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Abstract. Titanium Dioxide Nano-Tubes (TNTs) synthesized by hydrothermal method were 

used to prepare new polysulfone thin film nanocomposite (TFN) membranes. The TFN 

membranes contained different TNTs proportions (0.1, 0.3 and 0.5 wt. %). A polyamide selective 

layer was formed on top of the TFN membrane surface using interfacial polymerization (IP). 

Nanofiltration experiments were performed using NaCl and MgSO4 salts solutions. The water 

flux was found to increase with increased TNT loading in the membrane due to high porosity of 

embedded nanoparticles and the formation of enlarged pores. The antifouling behaviour of the 

membrane was tested by bovine serum albumin (BSA) solution and found to improve with 

increased TNT content in the membrane. 

1.  Introduction 

Membrane technology is considered as one of the most growing technologies for water treatment and 

desalination of sea and brackish water to solve fresh water scarcity and to cover the increase in drinking 

water demand in many parts of the world [1, 2]. Among all, TiO2 is the most extensively studied 

transition-metal oxides because of its non-toxic, environmentally friendly, inexpensive, commercially 

available and good corrosion-resistant property. Transition metals embedded in membranes have been 

applied to counter a large number of environmental problems including those related to water and air 

purification [3, 4]. Nano materials have its inherent photocatalytic effects that decompose organic 

chemicals and kill bacteria [5]. Water filtration with composite membrane of TiO2 particles and photo 

degradation under ultraviolet (UV) irradiation was investigated by several research groups [6, 7]. Other 

researchers studied TiO2/polymer TFC reverse osmosis membrane to reduce biofouling [8, 9]. From 

previously mentioned outcomes, the incorporation of TiO2 is a useful approach to improve membrane 

morphology and inhibit membrane fouling. Preparing TNTs from TiO2 nanoparticles using 

hydrothermal method offer larger surface area and larger pore volumes compared to other methods in 

addition to the hydrophilic properties of TiO2 [10-12]. These features are the most attractive properties 

and key features required for the development of high quality membranes [13].  

Recently, a new class of nanotube-based membranes (TFN membranes) were synthesized and used for 

reverse osmosis (RO) operations. These membranes showed excellent performances compared to the 

usual polyamide (PA) TFC membranes. Based on this concept, titanate nanotubes were produced and 

functionalized using several amines to produce a new class of TFN RO membranes that showed water 

permeability up to 93 % with better anti-organic fouling properties [14]. Polyethersulfone blend 

membrane with incorporated TiO2 nanotubes used in vacuum membrane distillation showed a permeate 
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flux of 15.2 kg/m2 h and a maximum salt rejection of 98 % for a feed salt concentration of 7000 ppm 

and a temperature of 65 °C [15]. The addition of TNT to PES membrane for the fabrication of 

asymmetric PES/TNTs blend membranes resulted in higher porosity, better hydrophilicity, increased 

permeate flux and higher salt rejection compared to bare PES membrane [16] which can be  explained 

by increased membrane hydrophilicity due to the embedded hydrophilic carbon nanotubes [10, 17, 18] 

and inner void spaces of nanotubes [19-21]. The gaps existing between the embedded nanomaterials and 

the polyamide layers enhanced the water diffusion rates [5, 18, 20, 22]. Furthermore, the increased pore 

volumes of TNTs and their large specific surface area provide a large number of adsorption sites and 

diffusion channels for water movement, resulting in higher water channeling. Hence, the goal of this 

study is to synthesize TiO2 nanotubes by a solution chemical method and use these nanotubes to develop 

TFN NF membranes for filtration of various salts. 

2.  Experimental  

2.1.  Materials 

All chemicals employed in this research work are summarised in Table 1. All materials were used as 

received without further purification. Purified water used in all experiments. Acrylic plastic plates 

(11×9×0.24 in) were used to support the PSf-TNTs membrane synthesis. 

 

 

2.2.  Synthesis of TiO2 nanotubes 

Titanium dioxide nanotubes (TNTs) were prepared by hydrothermal method; 3 gm of TiO2 powder were 

mixed with 150 ml of 10 molar NaOH solution, and stirred for 60 min at ambient temperature. The 

resulted suspension was then heated to 170 °C for 24 h in a Teflon-lined autoclave to ensure full 

dissolution of TiO2 powder. After that the autoclave was left to cool down until it reached room 

temperature and a product in the form of white powder was formed. The product was initially washed 

with an HCl solution of 0.1 molar then washed by deionized water. When the pH of the washing solution 

approaches 7, cleaning with deionized water was stopped. The product in the form of white powder was 

then dried under vacuum at 85 °C for 4 h to make sure of complete removal of all water traces. The 

sample was post-treated again at 500 °C for 3 h with a temperature increase rate of 5 °C/min. 

2.3.  Composite membrane preparation 

2.3.1.  Preparation of substrate membrane. To prepare the casting solution, PVP was dissolved in NMP 

and the solution was stirred for 10 min following the procedure described by Elimelech et al.[23]. 

Weighed amount of TNT nanotubes was added to NMP/PVP mixture, and ultrasonicated for 30 min to 

minimize chances of TNT nanotubes agglomeration. Polysulfone (PSF) beads were then added to the 

solution and stirred vigorously until a homogenous solution was obtained. The obtained homogeneous 

casting solution was stirred for 8 h at ambiant temperature, then ultrasonicated for 1 h to remove trapped 
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air bubbles and finally stored in a desiccator for 15 h before any use. The solution was then casted at 

room temperature on a non-woven polyester supported on a glass plate using a 150 µm thickness casting 

knife. The whole composite was immediately immersed in a distilled water coagulation bath containing 

3 wt. % NMP for phase inversion to take place. The substrate was kept in the coagulation bath for 10 

min where the membrane was obtained and then transferred to another water bath and kept for at least 

24 h to remove the solvent and water-soluble polymer (PVP) residuals. The membrane was washed 

repeatedly with distilled water and stored in water. The produced substrates are designated as TFC-0, 

TFC-1, TFC-3, and TFC-5 corresponding to the Nanotubes loading percentage of 0, 0.1, 0.3 and 0.5% 

respectively. 

2.3.2.  Preparation of Polyamide selective layer. The polyamide (PA) selective layer was casted on top 

of the prepared PSF substrate surface by interfacial polymerization (IP) process. To make sure that MPD 

solution penetrates into the substrate pores, thirty mL of MPD aqueous solution 2 wt. % was poured and 

held for two minutes on top of the substrate membrane. The excess MPD solution was drained and the 

remaining residuals were removed by air knife. Another thirty mL of TMC 0.1 wt. % dissolved in n-

hexane was poured on the substrate surface and kept for 1 min after which the excess organic solution 

was drained off. As a result, an ultra-thin PA layer was formed. The synthesised TFC membrane was 

kept at ambient condition for one min to dry then kept in an oven at a temperature of 70 °C for another 

eight min for complete drying. The new TFC membrane was stored in DI water at 4 °C until further use 

[24].  

3.  Results and discussions 

3.1.  Morphology of TiO2 nanotubes  

The morphology of TNTs are directly analyzed by SEM (Philips model XL30E, USA) using direct 

applying nanotubes on copper plate with sputtering at 2 mints. Also TNT were analyzed by transmission 

electron microscope (Phillips CM12 with motor driven stage and SIA L3C Digital Camera, The 

Netherlands). The TNTs are dispersed in water using an ultrasonic bath (Branson 3800 ultrasonic 

cleaner-M3800, USA) for 1 h. A few drops of each suspension were deposited onto 3-mm diameter 

carbon-coated grids. 120 kV acceleration voltage were used for the TEM analyses. The obtained images 

as shown in figure 1 reveal that the synthesized nanotubes are open ended nanotubes of narrow size 

distribution. The average inner diameter was found to be in the range of 3-5 nm while the outer diameter 

of 10-13 nm. The observed length of TNTs nanotubes was found to be greater than 300 nm. The TEM 

images revealed that the TNTs are single wall nanotubes.  

 

 
Figure 1. TEM images of synthesized TNTs.  

 
Figure 2. Contact angles of the different 

membranes. 
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3.2.  Membrane contact angle  

Contact angle measurement is an important parameter in membrane characterization as it indicates the 

membrane’s hydrophilicity and flux behavior. For each membrane, the contact angles was measured at 

least three times and the average value was considered and shown in figure 2. The contact angle results 

indicate that TNTs content membranes exhibited a higher hydrophilicity than control TFN-0 membrane. 

In addition, the CA decreases from 72.16 ± 2◦ to 54.14 ± 2◦as TNTs percentage increased from 0.1 to 

0.5 wt. % due to increase of hydrophilicity. Therefore, it was expected that the TNTs content membranes 

absorb more permeate into the membrane and thus enhance the flux rate. The lowest CA of TFN-5 

(54.14± 2) indicates that this membrane exhibited a more hydrophilic surface due to a superior ultra-

hydrophilic property of the TiO2 nanotubes deposited, which was well distributed over the surface 

compared to other TFN membranes [25]. 

3.3.  Membrane performance study  

3.3.1.  Permeation experiments. Two different experimental set ups were used in this work, the first one 

consist of a dead end cell while the second one is a cross-flow module both supplied by Sterlitech. 

Applying varying trans-membrane pressures (4 to 10 bars) at ambiant temperature, permeation 

experiments at were performed using a dead-end filtration cell l equipped with magnetic stirrers set at a 

constant rotation speed of 500 rpm. The effective membrane surface area was 14.6 cm2. For each 

experiment around 300 millilitres of deionized water was used. To ensure reproducibility, all 

measurements were performed using at least three different membrane samples. Before any 

measurement, membrane was compacted for about 30 min under a pressure of 15 bar. The permeate flux 

(Jw) was calculated by Eq. (1): 

( ).wJ V A t=                          (1) 

Where,  

V: volume of permeated water (L) 

A: membrane area (cm2) 

Δt: permeation time (min).  

The experimental permeability results of the synthesized TFN membranes are presented in figure 3. 

The permeance was defined to be the ratio of the water flux over the membrane pressure difference (Δp): 

( )Permeance = . .Jw P V At P =      (2) 

The average permeance of the pristine TFN-0 membrane was 1.06 L/m².h.bar. Compared to the TFN 

membrane, the addition of 0.3 wt. % TNT resulted in an increased permeance of 1.468 L/m².h.bar. The 

permeance slightly increased up to 1.518 L/m².h.bar when 0.5 wt. % TNTs was added, which is one 

time and half the value of the pure PA membrane (1.06 L/m².h.bar) 

 
Figure 3. Water permeation results. 

 
Figure 4. Membrane salt rejection as function 

of membrane TNT content. 
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3.3.2.  Salt rejection. Membrane performances in term of salt rejection, as shown in figure 4 were 

measured in a lab scale Sterlitech™ CF042P stainless steel cross-flow module with an effective 

membrane area of 42 cm2 and 18 L volume capacity tank [26]. For performance tests, 1,500 mg/L NaCl 

(1500 mg/L MgSO4) solution were fed at a flowrate of 1.7 litre per minute at 25°C. The permeate flux 

was measured under 10 bar for 2 h after membrane compaction for 30 min under 15 bar. Permeate flux 

(Jw) was calculated by Eq. (1). Salt rejection was calculated by measuring the conductivity of the feed 

(Cf) and the permeate (Cp) using (HACH, HQ14 portable) conductivity meter as expressed in Eq. (3).  

 ( )% 1 100p fR C C= −   (3) 

 

4.  Conclusions  

Titanate Nanotubes were successfully synthesized and characterized. The average inner diameter was 

found to be in the range of 3-5 nm while the outer diameter of 10-13 nm. The observed length of TNTs 

nanotubes was found to be greater than 300 nm. The TEM images revealed that the TNTs are single 

wall nanotubes. The TNT-incorporated polysulfone TFC membranes were developed. The prepared 

membranes showed improved permeation properties. The results of the performance evaluation tests 

recommend that the addition of TNT improved the pure water, compared to pristine PSf membrane. 

Both salts rejection using NaCl and MgSO4 calculated by measuring the conductivity of the feed and 

the permeate showed improved salt rejection with increased TNT content in the membrane. 
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