grooves. 

5.2 Results of The Parametric Study 

The floating slab was modeled as a beam with two cross-sections only as 

illustrated in Figure 21b. The length of the main slab cross-section is 𝑠𝑠1 while the width 

of the groove is 𝑠𝑠2. For simplicity, an equivalent rectangular cross-section with 

dimensions of 𝐵𝐵𝑆𝑆 × 𝑇𝑇𝑆𝑆 was assumed for the main cross-section. Also, another 

rectangular cross-section with dimensions of 𝐵𝐵𝑆𝑆 × 𝛼𝛼𝑇𝑇𝑆𝑆 was taken at the groove, where 

𝐵𝐵𝑆𝑆 and 𝑇𝑇𝑆𝑆 are the width and the thickness of the main cross section respectively. 𝛼𝛼 is 

the reduction factor representing the change of the slab depth with respect to the main 

cross-section. The factor starts from 1 for a purely continuous beam and approaches to 

zero as the groove depth increases. 
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The length of the main cross-section 𝑠𝑠1 was taken as 4.1 m, while the width of 

the groove was selected as 𝑠𝑠2 = 0.1 m. The bending stiffness of the rails along with the 

damping and stiffness properties of the fasteners and slab bearings were taken directly 

from Table 4. When studying the effect of 𝛼𝛼 under pure bending, the width 𝐵𝐵𝑠𝑠, depth 

𝑇𝑇𝑠𝑠, modulus of elasticity 𝐸𝐸𝑠𝑠, and density 𝜌𝜌𝑠𝑠 of the equivalent cross-section were chosen 

such that its mass 𝑚𝑚𝑠𝑠 and bending stiffness 𝐸𝐸𝐸𝐸𝑠𝑠 are equal to 𝑚𝑚𝑠𝑠,1 and 𝐸𝐸𝐸𝐸𝑠𝑠,1 in Table 4, 

respectively. Likewise, for analyzing the pure torsional response, 𝐵𝐵𝑠𝑠, 𝑇𝑇𝑠𝑠, 𝜌𝜌𝑠𝑠, along with 

the slab’s shear modulus 𝐺𝐺𝑠𝑠 were selected such that 𝐽𝐽𝑠𝑠 and 𝐺𝐺𝐺𝐺𝑠𝑠 of the rectangular cross-

section are analogous to their counterparts in the main cross-section of the mockup (𝐽𝐽𝑠𝑠 

and 𝐺𝐺𝐺𝐺𝑠𝑠,1 in Table 4). The properties of the equivalent cross-section for bending and 

torsion are summarized in Table 5. 

Table 5: Geometry and Material Properties of the Equivalent Rectangular Sections for 

Pure Bending and Pure Torsion Cases. 

Bending Torsion 

𝐵𝐵𝑠𝑠 = 2.854 m 

𝑇𝑇𝑠𝑠 = 0.634 m 

𝐸𝐸𝑆𝑆 = 25.27 × 109 Pa 

𝜌𝜌𝑠𝑠 = 2354 kg/m3 

𝐵𝐵𝑠𝑠 = 2.596 m 

𝑇𝑇𝑠𝑠 = 0.694 m 

𝐺𝐺𝑆𝑆 = 7.603 × 109Pa 

𝜌𝜌𝑠𝑠 = 2375 kg/m3 
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Figure 36 shows the displacement transfer function of the rails and slab in pure 

bending calculated at the point of load application for different levels of 𝛼𝛼. For the 

continuous slab (i.e. 𝛼𝛼 = 1), a single peak can be noticed around 6 Hz corresponding 

to the resonant frequency of the slab on its bearings, which can be estimated as 𝑓𝑓 =

1
2𝜋𝜋 �

𝑘𝑘3+𝑘𝑘4
𝑒𝑒𝑠𝑠

. For reduction factors larger than 𝛼𝛼 = 0.6, it appears that the grooves have a 

negligible effect on the response. However, at 𝛼𝛼 = 0.5, a small peak can be observed 

around 46 Hz. The frequency of this peak decreases with 𝛼𝛼 to 33 Hz at 𝛼𝛼 = 0.3 down 

to 8 Hz for the nearly discontinuous case (𝛼𝛼 = 0.01). The peak’s frequency at 𝛼𝛼 = 0.01 

is close to the first bending natural frequency of a free-free rail supported over 

intermediate supports at 𝑠𝑠1 intervals, which can be estimated as [78]: 

𝑓𝑓 =
1.5392

2𝜋𝜋𝑠𝑠12
�
𝐸𝐸𝐸𝐸𝑟𝑟,1

𝑚𝑚𝑟𝑟,1
                                                             (36) 

Another peak becomes visible at 190 Hz starting from 𝛼𝛼 = 0.5. The peak’s 

frequency decreases with 𝛼𝛼 until reaching 127 Hz at 𝛼𝛼 = 0.01. This frequency 

corresponds to the first bending natural frequency of a free-free slab segment having a 

length of 𝑠𝑠1, which can be computed as [78]: 

𝑓𝑓 =
4.732

2𝜋𝜋𝑠𝑠12
�
𝐸𝐸𝐸𝐸𝑠𝑠
𝑚𝑚𝑠𝑠

                                                               (37) 
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(a) 

 

(b) 

Figure 37: The displacement transfer function of (a) the rails and (b) the slab in pure 

bending calculated at the point of load application for different levels of 𝛼𝛼. 
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The results of varying 𝛼𝛼 on the displacement response of the rails and slab under 

pure torsion are provided in Figure 38. Note that the displacement response of the slab 

was computed at its edge by multiplying the twist angle by 𝑏𝑏/2, where 𝑏𝑏 = 1.5 m is 

the distance between rails. Similar to the bending case, a single peak can be noticed 

around 6 Hz corresponding to the resonance frequency of the slab on its bearings. 

Starting around 𝛼𝛼 = 0.5, a peak appears at 99 Hz. As 𝛼𝛼 decrease, the amplitude of this 

peak increases without a noticeable change in its frequency. This frequency is 

associated with the first torsional natural frequency of a free-free slab segment having 

a length of 𝑠𝑠1, given as [78]: 

𝑓𝑓 =
1

2𝑠𝑠1
�
𝐺𝐺𝐺𝐺𝑠𝑠
𝐸𝐸𝑝𝑝,𝑠𝑠𝜌𝜌𝑠𝑠

                                                              (13) 

where 𝐸𝐸𝑝𝑝,𝑠𝑠 is the polar area moment of inertia of the slab’s main cross-section.  

Finally, Figures 39 and 40 show the displacement response of the rails and slab 

at a distance of 100 m from the point of load application in pure bending and torsion, 

respectively. At 𝛼𝛼 = 0.5 and 𝛼𝛼 = 0.3, the vibration response in both bending and 

torsion exhibits a large number of peaks. This behavior can be attributed to the complex 

interference between the slab units along the track. For the nearly discontinues case 

(𝛼𝛼 = 0.01), it is observed that the vibration response over most of the frequency range 

is negligible as it is dominated by evanescent waves and leaky waves which decay 

dramatically with distance. 
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(a) 

 

(b) 

Figure 38: The displacement transfer function of (a) the rails and (b) the slab in pure 

torsion calculated at the point of load application for different levels of 𝛼𝛼. 
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(a) 

 

(b) 

Figure 39: The displacement transfer function of (a) the rails and (b) the slab in pure 

bending calculated at a distance of 100 m from the point of load application for 

different levels of 𝛼𝛼. 

 

0 20 40 60 80 100 120 140 160 180 200

Frequency (Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0

D
is

pl
ac

em
en

t 
re

f
 m

m
/K

N

α=1

α=0.5
α=0.3
α=0.01

0 20 40 60 80 100 120 140 160 180 200

Frequency(Hz)

-80

-70

-60

-50

-40

-30

-20

-10

0

D
is

pl
ac

em
en

t 
re

f
 m

m
/K

N

α=1

α=0.5
α=0.3
α=0.01



  

76 

 

 

(a) 

 

(b) 

Figure 40: The displacement transfer function of (a) the rails and (b) the slab in pure 

torsion calculated at a distance of 100 m from the point of load application for 

different levels of 𝛼𝛼. 
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CHAPTER 6:CONCLUSIONS 

This thesis presented a model for investigating the dynamic behavior of a 

special FST design. The floating concrete slab of this special track is composed of a 

repeating slab unit consisting of two segments with different cross sections, resulting 

in periodic grooves along the track. A fast running model based on Dynamic Stiffness 

method along with a detailed FE model were developed for a full-scale mockup 

structure. An experimental vibration test was then carried out to identify the actual 

vibration response of the structure. A hybrid model updating process that combines 

genetic algorithms with a local search method was conducted to systematically adjust 

the initial parameters of the fast running model. The updated model was then 

implemented in a parametric study to investigate the effect of changing the thickness 

of the grooves on the dynamic behavior of infinite special FST for both bending and 

torsion.  

The results of the parametric study showed that the conventional continuous 

FST models can be used to accurately predict the vibration response of the special FST 

as long as the slab thickness at the groove is larger than 50% of the original beam 

thickness. Below that, it is necessary to use the proposed fast running model since the 

effect of the local bending and torsional modes of the slab units becomes significant. 
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