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Abstract: Precise designs of low-cost and efficient catalysts for the detection of hydrogen peroxide
(H2O2) over wide ranges of pH are important in various environmental applications. Herein, a versatile
and ecofriendly approach is presented for the rational design of ternary bentonite-silylpropyl-
polypyrrole/silver nanoarchitectures (denoted as BP-PS-PPy/Ag) via the in-situ photo polymerization
of pyrrole with salinized bentonite (BP-PS) in the presence of silver nitrate. The Pyrrolyl-functionalized
silane (PS) is used as a coupling agent for tailoring the formation of highly exfoliated BP-PS-PPy
sheet-like nanostructures ornamented with monodispersed Ag nanoparticles (NPs). Taking advantage
of the combination between the unique physicochemical properties of BP-PS-PPy and the outstanding
catalytic merits of Ag nanoparticles (NPs), the as-synthesized BP-PS-PPy/Ag shows a superior
electrocatalytic reduction and high-detection activity towards H2O2 under different pH conditions
(from 3 to 10). Intriguingly, the UV-light irradiation significantly enhances the electroreduction
activity of H2O2 substantially, compared with the dark conditions, due to the high photoelectric
response properties of Ag NPs. Moreover, BP-PS-PPy/Ag achived a quick current response with a
detection limit at 1 µM within only 1 s. Our present approach is green, facile, scalable and renewable.
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1. Introduction

Hydrogen peroxide (H2O2) is important in myriad industrial, environmental remediation,
biological, and pharmaceutical applications [1–8]. Moreover, H2O2 is ubiquitously generated as
a by-product during cholesterol [9], glucose [10], glutamate [11], and lactate [12] oxidation processes.
Numerous efforts are spent to develop efficient analytical methods for the detection of H2O2, namely,
high-pressure liquid chromatography, colorimetric, positron emission tomography, electrochemical,
bioluminescence and chemiluminescence [13–17]. Unlike these approaches, the electrochemical
methods [18] have various advantages, including the low cost, safety, simplicity, accuracy, fast response,
and high sensitivity, which are essential for the practical applications [19]. Noble metals-based catalysts
are well-imminent with their outstanding electrocatalytic activity and sensitivity towards enzymtic-free
H2O2 detection [20]. Among these noble metals, silver nanoparticles (Ag NPs) have unique optical,
catalytic, and anti-bacterial properties [21–24]. Furthermore, the great abundance in the nature of Ag
makes it more feasible for large-scale applications. Moreover, Ag NPs can provide oxygenated species
facilitates the O-H splitting at low potential along with high tolerance for the reaction intermediates.
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This is in addition to the unique ability of Ag to disproportionate H2O2 to form O2 and H2O under low
potential [25]. Generally, the electroreduction activities of H2O2 on Ag NPs were found to be size-,
morphology-, and composition-dependent [26]. Incorporation of Ag NPs into conducting polymers,
especially polypyrrole (PPy), is another robust roadmap for boosting the H2O2 reduction activity, owing
to their synergetic physicochemical properties [27]. Furthermore, the great electrical conductivity,
compatibility, redox properties, low specific density, and long-term stability of PPy can enhance the
conductivity and electron mobility during the H2O2 reduction [28]. Meanwhile, the drastic electronic
interaction of PPy/Ag NPs can enhance the mass transfer and accelerate the reduction kinetics of
H2O2. Thus, various methods were developed for the controlled synthesis of PPy/Ag nanocomposites
with different morphologies [29–33]. However, the performances of PPy/Ag toward H2O2 reduction
were not emphasized enough compared to other applications. For instance, Ag NP-decorated PPy
prepared by the electrochemical method displayed a substantial electroreduction activity towards
H2O2 detection with a minimum detection limit.

Combining natural purified bentonite clay (BP) with PPy/Ag as a ternary nanocomposite
(BP-PPy/Ag) can exhibit remarkable physicochemical and responsive properties towards various
catalytic reactions [34]. This is originated from the intrinsic high-surface area to the volume ratio, and rich
electron density of BP. In addition, the cation exchange capacity of BP can enhance its electronic interaction
with PPy/Ag. It is noteworthy that, the facile, low-cost and UV-induced preparation of BP-PPy/Ag remains
a grand challenge and is rarely reported [35]. The latter was tested for antibacterial [36], electromagnetic
shielding [37], and catalytic applications [38]. Meanwhile, the H2O2 reduction and/or detection
performance on BP-PPy/Ag is not yet reported to the best of our knowledge.

In pursuit of this aim, we present herein, a facile, scalable, versatile approach for rational one-pot
fabrication of bentonite-silylpropyl-polypyrrole/silver (BP-PS-PPy/Ag) with high-yield via the in-situ
photo polymerization of pyrrole with the assistance of silver nitrate in the presence of salinized
bentonite (BP-PS). This is beneficial for the excellent dispersion ability of silanized bentonite in an
aqueous solution to form a stable colloidal network and the photosynthetic activity of silver. Unlike
previous reports on BP-Ag and/or PPy/Ag nanocomposites, our approach is ecofriendly, simple,
and allows the fabrication of high-exfoliated BP-PS-PPy nanosheets ornamented with monodispersed
Ag NPs without additional steps for functionalization and/or activation. Furthermore, our newly
developed BP-PS-PPy/Ag nanocomposite combines between the unique physicochemical properties of
BP-PS-PPy (i.e., large surface area, conductivity, redox, and long-term stability) and the catalytic merits
of Ag NPs (the strong dissociative ability of O-H bond in H2O2 and the high-tolerance for the reaction
intermediates). These structure and composition features led to a substantial enhancement in the
electrocchemcial and photoelectrochemcial H2O2 reduction activity of the as-synthesized BP-PS-PPy/Ag
relative to metal-free BP-PS-PPy over a wide range of pH conditions (3, 5, and 7).

2. Experimental

2.1. Chemicals and Materials

Pyrrole ((Py) 98%) and silver nitrate ((AgNO3) 99.9%) were obtained from Sigma-Aldrich Chemie
GmbH (Munich, Germany). N-(3-Trimethoxysilylpropyl) pyrrole ((PS) 95.0%) and H2O2 (30%)
were provided from Alfa Aesar (Smithtown, NY, USA). The raw bentonite was extracted from the
Gafsa-Metloui basin (Tunisia); the longitude, Lambert coordinates is about 6 graduates and 69 min
(East) and the latitude of 38 degrees and 27 min, (North). The purified bentonite (noted BP) was
obtained by a standard procedure reported previously [39].

2.2. Preparation of Bentonite-Silylpropyl-Polypyrrole/Silver (BP-PS-PPy/Ag) Nanoarchitecture

BP-PS was initially prepared via mixing 2 g of BP and 114.8 mg of PS in an aqueous solution
containing 100 mL H2O and 10 mL ethanol/acetic acid (95/5) under stirring for 48 h at room temperature.
The BP-PS was purified by centrifugation at 10,000 rpm and washing cycles for 4 times and then



Sensors 2019, 19, 4442 3 of 13

dried at 40 ◦C for 48 h. Following that, a 1 g of as-obtained BP-PS was dispersed in 50 mL ethanol
and then 10 mL of H2O containing 1.68 g of AgNO3 was quickly added under stirring at room
temperature followed by a dropwise of Pyrrole (20 mL, 0.5 mol/L) under the UV-illumination at 365 nm
for 2 h. Finally, BP-PS-PPy/Ag nanoarchitectures were obtained via centrifugation at 7000 rpm for
10 min and washing cycles with ethanol for 4 times and then dried at 40 ◦C for 24 h and kept for
further characterizations.

2.3. Materials Characterization

The morphologies of the as-formed BP-PS-PPY/Ag and BP-PS nanostructure were investigated
by a transmission electron microscope (TEM TecnaiG220, FEI, Hillsboro, OR, USA). The X-ray
diffraction pattern (XRD) was measured on an X’Pert-Pro MPD diffractometer (PANalytical Co.,
Almelo, The Netherlands) using Cu Kα X-ray source (λ = 1.540598 Å). The X-ray photoelectron
spectroscopy (XPS) was analyzed on a Kratos Axis Ultra XPS spectrometer (Kratos, Manchester,
UK) equipped with a monochromatic Al Kα radiation source (1486.6 eV) in a UHV environment
(ca. 5 × 10−9 Torr). The Fourier transformed infrared spectra (FTIR) was measured on (Thermo
Scientific, Madison, WT, USA).

2.4. Electrocatalytic Reduction of Hydrogen Peroxide (H2O2)

The cyclic voltammograms (CVs) and chronoamperometric measurements were measured on
a Gamry electrochemical analyzer (reference 3000, Gamry Co., Warminster, PA, USA), using a
three-electrode cell, including a platinum wire, Ag/AgCl, glassy carbon (GC, 5 mm) as a counter,
reference and working electrodes, respectively. The GC electrodes were covered with 10 µL of
each catalyst followed by the addition of 5 µL Nafion (0.05%) and left to be fully dried before the
measurements. For the photocatalytic reaction, a three-electrode photo-glass cell was used, and the
light source was Biogro ozone-free xenon lamp (100 mW/cm2, HK, China). The CVs measurements of
each catalyst were tested in aqueous solutions of saline phosphate buffer (pH 7.4) at 50 mV s−1 without
and with an aqoues solution of H2O2 (20 µM). The tested solutions were deareated by purging high
purity nitrogen gas for 30 min prior to the experiment.

3. Results and Discussion

Figure 1 illustrates the sequential steps for preparing the BP-PS-PPY/Ag ternary hybrids through
two steps: First BP is grafted with amine groups using 3-aminopropyltriethoxysilane, then, pyrrole
and AgNO3 are added to the suspension prior to exposure to the UV light under mixing.

The N-rich PPy can easily accelerate the photoreduction of AgNO3 to form Ag NPs and allow
their anchoring on N-atoms of pyrrole during the photopolymerization step. This led to the in-situ
formation of monodispersed Ag NPs on the surface of the resulting BP-PS-PPY hybrid nanocomposite.
Figure 2 shows the detailed photopolymerization mechanism of pyrrole. First, the excited state of Ag+

strips an electron from pyrrole resulting in the formation of pyrrole radical cations and the reduction of
Ag+ to metal. Two of these radical cations then couple to a dimer (dimerization) with deprotonation,
leading to a bipyrrole. After the deprotonation, the bipyrrole is reoxidized and couples with another
radical cation. These radical cations can react with pyrrole radical cations to form the PPy chain (chain
growth) [40].
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Figure 2. Photoplymerization mechanism of pyrrole.

Figure 3a shows the TEM image of typically formed Ag-free BP-PS, which was formed in multi-layers
of sheet-like nanostructures (Figure 3a). The high-magnification TEM show that, the as-made nanosheets
were not exfoliated and with a slight agglomeration (Figure 3b). Intriguingly enough, the nanosheet
morphology of BP-PS was fully preserved after the photopolymerization process in the presence
of PPy and AgNO3 (Figure 3c). Meanwhile, the as-obtained BP-PS-PPy nanosheets were highly
exfoliated without any noticed aggregation. This is attributed to anchoring of Ag NPs on N-atoms of
PPy, thus precluding the agglomeration of the as-formed nanosheets during the polymerization step.
Mono-dispersed Ag NPs with an average diameter of 82 nm were well distributed on the surface of
the BP-PS-PPy nanosheets (Figure 3d). This is mainly attributed to the great reduction power of PPy
monomer towards AgNO3 under UV-light irradiation. The crystalline structure of the as-made BP
and BP-PS-PPy/Ag nanoarchitectures is investigated by the XRD analysis (Figure 4a). The average
crystallite size of AgNPs estimated through XRD (using Scherrer’s equation) [41] is 80.9 ± 0.7 nm,
which matches the size estimated by TEM.
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Figure 4. (a) Wide-angle X-ray diffraction (XRD) patterns and (b) X-ray photoelectron spectroscopy
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The results show that BP displays the typical diffraction patterns with an amorphous crystalline
structure as reported elsewhere [42,43]. Meanwhile, BP-PS-PPy/Ag reveals the typical, {111}, {200},
{220}, and {311} facets of face-centered cubic (fcc) structure of Ag (Figure 4a) [44,45]. These patterns
account for the metallic nature of Ag particles produced after UV-induced reaction of Py and AgNO3

as judged from JCPDS file No. 00-001-1164. Interestingly, XRD patterns of Ag are slightly positively
shifted relative to pure Ag NPs patterns previously reported in the literature [46], demonstrating its
electronic interaction with BP-PS-PPy [47,48]. Intriguingly, BP-PS-PPyAg NPs does not display the {001}
facet of BP, indicating the formation of complete exfoliated hybrid BP-PS-PPy/Ag nanocomposite in
line with the TEM micrograph. XPS is used to confirm the electronic structure and surface composition



Sensors 2019, 19, 4442 6 of 13

of BP and BP-PS-PPy/Ag, which both show the core level of Al 2p, Si 2p, C 1s, Ag 3d, N 1s, and O 1s
(Figure 3b). Table 1 reveals the surface composition evaluated by the XPS, which depicts the main
elements of BP and BP-PS-PPy/Ag nanoarchitecture. The determined atomic ratios of N/Ag are about
4.69/1.6, respectively, inferring the strong affinity of PPy towards AgNO3. Meanwhile, the high resolved
amount of C (35%) in BP-Ps-PPy/Ag is mainly originated from the multiple repeated units of PPy
(C4H2N-), indicating the formation of PPy/Ag grafted BP-PS. The high-resolution spectrum of Ag 3d
reveals only two main peaks of Ag 3d5/2 at 368.1 eV and Ag 3d3/2 at 374.1 eV. The absence of any oxide
phases of Ag indicates the purity of the as-formed Ag NPs. The binding energies of Ag 3d are slightly
blue-shifted relative to pure Ag.

Table 1. Elemental composition determined by XPS.

Catalysts Si Al O C N Ag Na K Ca

BP 21.4 7.9 60.3 7.00 - - 2.70 0.21 0.50

BP-PS-PPy/Ag 15.2 4.6 38.3 35.0 4.69 1.60 traces 0.30 0.40

This is plausibly attributed to the interaction between Ag NPs and N-atoms of PPy. The N 1s
spectrum is deconvoluted to three peaks assigned to C=N, C-N, and N+ at 398.4, 400.3 and 401.7 eV
respectively, which are the predominant peaks for PPy.

Figure 5 displays the FTIR analysis of BP-PS-PPy/Ag and BP. The results exhibit the main
characteristic peaks of BP, including the Si-O-Si (1000–1200 cm−1), kaolinite portions Al-OH at
(3696 cm−1) and Si-O-Al at (692 cm−1) [39]. Meanwhile, BP-Ps-PPy/Ag reveals additional peaks rather
than that of BP attributed to -CH3 (2973 cm−1), -CH2 (2926 cm−1), and -CH (2879 cm−1), which are the
main stretching vibration modes of PPy [34]. Moreover, the vibration modes of C-N (1370–1460 cm−1),
C-H (686 and 1206 cm−1), =C-H (1299 cm−1), C-H wagging vibration (786 cm−1), and NO3

− (1385 cm−1).
The additional new peaks of Si-O-C (1065–1105 cm−1) demonstrating the chemical binding between
the PS coupling agent and BP [49], confirms the successful photopolymerization of PPy with BP-PS.Sensors 2019, 19, x FOR PEER REVIEW 7 of 14 
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Various approaches were successfully developed for precise design of PPY/Ag-based
nanocomposites [50]. However, the facile synthesis of ternary BP-PS-PPy/Ag nanoarchitecture remains
a significant challenge and is rarely reported to the best of our knowledge [34,35]. Meanwhile, previous
reports emphasized only the multiple step reactions, which isolate between the preparation of Ag NPs
and PPy. Different from these methods, our presented approach is easy, and allows the synthesis of
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ternary BP-PS-PPy/Ag. This is derived by the in-situ photopolymerization of PPy in the presence of
BP-PS and AgNO3 as a photosensitizer, currently Py monomer facilitates the reduction of AgNO3

to form Ag NPs (Figure 1). Consequently, the as-formed PY-Ag bonded subsequently with BP-Ps,
which were self-assembled to form nanosheets after the complete photopolymerization. It should be
noticed that, Ag NPs prevent the agglomeration of the nanosheets during the polymerization, results
in high-exfoliated nanosheets decorated with Ag NPs. This structural and compositional feature is
important in electrocatalytic applications. It should be noticed that, the electroreduction activity of
H2O2 on BP-Ps-PPy/Ag hybrid composite was not yet reported [35].

The electrocatalytic activity of the typical prepared BP-PS-PPy/Ag nanocomposites is benchmarked
relative to BP-PPy/Ag and BP towards the reduction of H2O2 detection. Figure 6a represents the CVs
of the as-made catalysts measured in an aqueous solution of PBS (pH 7.4) at a scan rate of 50 mV s−1

with potential range (−0.6 to 0.6 V vs. Ag/AgCl). All electrocatalysts reveal the typical CVs featured
including hydrogen adsorption/desorption, Ag-redox, and oxygen evolution. The capacitance currents
of BP-PS-PPy/Ag and BP-PPy/Ag were significantly higher than that of metal-free BP, indicating its
higher conductivity and surface area. In addition, the capacitive current increases with the surface area.Sensors 2019, 19, x FOR PEER REVIEW 8 of 14 
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solution of PBS (pH 7.4) containing 20 µM H2O2 at a scan rate of 50 mV s−1. (d) Comparison of the
different EOnset and JRed.

Figure 6b shows the CVs measured in PBS solution containing 20 µM of H2O2 at 50 mV s−1

which depicts the higher H2O2 reduction activity of BP-PS-PPy/Ag compared with its counterpart
BP-PPy/Ag and BP nanostructures. BP-PS-PPy/Ag produces a higher current density under any applied
potential than that from the BP-PPy/Ag, as can be seen from the linear sweep voltammograms shown
in Figure 6c. This is owing to the combination of BP-PS-PPy and Ag NPs, which enhances the electrical
conductivity and provide more active sites for H2O2 reduction. In this regard, the H2O2 reduction
current (Jred) on BP-PS-PPy/Ag (−2.78 mA cm−2) is around three times higher than that on BP-PPy/Ag
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(−0.81 mA cm−2) (Figure 6d), inferring the potent electrocatalytic behavior of BP-PS-PPy/Ag. This
is evidenced in the positive onset reduction potential (Eonset) on BP-PS-PPy/Ag (0.075 V) compared
with that on BP-PPy/Ag (0.086 V), owing to its higher conductivity (Figure 6d). This indicates the
fast reduction kinetics on BP-PS-PPy/Ag. The CVs were measured on BP-Ps-PPy/Ag in an aqueous
solution of PBS (pH 7) containing 20 µM H2O2 at different scan rates (Figure 7b). It is obvious that
the reduction current peak increased steadily upon increasing the scan rate from 50 to 250 mV s−1,
inferring the the quick mass trsnafre on BP-PS-PPy/Ag. The corresponding plot of the peak current
versus the square root of the scan rate displayed a linear relationship.Sensors 2019, 19, x FOR PEER REVIEW 9 of 14 
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at 50 mV s−1 (b) CVs measured at diffret scan rates. The insets in (a) and in (b) show the plot of current
versus H2O2 concetration and current versus scan rates, respectively. (c) Chronoamperometric curve,
(d) CVs measured in solutions with different pH values in the presence of 20 µM H2O2 at 50 mV s−1.

Figure 7a shows that the H2O2 reduction currents is proportionally enhanced with increasing the
concentration of H2O2 from 1 µM to 20 µM. Moreover, chronoamperometry study (J-T in Figure 7c)
which is done by applying 0.2 V on BP-PS-PPy/Ag electrode with adding different concentrations of
H2O2 during maintaining PBS in a stirring condition shows a rapid and sensitive response to H2O2

as the response current increases with increasing the H2O2 concentration and the current plataeu is
achieved in 2 s. As developing an efficient catalyst for electrocatalytic reduction of H2O2 over wide
ranges of pH is a significant challenge, the H2O2 reduction activity on BP-Ps-PPy/Ag nanoarchitectures
was investigated under different pH values ranged from 3 to 10 (Figure 7d). BP-Ps-PPy/Ag is found
to be able to reduce H2O2 under diffter pH values (3, 7, and 10). The reduction current achieved at
a pH of 10 (–5.03 mA cm−2) is almost 2-and 4-fold higher than that at a pH of 7 and 3, respectively.
This is owing to the fast kinetics of H2O2 reduction under alkaline conditions. It should be noticed
that under acidic conditions we could not resolve any additional peak for the oxidation of Ag,
indicating its stability against corrosion. This can be attributed to the strong electronic interaction
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between BP-PS-PPy and Ag NPs, which stabilizes Ag against dissolution under acidic conditions.
The durability of the electrocatalysts is a decisive factor in large-scale applications. The stability
of the typically prepared BP-PS-PPy/Ag nanoarchitectures is investigated via benchmarking the
chronoamperometric current-time with a consecutive addition of H2O2 into PBS (pH 7.4) at an applied
potential of (−0.3 V). The results reveal the rapid chronoamperometric responses of BP-PS-PPy/Ag
to changing the concentrations of H2O2 along with typical steady-state current rising until reach the
stable value. Interestingly, BP-Ps-PPy/Ag achieved a quick current response at 1 µM within 1 s, which
is superior to previously reported for Fe3O4/PPy/Ag nanocomposite (5 s), PPy nanofiber-AgNPs-rGO
(3 s), and PPyNPT-Ag (3 s) [51–53]. The calibration curves depict that the linear detection ranges of
H2O2 ranged from 1 µM to 20 µM with a detection limit of 1 µM. The as-synthesized BP-PS-PPy/Ag
showed a detection limit of H2O2 detection lower than that of beforehand reported 1 µM and 1.7 µM
and 1.8 µM [51–53].

The H2O2 reduction performance on BP-Ps-PPy/Ag, is measured under the UV-visible light
irradiation to further sort out the catalytic effect of Ag NPs (Figure 8a). Interestingly, the H2O2

reduction current on BP-Ps-PPy/Ag under light (5.3 mA cm−2) is almost double its counterpart
measured in the dark (2.8 mA cm−2). Meanwhile, the Eonset under light is significantly more positive
than that under dark at any applied potential point as indicated by the dashed line in Figure 8b. This
implies the more facile reduction kinetics under light, ascribed to the inbuilt optical properties of Ag
NPs, which produce photo-generated electrons and release them to the BP-Ps-PPy.
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Figure 8. (a) CVs and (b) Linear sweep voltammetry measured in a solution of PBS (pH 7.4) containing
20 µM H2O2 at a scan rate of 50 mV s−1 in the presence and in the absence of UV-light irradiation.

These findings clearly display the superior electrocatalytic H2O2 reduction activity of
BP-PS-PPy/Ag nanoarchitecture than that of BP-PPy/Ag and BP. This is attributed to the combination
between the remarkable physicochemical properties of BP-PS-PPy and outstanding catalytic and optical
properties of Ag NPs [54,55]. Mainly, the exfoliated BP-PS-PPy nanosheets provide various adsorptions
and active sites for H2O2, which maximize the utilization of Ag NPs during H2O2 reduction [56,57].
Meanwhile, the synergistic and electronic interaction between Ag NPs and BP-PS-PPy originates
various accessible active sites for H2O2 reduction as well as produces oxygenated species which
accelerates the reduction kinetics at low overpotentials.

Table 2 compares the performances of the actual electrocatalyst to those of similar ones prepared
in different conditions. The as-prepared BP-PS-PPY/Ag present the lowest detection limit.
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Table 2. Summary of the polypyrrole-based composites on various kinds of supports for H2O2 detection.

Support/Substrate Material Experimental Details Limit of
Detection References

Bentonite Clay PPy-Ag coating UV- induced polymerization using AgNO3
as oxidant, light intensity ~28 mW/cm2 1 µM This work

Graphene oxide
PPy-Ag

nanofibers-silver
nanoparticles

Electropolymerization on the surface of
the modified electrode through

amperometry process
1 mM [58]

Glassy carbon
electrodes

PPy-Silver Nanostrip
Bundles

Chemical oxidative polymerization using
AgNO3 as oxidant,

Time ~90 min
43.60 µM [59]

Glassy carbon
electrode

Ag
nanoparticle-decorated

polypyrrole colloids

Chemical oxidative polymerization using
AgNO3 as oxidant,

Time ~90 min
90 mM [60]

Fe3O4 spheres PPy coating
Chemical oxidation polymer-ization using
FeCl3 as the oxidant under the assistance of

an anion surfactant.
1.6 µM [61]

Natural
biomineralization

hydroxyapatite
(BioHAP)

PPy-(AgHg) coating

Chemical oxidation polymer-ization using
ammonium persulfate (APS) as an oxidant
in the presence of BioHAP as a substrate

PPy/APS = 1:0.2;
Time ~48 h

0.27 mM [62]

(NiO) nikel oxide PPy-NiO Needle like
nanocomposites

Chemical oxidation polymer-ization in the
presence of NiO composite in the presence

of hydrazine
PPy/hydrazine = 0.5/0.01

The temperature was 60 ◦C, 60 min

5.77 mM [63]

4. Conclusions

To sum up, a facile, versatile, low-cost and scalable roadmap is presented for controlled synthesis
of BP-PS-PPy/Ag nanoarchitectures. This is simply based on the in-situ photopolymerization of
pyrrole in the presence of BP-PS and AgNO3 as a photosensitizer. Meanwhile, pyrrole facilitated the
in-situ reduction of silver nitrate to form Ag NPs. The as-produced nanoarchitecture is assembled in
well-defined exfoliated BP-PS-PPy nanosheets decorated with monodispersed Ag NPs. The detection
limit of H2O2 in the presence of BP-Ps-PPy/Ag was about 1 µM as well as a fast response of 1 s.
Currently, BP-PS-PPy/Ag is found to be an efficient catalyst for H2O2 reduction over wide ranges of pH,
ranging from 3 to 10. Moreover, the UV-light irradiation enhanced the photocatalytic H2O2 reduction
activity of BP-PS-PPy/Ag, owing to the optical properties of Ag NPs. The presented method may open
new windows towards usage of prepared BP-PS-PPy/Ag for various catalytic reactions.
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