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ABSTRACT

Lead (Pb) is recognized as the first heavy metal of the top six toxic air pollutants threatening human
health and the second hazardous substance. Pb exposure is associated with lung impairment and
high incidences of lung cancer. Nuclear factor kappa B (NF-xB) and aryl hydrocarbon receptor (AhR)
signaling pathways are known to be expressed and play an important role in the lung. However, the
link between Pb lung toxicity and NF-kB and/or AhR pathways remains unclear. This study was estab-
lished to explore the role of NF-kB and AhR modulation in Pb-induced lung toxicity in human lung
cancer A549 cells. In the current study, treatment of A549 cells with Pb significantly induced cell apop-
tosis as evidenced by increasing a) the percentage of cells underwent apoptosis determined by flow
cytometry and b) p53 mRNA level. Pb treatment induced oxidative stress by a) increasing the forma-
tion of reactive oxygen species and b) decreasing GSTAT mRNA levels. The toxic effects of Pb on the
lung was associated with significant increases in NF-kB and AhR levels which was accompanied with
increases in downstream targets genes, iNOS and CYP1A1, respectively. Inhibition of NF-kB or AhR
either chemically using resveratrol or genetically using small interfering RNA (siRNA) significantly res-
cued A549 cells from Pb-mediated lung toxicity. The results clearly indicate that Pb-mediated lung tox-
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icities are NF-kB and AhR-dependent mechanism.

1. Introduction

Lung cancer is the second most widespread cancer and
accounts for the highest number of cancer-related deaths
worldwide. Air pollution is associated with 45% increased risk
of lung cancer and is responsible for 36% of deaths from lung
cancer (Mu et al. 2013; Jemal and Torre 2018). Heavy metals
are the most important air pollutants because of their toxicities
and higher stability (Jarup 2003). Among heavy metals, lead
(Pb) is recognized as the first among the top six toxic air pollu-
tants threatening human health and has been identified as a
major pollutant of concern worldwide (Csavina et al. 2012).

Pb is very toxic even in very small traces and thus ranked
the second most commonly encountered toxic substance
according to the Agency for Toxic Substances and Disease
Registry (ATSDR 2017). Since it is widely used in industrial
and mining activities, Pb-exposure remains a major concern
in several countries and many people worldwide are still at
high risk of Pb-exposure particularly in polluted areas. In this
context, previous studies have reported that long-term
exposure to Pb is associated with immune dysfunction and
increased susceptibility to various diseases and serious toxic-
ities to various organs, such as the kidneys, heart, liver, brain,
and lung (Anttila et al. 1995; Jarup 2003).

The lung is a critical organ composed of different types of
cells with various metabolic and immune functions. Lung is
the primary organ exposed to air pollutants, including heavy
metals. Pb-exposure has been shown to induce oxidative
stress and altered expression of genes related to inflamma-
tion. Previous studies have reported increased incidences of
lung cancer among Pb smelters and workers at Pb battery
plants (Kumar et al. 1991; Wong and Harris 2000; Liu et al.
2012). In addition, studies on occupational hazards have
demonstrated the increased risk of lung cancer in workers
exposed to Pb (Anttila et al. 1995; Lundstrom et al. 1997).

In vivo and in vitro studies demonstrated that Pb-exposure
induces the modulation of several signaling pathways and
transcriptional factors. Among which, the nuclear factor
kappa B (NF-xB) and the aryl hydrocarbon receptor (AhR) are
targeted by heavy metals and have been shown to play a
role in their toxicities (Korashy and El-Kadi 2005; Korashy and
El-Kadi 2008; Ansari et al. 2013). The cascades between AhR
and NF-kB on the toxic effect of heavy metals are not clear.
In that, AhR activator 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) induces several inflammatory responsive genes such
as Interleukin 1 (IL-1), IL-6, and IL-8 through the activation of
NF-kB in non-small cell lung cancer patients (Kobayashi et al.
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2008; Kimura et al. 2009; Vogel and Matsumura 2009; Chen
et al. 2012; Vogel et al. 2014). On the other hand, Vogel
et al. have shown that inhibition of NF-xB activity using
PDTC blocked the expression of AhR and subsequently its
downstream target cytochrome P450 1A1 (CYP1A1) activity.
A previous work from our laboratory in human hepatocellular
carcinoma HepG2 cells have reported that activation of NF-
kB using PMA significantly blocked the activation of AhR/
CYP1A1 by Pb, whereas NF-kB inhibitor PDTC potentiated
Pb-induced CYP1A1 (Korashy and El-Kadi 2008).

Although NF-kB and AhR are known to be expressed in
lung and play critical roles in lung development, mainten-
ance, survival, and inflammation as well as apoptosis (Ghosh
et al. 1998; Beamer and Shepherd 2013), there is very limited
data on the impact and mechanism of NF-kB and AhR in Pb-
modulated pulmonary immunotoxicity are not fully under-
stood. Therefore, the main objectives of the current study
are (a) to investigate the pulmonary toxic effects of Pb
exposure on the immune system; (b) to explore the role of
NF-kB and AhR pathways in vitro A549 human lung cell line.

2. Materials and methods
2.1. Materials

Lead (Il) nitrate was obtained from Sigma-Aldrich (St. Louis,
MO). TRIzol was purchased from Invitrogen Co. (Grand Island,
NY). High Capacity cDNA Reverse Transcription kit and SYBR
Green PCR Master Mix were obtained from Applied
Biosystems (Foster City, CA). Apoptosis detection kit was
obtained from Millipore (Muse® Cell Analyzer, Millipore,
Billerica, MA). The Western blot detection Enhanced
Chemiluminescence ECL kit was obtained from EMD
Millipore Co. (Billerica, MA). Acrylamide, bromophenol blue,
glycine, B-mercaptoethanol, N’N’-bis-methylene-acrylamide,
ammonium persulfate, sodium dodecyl sulfate (SDS),
N,N,N’,N’-tetramethylethylenediamine (TEMED), and nitrocel-
lulose membrane (0.45um), were purchased from Bio-Rad
Laboratories (Hercules, CA). Primary and secondary antibod-
ies against target proteins, small interfering RNA (siRNA)
against NF-xB p65, and AhR, and transfection reagents and
kits were purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA). All other chemicals were purchased from
Fisher Scientific Co. (Toronto, ON).

2.2. Cell culture and treatment

Human adenocarcinoma alveolar type Il cells (A549),
obtained from American Type Culture Collection (Rockville,
MD), were maintained in DMEM with phenol red supple-
mented with fetal bovine serum (10%) and 100x Antibiotic-
Antimycotic (1%) in 75-cm? tissue culture flasks in a humidi-
fied 5% CO, environment at 37 °C. For Pb-exposure studies,
fresh Pb solutions were prepared for each experiment by dis-
solving lead nitrate in distilled water and DMSO. An equal
volume of DMSO (0.05%) was added to the control. The
medium was changed every other day and the cells were
sub-cultured every 3 days at a 3:1 ratio.

2.3. Determination of apoptosis

The percentage of cells undergoing apoptosis/necrosis was
determined by Muse® Annexin V and Dead Cell assay kit
(Merck Millipore, Darmstadt, Germany) according to man-
ufacturer’s instructions and as described previously (Abdullah
et al. 2018). The A549 cells were treated with increasing con-
centrations of Pb for 24 h. The cells were then washed with
phosphate buffer saline (PBS), detached by trypsin 0.25%,
collected by centrifugation at 300 x g for 5min, and then
resuspended in 0.5 ml PBS before incubated with Annexin V
and 7-amino actinomycin D (7-AAD) in the dark for 20 min at
25°C. The apoptotic and necrotic populations were analyzed
using Muse Cell Analyzer (Merck Millipore, Billerica, MA).

2.4. Determination ROS generation

Intracellular ROS generation was measured using dihydroe-
thidium (DHE), a well-characterized reagent that has been
used to detect superoxide radicals in cellular populations.
DHE is cell permeable and it reacts with superoxide anions
and undergoes oxidation to form the DNA-binding fluoro-
phore ethidium bromide which intercalates with DNA and
emits red fluorescence. The percentage of intracellular ROS
production in A549 cells exposed to Pb was determined by
flow cytometry using DHE reagent following the manufac-
turer's instructions. Briefly, A549 cells were treated with Pb
for 24h. The cells were then harvested, washed with PBS
and 10puL A549 cell suspension was added to 190 uL DHE
reagent, and incubated for 30 min at 37°C. Cellular fluores-
cence was analyzed using a Muse Cell Analyzer (Merck
Millipore, Billerica, MA) and the percentage change in ROS
generation was calculated by comparing with the control
untreated cells.

2.5. RNA isolation, cDNA synthesis, and RT-PCR

Total RNA from A549 cells was isolated using the TRIizol
method (Korashy et al. 2016a). The RNA quantity and quality
were determined using a NanoDrop® 8000 (Thermo
Scientific, Waltham, MA). The optical density (OD) at 260 nm
and 280 nm were measured and an OD 260/280 ratio ~ 2.0
was considered as indicator of pure RNA. cDNA synthesis
was performed and the changes in the mRNA levels of NF-
kB, AhR, CYP1A1, glutathione Transferase A1 (GSTAT1), indu-
cible nitric oxide synthase (iNOS), and p53 (Table 1) in
response to Pb treatment was quantified by Real-Time PCR
System (qRT-PCR) (Applied Biosystems®, Foster City, CA)

Table 1. Primers sequences used for teal-time polymerase chain (RT-
PCR) reactions.

Genes 5'—3"' Forward primer 5'—3' Reverse primer
CYP1AT1 CTATCTGGGCTGTGGGCAA CTGGCTCAAGCACAACTTGG
GSTAT ATCAAGGGAAAGCAGGAAGC CCTTGTCTACAGGTGCATCA
AhR CTGACGCTGAGCCTAAGAAC ACCTACGCCAGTCGCAAG
NF-kB ATGGCTTCTATGAGGCTGAG GTTGTTGTTGGTCTGGATGC
B-actin ACTGGAACGGTGAAGGTGACA ATGGCAAGGGACTTCCTGTAAC
iNOS GTTCTCAAGGCACAGGTCTC GCAGGTCACTTATGTCACTTATC
P53 AGAGTCTATAGGCCCACCCC GCTCGACGCTAGGATCTGAC




using SYBR Green Master mix as described previously
(Korashy et al. 2016a). The gRT-PCR data were analyzed using
the relative gene expression (AA CT) method and the data is
presented as the fold change in gene expression normalized
to the endogenous reference gene B-actin.

2.6. Protein extraction and Western blot analysis

The total protein from lung A549 cell lysate was extracted as
reported previously (Abrams et al. 2003) and the protein con-
centrations were determined using a direct-detect infrared
spectrophotometer (Millipore, Billerica, MA). The expressions
of NF-xB and AhR proteins was measured by Western blot
analysis using specific primary and secondary antibodies and
the results were normalized to GAPDH as described previ-
ously (Korashy et al. 2017). Briefly, 30-35ug of protein was
separated in 10% sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), and then transferred to nitrocel-
lulose membrane by electrophoresis. Protein blots were
blocked overnight by blocking solution at 4°C, and then
washed several times with TBST (Tris-buffered saline, 0.1%
Tween 20) before further incubated for 2 h at room tempera-
ture with primary antibodies against NF-xB and AhR in TBS
solution. Protein blots were then incubated with secondary
antibodies in blocking solution for 2 h at room temperature.
The quantification of western blots was performed by C-
DiGit® Blot Scanner (LI-COR Biosciences, Franklin Lakes, NJ)
using the enhanced chemiluminescence method according
to the manufacturer's instructions (Merck Millipore,
Billerica, MA).

2.7. Gene silencing using small interfering RNA (siRNA)

Silencing of NF-kB and AhR genes was determined by trans-
fecting the cells with either NF-xB or AhR siRNA according to
manufacture instruction (Santa Cruz Biotechnology, Inc.,
Santa Curz, CA) and as described previously (Korashy et al.
2016b). Briefly, A549 cells (70% confluent) were transfected
using Lipofectamine® 2000 (Santa Cruz, CA) for 24h with
either AhR or NF-kB siRNA. Thereafter, the cells were washed
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and then incubated with Pb for additional 24 h. NF-xB and
AhR mRNAs were then quantified by RT-PCR, to ensure sig-
nificant (50-70%) knockdown, and the effect of NF-kB or
AhR knockdown on apoptotic and oxidative stress markers
were determined.

2.8. Statistical analyses

Data are presented as mean+SEM. All statistical analyses
were performed using Sigma Plot for Windows (Systat
Software, Inc, San Jose, CA). Statistical significance was deter-
mined by either Student’s t-test or one-way analysis of vari-
ance (ANOVA) followed by a Student-Newman-Keuls test. A
p-value < 0.05 was considered statistically significant.

3. Results

3.1. Effect of Pb treatment on induction of apoptosis in
A549 cells

The ability of Pb to induce apoptosis in human lung A549
cells was assessed by (a) measuring the percentage of cells
underwent apoptosis/necrosis using flow cytometry assay
and (b) quantifying the mRNA expression of p53, a well-
known apoptotic marker. Figure 1(A) shows that treatment
of A549 cells with 100 uM Pb increased the percentage of
both early and late apoptotic cells to approximately 20%
compared to healthy untreated cells (8%). In addition, Pb
treatment increased the mRNA expression levels of p53 by
90% (Figure 1(B)).

3.2. Effect of Pb treatment on oxidative stress markers
in A549 cells

The ability of Pb to induce oxidative stress markers in human
lung A549 cells was assessed by two approaches: (1) deter-
mining the ROS formation in response to Pb and (2) quanti-
fying the mRNA expression of GSTA1, a known oxidative
stress marker. Figure 2(A) shows that Pb 100 uM significantly
increases the formation of ROS by approximately 6-folds
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Figure 1. Effect of Pb treatment on apoptosis levels in A549 cells. The cells were treated for 24 h with Pb (100 uM). (A) the percentage of cells underwent apop-
tosis was determined by flow cytometry using annexin V/Pl. (B) p53 mRNA level was quantified by RT-PCR and normalized to B-actin housekeeping gene. The val-
ues represent mean of fold change + SEM (n = 6, triplicate). *p < 0.05 compared to control.
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(from 6% in control to 31% in Pb-treated cells). Furthermore,
Pb treatment significantly inhibited the mRNA expression of
GSTA1 by approximately 60% (Figure 2(B)).

3.3. Effect of Pb treatment on the expression levels of
NF-xB and AhR in A549 cells

To determine the effect of Pb treatment on the expression
of NF-xB and AhR, we measured the mRNA and protein
expression levels of NF-kB and AhR in A549 cells exposed to
Pb for 24 h. Our results showed that treatment of A549 cells

with Pb 100 uM significantly increased the mRNA levels of
NF-xB and AhR by approximately 60% and 55%, respectively
compared to control cells (Figure 3(A)). To further confirm
that induction of NF-kB and AhR by Pb was associated with
increase in their downstream targets, we quantified
the mRNA expression of iNOS and CYP1A1, respectively.
Figure 3(B) shows that Pb treatment significantly increased
the iNOS and CYP1A1 mRNA levels by approximately 75%
and 45%, respectively. At the protein level, similarly, Pb treat-
ment for 24 h increased the protein expression levels of NF-
kB and AhR by approximately 50% and 100%, respectively
(Figure 3(Q)).
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Figure 2. Effect of Pb treatment on oxidative stress levels in A549 cells. The cells were treated for 24 h with Pb (100 uM). (A) the percentage of oxidative cells was
determined by flow cytometry using DCF as a substrate. (B) GSTAT mRNA level was quantified by RT-PCR and normalized to f-actin housekeeping gene. The values
represent mean of fold change + SEM (n = 6, triplicate). *p < 0.05 compared to control.

(A) 2.0 - N Control
[ Pb (100 pM)
*
*
15
0o
v 2
> ©
o c
=S 10}
<%
x3
Ee
05
NF-xB AhR
©) 3.0 I Control
3 Pb (100 pM)
25
05 *
g g) 20 F
$s *
€O 15}
g k]
o
ao 10F
=
0.5 F
NF-xB AhR

(B) 20 EE Control

1 Pb (100 M)

1

iNOS CYP1A1

mRNA Levels
&

(fold of change)
P

o
2]

AhR -
FACTN | S -

Control  Pb (100 uM)

Figure 3. Effect of Pb treatment on NF-kB and AhR expression in A549 cells. The cells were treated for 24 h with Pb (100 uM). (A) NF-xB and AhR, and (B) CYP1A1,
and iNOS mRNA levels were determined by RT-PCR. The values represent mean of fold change + SEM (n =6, triplicate). (C) NF-kB and AhR protein levels were
measured by Western blot analysis. The intensity of protein bands was quantified relative to the signals obtained for -actin protein, using C-DiGit® blot scanner,
LI-COR Biotechnology (Lincoln, NE). The values represent mean of fold change + SEM (n = 3, triplicate). *p < 0.05 compared to control.



3.4. Effect of NF-kB and AhR inhibition on Pb-induced
lung toxicities

To further explore the role of AhR and NF-xB in Pb-induced
lung toxicities, we tested whether inhibition of NF-kB or AhR
either chemically or genetically would prevent Pb to induce
lung apoptosis and oxidative stress. For this purpose, two
independent experiments were conducted as follows.

3.4.1. Effect of NF-xB and AhR chemical inhibitor resvera-
trol on Pb-induced Ilung apoptosis and oxida-
tive stress

A549 cells were pretreated for 2h with 40 pug/ml resveratrol

(Res), a well-known inhibitor for AhR and NF-kB (Ren et al.

2013), before incubated with Pb 100 uM for additional 24 h.

Thereafter, apoptotic and oxidative stress markers were

determined. Figure 4 shows that Res treatment did not nei-

ther reduce the percentage of apoptotic cells (Figure 4(A))

nor downregulate p53 mMRNA expression (Figure 4(Q))

induced by Pb. On the other hand, Res treatment success-

fully blocked Pb-induced oxidative stress. This was evidenced
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by (1) the ability of Res to reduce the ROS formation by Pb
by 50% (from 31% to 16%) with significant increase in the
percentage of healthy cells from 69% to 84% and (2) by
restoring Pb-induced GSTA1 mRNA inhibition by three-fold
(Figure 4(A)). Furthermore, the effects of Res on Pb-induced
lung toxicities were associated with significant inhibition of
NF-kB and AhR downstream genes, iNOS and CYP1A1
(Figure 4(D)).

3.4.2. Effect of NF-xB and AhR silencing on Pb-induced
lung apoptosis and oxidative stress
To further confirm the exact role of NF-kB and AhR in Pb-
induced-lung toxicities, we examined the effect of knock
down of either NF-kB or AhR on Pb-induced apoptosis and
oxidative stress. Initially, transfection of the untreated cells
with siRNA against either NF-kB or AhR caused approxi-
mately 50% knockdown of the constitutive gene expression
of both NF-xkB (Figure 5(A)) and AhR (Figure 5(B)).
Importantly, induction of NF-kB and AhR mRNA by Pb was
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Figure 4. Effect of Res on Pb-induced lung toxicities. A549 cells were treated for 24 h with Pb (100 pM) in the presence and absence of Res (40 pug/ml). (A) the per-
centage of cells underwent apoptosis was determined by flow cytometry using annexin V/Propidium iodide (PI). (B) The formation of ROS was determined using
DCF as a substrate. (C) GSTA1, p53 and (D) iNOS, CYP1A1 mRNA levels were quantified by RT-PCR normalized to B-actin housekeeping gene. The values represent
mean of fold change + SEM (n =6, triplicate). *p < 0.05 compared to control; *p < 0.05 compared to Pb treatment.
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Figure 5. NF-kB and AhR knockdown. A549 cells were transfected with either NF-kB or AhR siRNA before treated for 24 h with Pb (100 uM). Thereafter, NF-«xB (A)
and AhR (B) mRNA expression levels were quantified by RT-PCR normalized to f-actin housekeeping gene. The values represent mean of fold change + SEM (n =6,

triplicate). *p < 0.05 compared to control; p < 0.05 compared to Pb treatment.

inhibited by 70% (Figure 5(A)) and 65% (Figure 5(B)), respect-
ively, by gene silencing (Figure 5).

To further explore the role of NF-kB in Pb-induced lung
toxicities, we tested the effect of NF-kB silencing using siRNA
on Pb-induced lung toxicities. For this purpose, A549 cells
were transfected with NF-kB siRNA in the presence and
absence of Pb 100 uM. Knockdown of NF-«xB significantly
decreased the Pb-increased percentage of apoptotic cells
from 19% to 12% (37% inhibition) while increased the per-
centage of healthy cells from 77% to 86% (Figure 6(A)). This
was accompanied with approximately 80% reduction in Pb-
induced apoptotic marker, p53 (Figure 6(C)). Similarly, knock-
down of NF-kB significantly decreased the ROS formation in
A549 cells treated with Pb from 31% to 16.4% (Figure 6(B))
and restored the inhibition of GSTA1 by Pb from 40% to
70% (Figure 6(C)).

With regard to the role of AhR, we tested the effect of
AhR silencing on Pb-induced lung toxicities. Knockdown of
AhR significantly decreased the Pb-increased percentage of
apoptotic cells from 19% to 10% (47% inhibition) while
increased the percentage of healthy cells from 77% to 89%
(Figure 7(A)). This was accompanied with approximately 60%
reduction in Pb-induced apoptotic marker, p53 (Figure 7(C)).
Similarly, knockdown of AhR significantly decreased the ROS
formation in A549 cells treated with Pb from 31% to 4.7%
(Figure 7(B)) and restored the inhibition of GSTA1 by Pb
from 40% to 70% (Figure 7(C)).

4. Discussion

The present study demonstrates that Pb exposure-induced
oxidative stress and apoptosis in A549 human lung cells are
mediated through NF-xB and AhR signaling pathways. This is
supported by the following findings: (a) Pb-exposure induces
up-regulation of apoptotic genes such as P53 which was
associated with an increase in the percentage of apoptotic
cells, (b) Pb-exposure increases the oxidative stress in lung
cells by inhibiting the expression of the antioxidant gene
GSTA1 and increasing the ROS generation, (c) Pb-exposure

increases the activation of NF-kB and AhR pathways and
their downstream targets at the mRNA and protein levels,
and (d) chemical and genetic inhibition of NF-xB or AhR
attenuates the Pb-induced oxidative stress and apoptosis.

Pb toxicity is associated with lung tissue damage, includ-
ing induction of oxidative stress and apoptosis (Singh et al.
1999; Farkhondeh et al. 2014; Lu et al. 2015; Zeng et al.
2017). Several studies have shown that Pb-exposure
increases the risk of lung cancer (Anttila et al. 1995; Wang
et al. 2008; Wang et al. 2013). Although Pb-induced oxidative
stress and apoptosis in rat lungs have been demonstrated
before, the underlying molecular mechanisms remain unclear
(Shabani and Rabbani 2000; Samarghandian et al. 2013). In
this study, gene expression and flow cytometric analyses
were used to determine the molecular and cellular apopto-
genic and oxidant mechanism of Pb in human lung
A549 cells.

A549 cell line model has characteristic features of Type I
cells of the pulmonary epithelium, including endocytic abil-
ity, metabolic properties, and lamellar bodies that consistent
with the same type cells. The in vitro A549 cell line was
selected in the current work as a study model for several rea-
sons. First, the basal and inducible expression of the tran-
scription factors AhR and NF-xB, CYP1A, and the
proinflammatory cytokines and chemokines are much higher
in A549 cell line compared with common normal bronchial
cell line (BEAS-2B) (Dohr et al. 1997; Hukkanen et al. 2000;
Hillyer et al. 2018). Second, although A549 cell line is cancer-
ous, it is a valuable model for studying the mechanism of
lung infections, asthma, and allergies. In addition, they have
been extensively used with success as an experimental
model for investigating the toxic effect of environmental tox-
icants such as heavy metals. For example, in 2018, Choi
et al, has examined the combined effects of heavy metals
using in vitro A549 human lung cancer cells (Choi
et al. 2018).

Initially, we have reported here that exposure of the lung
cancer cells to Pb induced lung toxicities as evidenced by
induction of apoptosis and oxidative stress. Apoptosis is a
crucial process that is important in cancer pathology and
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Figure 6. Effect of NF-kB knockdown on Pb-induced lung toxicities. A549 cells were transfected with NF-kB siRNA before treated for 24 h with Pb (100 pM). (A)
the percentage of cells underwent apoptosis was determined by flow cytometry using annexin V/PI. (B) The formation of ROS was determined using DCF as a sub-
strate. (C) GSTA1 and p53 mRNA expression levels were quantified by RT-PCR normalized to B-actin housekeeping gene. The values represent mean of fold
change + SEM (n = 6, triplicate). *p < 0.05 compared to control; *p < 0.05 compared to Pb treatment.

pharmacotherapy. It is regulated by several cell cycle pro-
gression regulatory proteins, including P53. In this study, the
induction of apoptosis in A549 cells after Pb-exposure was
monitored by two approaches. First by the ability of Pb to
increase the percentage of cells underwent apoptosis/necro-
sis using flow cytometry. Second, by the induction of the
gene expression of apoptotic marker P53 using RT-PCR. In
agreement with our results, Xu and his coworkers have iden-
tified that Pb-induced apoptosis can be mediated through
an increase of P53 in mice PC 12 cells (Xu et al. 2006, 2008).
Moreover, Tousson et al. (2011) reported that Pb-exposure
causes a significant increase in apoptotic P53 protein in rab-
bit liver tissues (Tousson et al. 2011) and that P53 knock-
down attenuates apoptosis induction (Jung et al. 2012; Choi
et al. 2015; Liu et al. 2015). These observations not only indi-
cate that Pb is a strong trigger for apoptosis but also
strongly suggest that P53 plays a key role in Pb-induced
apoptosis. In this context, a previous study had reported a

similar P53-mediated apoptosis in epidermal cells exposed to
the heavy metal cadmium (Son et al. 2010).

Increasing evidence suggests that changes in the oxida-
tion balance in tissues trigger apoptosis and play a major
role in inflammatory responses both in vitro and in vivo
(Rahman et al. 2002; Rivas-Arancibia et al. 2015). The ability
of Pb to induce oxidative stress in lung cells in the current
study is evidenced by the ability of Pb treatment to decrease
the expression of GSTA1, a well-known antioxidant gene,
and to increase the ROS generation. Our results were in
agreement with previous studies showed that changes in the
expression levels of antioxidant protein GSTA1 play a key
role in the induction of lung inflammation (Rahman and
Adcock 2006; Sohn et al. 2013). Furthermore, a significant
reduction in the antioxidant gene, GSTAT mRNA expression
level was demonstrated in people chronically exposed to
environmental heavy metals (Al Bakheet et al. 2013). Taken
together, these reports clearly suggest that down-regulation
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Figure 7. Effect of AhR knockdown on Pb-induced lung toxicities. A549 cells were transfected with AhR siRNA before treated for 24 h with Pb (100 uM). (A) the
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(n =6, triplicate). *p < 0.05 compared to control; *p < 0.05 compared to Pb treatment.

of GSTA1 gene could be another mechanism by which
immune reactions are triggered after Pb-exposure.

Transcriptional factors AhR and NF-kB play significant
roles in the regulation of several physiological processes
including apoptosis and oxidative stress (Nebert et al. 2000;
Suzuki et al. 2009). In that, it has been demonstrated that
the up-regulation of AhR and NF-kB promotes oxidative
stress and apoptosis in cancer and non-cancer human lung
epithelial cells (Zhang et al. 2015; Jaligama et al. 2018).
Moreover, AhR knockdown protected zebrafish against car-
diac toxicity (Van Tiem and Di Giulio 2011), whereas, NF-xB
knockdown protects the lung from lipopolysaccharide-
induced inflammation in rats (Li et al. 2016).

However, the question of whether NF-kB or AhR is con-
trolling Pb-induced oxidative stress and apoptosis in human
lung cells was not addressed before. To answer this question,
we have utilized two approaches. First, we tested the effect
of Pb treatment on the expression and activity of NF-xB and
AhR and their downstream targets, iINOS and CYP1AT1,

respectively, in A549 cells. Our results demonstrated signifi-
cant increases in the mRNA and protein expression of NF-kB
and AhR with Pb-exposure which was also associated with a
significant increase in their regulated genes iNOS and
CYP1AT1, respectively. Similarly, previous studies have demon-
strated increase in P53, iINOS, and CYPTAT mRNA expression
levels with Pb exposure in different cell lines (Song et al.
2001; Korashy and El-Kadi 2008; Tousson et al. 2011; Al
Bakheet et al. 2013). These results suggest a possible role for
NF-xB and AhR in Pb-triggered immune responses
(Yoshizawa et al. 2005; Wang et al. 2018; Zhao et al. 2006,
2018). This conclusion is supported by the observations that
AhR and NF-xB signaling pathways mediate lung toxicities
(Zhao et al. 2006; Yu et al. 2013).

The second approach was to examine whether inhibition
of AhR or NF-kB either chemically or genetically would
attenuate the Pb-mediated effects. In the current study, Res,
a natural chemical found in red wine, has been selected as a
chemical inhibitor for both pathways AhR and NF-«B, which



is well documented and reported in the literature. In that,
Res has been shown to protect the lungs from the apoptotic
effect of benzola]pyrene that is an AhR agonist through dir-
ect block of the AhR receptor (Revel et al. 2003). This was
further supported by the observations that AhR-knockout
mouse did not shown any significant apoptosis after expos-
ure to AhR agonist, TCDD, whereas Res fully protected
against apoptosis induction by TCDD in wild-type mouse
(Sanchez-Martin et al. 2011). Furthermore, a mechanistic
study has reported that overexpression of AhR, increases
RelA nuclear translocation causing AhR/RelA complexation
which then binds to the kB element causing NF-xB pathway
activation (Tsay et al. 2013).

Chemical inhibition of AhR and NF-kB by Res significantly
attenuated the Pb-induced oxidative stress by reducing the
formation of ROS and restored the expression of GSTA1,
iNOS, and CYP1A1 in A549 cells exposed to Pb. In agreement
with our results, it has been reported that Res prevents
nanoparticles-induced inflammation and oxidative stress in
A549 cells via inhibition of ROS production and oxidative
stress (Hsu et al. 2018). In addition, since activation of AhR/
CYP1A1 pathway by Pb is always associated with increased
oxidative stress, we postulate here that blocking of AhR
would explain the inhibitory effect of Res on
ROS production.

At the genetic inhibition level, NF-xB or AhR knockdown
using siRNA down-regulated the basal and Pb-induced
expression of AhR and NF-kB. Perhaps the most interesting
findings are that AhR or NF-xB knockdown significantly
blocked the Pb-induced apoptosis and oxidative stress as evi-
denced by reducing the percentage of apoptotic cells, forma-
tion of ROS, and restoring the apoptotic and oxidative stress
genes. Our results are inline with previous studies which
demonstrated that P53-mediated apoptosis and GSTA1-medi-
ated oxidative stress are both controlled by AhR and NF-kB
pathways (Mathieu et al. 2001; Brauze et al. 2014; Wohak
et al. 2016; Zhang et al. 2016).

In conclusion, the current study demonstrates that Pb-
exposure-induced lung toxicities are mediated through the
transcription factors AhR and NF-xB. It also reveals that the
transcription factor AhR and NF-kB could be used as early
biomarkers for detecting Pb lung toxicities. However, there
are two limitations in this study that could be addressed in
future research. First, the in vitro A549 cell model utilized in
the current study provides a limited and incomplete data
because it does not mimic the physiological and metabolic
responses of the organism. Second, the in vitro Pb concentra-
tions used in this study are above the feasible plasma level
and not directly applicable to humans. Thus the utilization of
in vivo animal models is necessary to provide a whole-body
assessment and an understanding of the gene expression
alterations.
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