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Abstract: In this paper, we prove the existence of fixed points of Ft-contraction mappings in partially
ordered metric spaces not necessarily complete. We require that the ordered metric space has the
t-property, which is a new concept introduced recently by Rashid et.al. We also give some examples
to illustrate the new concepts and obtained results.
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1. Introduction and Preliminaries

Banach Contraction Principle is the most important result in metric fixed point theory. This result
was due to Banach [1] in 1922. Banach contraction principle has been generalized by many researchers.
Among the first generalizations in the setting of ordered metric spaces was proved by Ran-Reurings [2]
in 2004. Many papers have been reported in ordered metric spaces (see [3–15]).

In 2012, Wardowski [16] generalized the Banach Contraction Principle by introducing a new type
of contractions, called F-contractions. This concept attracted many researchers to contribute in this
field. Many papers are reported on the existence of fixed points using F-contractions in different spaces
(see [17–26]). For instance, let F be the set of all functions F : (0, ∞) → R satisfying the following
conditions:

(F1) F is strictly increasing, i.e., for all a, b ∈ (0, ∞) with a < b, then F(a) < F(b).
(F2) For each sequence {αn} of positive numbers,

lim
n→∞

αn = 0, iff lim
n→∞

F(αn) = −∞.

(F3) There exists k ∈ (0, 1) such that lim
a→0+

akF(a) = 0.

Consider F1(α) = ln α, F2(α) = ln α + α, F3(α) = − 1√
α

and F4(α) = ln(α2 + α). We have that
Fn ∈ F for all n = 1, 2, 3, 4.

Definition 1. [16]. Let (X, d) be a metric space and T : X → X be a self-mapping. Then, T is said to be an F
-contraction if for F ∈ F , there exists τ > 0 such that

∀x, y ∈ X with [d(Tx, Ty) > 0⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y))].
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If we take F(α) = ln α, the previous inequality becomes

d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X, Tx 6= Ty.

In addition, for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) ≤ e−τd(x, y) holds. Hence, T
is a contraction mapping where the Lipshitiz constant is λ = e−τ . Thus, every contraction is also an
F-contraction, but the converse is not true in general as it is proved in Example 2.5 of [16].

Definition 2. [27]. A sequence {xn} in a partially ordered set (X,�) is said to be increasing or ascending if
for m < n, xm � xn. It is said strictly increasing if xm � xn and xm 6= xn. We denote it as xm ≺ xn.

In most fixed point results (including the ones dealing with F-contractions of Wardowski [16]), the
completeness hypothesis is essential to ensure the existence of a fixed point. Note that this hypothesis
is strong and it would be interesting to obtain fixed point results without the set being complete.
The aim of this paper goes in this direction, that is, we have strong results for weaker hypotheses.
More precisely, our motivation is based on a very recent paper [28], where the authors introduced the
concept of t-property (for partially ordered metric spaces) to ovoid the completeness hypothesis, that
is, the metric space may be incomplete.

Definition 3. [28]. Let (X, d,�) be any ordered metric space. X has the t-property if every strictly increasing
Cauchy sequence {xn} in X has a strict upper bound in X, i.e., there exists u ∈ X such that xn ≺ u.

We present the following examples illustrating Definition 3.

Example 1. [28]. Let X = R,Q, (a, b], a, b ∈ R be equipped with the natural ordering ≤ and the usual metric.
Then, X has the t-property.

Example 2. [28]. Let X = {(x, y) : x, y ∈ Q}. We define � in X by (x1, x2) � (y1, y2) iff x1 ≤ y1 and
x2 ≤ y2. Let d be the Euclidean metric on X. Then, (X, d,�) has the t-property.

Example 3. [28]. Let X = C[a, b] be equipped with the metric d defined as d( f , g) =
∫ b

a | f − g | dx. Then,
(X, d) is not a complete metric space. For f , g ∈ X, f � g iff f (x) ≤ g(x) for each x ∈ [a, b]. Obviously,
(C[a, b], d,�) has t-property.

In the following example, the increasing Cauchy sequence does not have any strict upper bound.

Example 4. [28]. Let us consider X = {(x, y, z) : x, y, z ∈ Q with max{x, y, z} <
√

2}. Endow X with
the Euclidean metric on R3. Define � in X by (x1, y1, z1) � (x2, y2, z2) if x1 ≤ x2, y1 ≤ y2 and z1 ≤ z2.
Consider xn = (qn, qn, qn) in X such that q0 = 1 and {qn} is strictly increasing in Q. We have that qn <

√
2

for all n ≥ 0. In addition, {xn} is a strictly increasing Cauchy sequence in X, but it does not have any strict
upper bound in X.

In this paper, we prove some fixed point results for Ft-contraction mappings (introduced in
Definition 4) without requiring that the metric space is complete, but using the concept of the t-property.
We give some examples to illustrate our obtained results.

2. Main Results

Definition 4. Let (X, d,�) be an ordered metric space and T : X → X be a self-mapping. T is said an
Ft-contraction if for F ∈ F , there exists τ > 0 such that for all x, y ∈ X with x 6= Tx, y 6= Ty and x ≺ y,
we have

τ + F(d(y, T(y))) ≤ F(d(x, T(x))). (1)
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In the following example, the considered mapping T is not an F-contraction, but it is an
Ft-contraction.

Example 5. Let X = Z be endowed by the usual metric of R and the natural ordering≤. Define T : X → X by

T(x) =

{
2x, x < 0,

x, x ≥ 0.

For x = −3 and y = 4, we get d(Tx, Ty) > d(x, y). Let F ∈ F . By (F1), we have

τ + F(d(Tx, Ty)) > F(d(x, y)), for τ > 0.

Thus, T is not an F-contraction. Now, we show that T is an Ft-contraction. Clearly, F(α) = ln(α)+ α ∈ F
for α ∈ (0, ∞). Set τ = 1

2 . We show that Equation (1) is satisfied. Let x, y ∈ X such that x 6= Tx, y 6= Ty and
x < y. Then, y− x ≥ 1 and x < y < 0. Further, d(x, Tx) = −x and d(y, Ty) = −y. In addition,

F(d(x, Tx))− F(d(y, Ty)) = [ln(−x)− x]− [ln(−y)− y]

= ln(
x
y
) + (y− x) ≥ 1 >

1
2
= τ.

Thus, τ + F(d(y, Ty)) ≤ F(d(x, Tx)). This shows that T is an Ft-contraction.

Example 6. Let A = {0, 1, 2, 3, 4, 5} and B = (5, 10). Endow X = A ∪ B with the usual metric of R and the
natural ordering ≤. Define T : X → X by

T(x) =

{
− 2x

5 + 7, x ∈ A,

x, x ∈ B.

Let F : R+ → R be defined by F(α) = ln(α) + α. Clearly, F ∈ F . It can be easily proved that T is an
Ft-contraction.

Our first fixed point result is:

Theorem 1. Let (X, d,�) be an ordered metric space having t-property. Let T : X → X be an Ft-contraction.
Suppose that T is non-decreasing and there exists x0 ∈ X such that x0 � T(x0). Then, T has a fixed point in X.

Proof. By assumption, we have x0 ∈ X such that x0 � T(x0). If x0 = T(x0), the proof is completed.
Otherwise, choose x1 = T(x0) such that x0 ≺ x1. By monotonicity of T, we have T(x0) � T(x1),
that is, x1 � T(x1). If x1 = T(x1), the proof is completed. Otherwise, choose x2 = T(x1) such that
x1 ≺ x2. Again, by monotonicity of T, we have T(x1) � T(x2). Continuing this process, we get a
strictly increasing sequence {xn} in X such that xn+1 = T(xn). As x0 ≺ x1, by Equation (1), we have

τ + F(d(x1, T(x1))) ≤ F(d(x0, T(x0))). (2)

Again, since x1 ≺ x2, by Equation (1), we have

τ + F(d(x2, T(x2))) ≤ F(d(x1, T(x1))). (3)

From Equations (2) and (3), we get

F(d(x2, T(x2))) ≤ F(d(x1, T(x1)))− τ ≤ F(d(x0, T(x0)))− 2τ.
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Continuing in this process, we get

F(d(xn, T(xn))) ≤ F(d(xn−1, T(xn−1)))− τ ≤ · · · ≤ F(d(x0, T(x0)))− nτ. (4)

Denote λn = d(xn, T(xn)) for n ∈ N. From Equation (4), we obtain

F(λn) ≤ F(λn−1)− τ ≤ ... ≤ F(λ0)− nτ. (5)

We get lim
n→∞

F(λn) = −∞. Using property (F2),

lim
n→∞

λn = 0.

By (F3), there exists k ∈ (0, 1) such that

lim
n→∞

λk
nF(λn) = 0.

By Equation (5), we have for all n

λk
nF(λn)− λk

nF(λ0) ≤ −λk
nnτ ≤ 0.

Letting n→ ∞, we get
lim

n→∞
nλk

n = 0.

Thus, there exists n1 ∈ N such that nλk
n ≤ 1 for all n ≥ n1, that is,

λn ≤
1

n1/k , (6)

for all n ≥ n1. Now, we show that {xn} is a Cauchy sequence. Let n, m ∈ N with n1 ≤ n < m. Using
Equation (6), one writes

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

= d(xn, T(xn)) + d(xn+1, T(xn+1)) + ... + d(xm−1, T(xm−1))

= λn + λn+1 + ... + λm−1

=
m−1

∑
i=n

λi ≤
∞

∑
i=n

λi ≤
∞

∑
i=n

1
i1/k .

Taking n→ ∞, we get lim
n,m→∞

d(xn, xm) = 0. Thus, {xn} is a strictly increasing Cauchy sequence

in X, which has t-property. Therefore, there exists u ∈ X such that xn ≺ u. If T(u) = u, the proof
is completed. Otherwise, by Equation (1), we have τ + F(d(u, T(u))) ≤ F(d(xn, T(xn))). Using
Equation (4), we get

F(d(u, T(u))) ≤ F(d(x0, T(x0)))− (n + 1)τ.

At the limit, F(d(u, T(u))) = −∞. By (F2), we have T(u) = u. Thus, u is a fixed point of T in
X.

Now, we report some examples to illustrate our obtained result. The first example clarifies
Theorem 1 where the mapping T is not an F-contraction.
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Example 7. Let A = {an : an+1 = 4an + 1 for n ≥ 0 and a0 = −1} and B = (−1, 0] ∩ Q. Take
X = A ∪ B, so X = {...,−43,−11,−3,−1} ∪ B. Endow X with the usual metric on R and the natural
ordering ≤. Clearly, (X, d,�) is not complete but has the t-property. Define T : X → X by

T(x) =

{
4x + 1, i f x ∈ A,

x, i f x ∈ B.

Obviously, T is non-decreasing. Now, it remains to prove that T satisfies Equation (1). Letting x, y ∈
X with x < y, x 6= T(x) and y 6= T(y), we have x < y ≤ −1. Then, d(x, T(x)) = −(3x + 1),
d(y, T(y)) = −(3y + 1) and y − x ≥ 2. If we take F(α) = ln(α) + α ∈ F and τ = 1 > 0. Then,
τ + F(d(y, T(y))) ≤ F(d(x, T(x))), i.e., T is an Ft-contraction. Hence, all the conditions of Theorem 1 are
satisfied. B is the set of fixed points of T.

Example 8. Let X = R2 be endowed with the Euclidean metric. Consider: (x, y) � (u, v) iff x ≤ u and y ≤ v.
Then, (X, d,�) is an ordered metric space having t-property. Take A = {...,−8,−6,−4,−2}. Let E ⊂ X be
defined by E = {(a, b) : a ∈ R and b ∈ A}. Clearly, for all (a, b), (c, d) ∈ E such that (a, b) ≺ (c, d), we
have d− b ≥ 2. Define T : R2 → R2 by

T(x, y) =

{
(x, 1), i f (x, y) ∈ E

(x, y), i f (x, y) ∈ Ec.

Clearly, T is non-decreasing. We show that T satisfies Equation (1). Let x = (x1, y1), y = (x2, y2) ∈ X
such that x ≺ y, y 6= T(y) and x 6= T(x). Then, x, y ∈ E and y2 − y1 ≥ 2. In addition,

d(y, T(y)) = d((x2, y2), (x2, 1)) = 1− y2,

and
d(x, T(x)) = d((x1, y1), (x1, 1)) = 1− y1.

Since y1 < y2 < 0, we have (1− y1) > (1− y2). Take F(α) = ln(α) + α ∈ F and τ = 1. We have

F(d(x, T(x)))− F(d(y, T(y))) = [ln(1− y1) + (1− y1)]− [ln(1− y2) + (1− y2)]

= ln(
1− y1

1− y2
) + (y2 − y1) ≥ 2 > 1 = τ.

Hence, for all x, y ∈ X with x ≺ y, x 6= T(x) and y 6= T(y), we have

τ + F(d(y, T(y))) ≤ F(d(x, T(x))).

Thus, all the conditions of Theorem 1 are satisfied. Any element of Ec is a fixed point of T.

The following example clarifies Theorem 1, where the space is not complete.

Example 9. Let X = C[0, 1] be equipped with the metric d defined as d( f , g) =
∫ b

a | f − g | dx. For f , g ∈ X,
f � g iff f (t) ≤ g(t) for each t ∈ [0, 1]. Note that (X, d,�) is an ordered metric space having t-property, but
it is not complete. Let B = { fn(t) : fn+1(t) = 3 fn(t) + 1 for n ≥ 0 and f0(t) = −1, for each t ∈ [0, 1]}
be a subset of X. Define T : X → X by

T( f (t)) =

{
3 f (t) + 1, f (t) ∈ B

f (t), f (t) ∈ Bc,



Symmetry 2019, 11, 313 6 of 9

for t ∈ [0, 1]. Clearly, T is non-decreasing. We prove that T is an Ft-contraction. Let f = f (t), g = g(t) ∈ X
with f ≺ g, f 6= T( f ) and g 6= T(g). Then, f , g ∈ B and g(t)− f (t) ≥ 1 for each t ∈ [0, 1]. We have

d( f , T( f )) = −(2 f (t) + 1),

and
d(g, T(g)) = −(2g(t) + 1).

Consider F(α) = ln(α) + α and τ = 1. We have

F(d( f , T( f )))− F(d(g, T(g))) = [ln{−(2 f (t) + 1)} − (2 f (t) + 1)]− [ln{−(2g(t) + 1)} − (2g(t) + 1)]
= ln(−(2 f (t)+1)

−(2g(t)+1) ) + 2(g(t)− f (t)) ≥ 2 > 1 = τ.

Thus, for all f , g ∈ X with f ≺ g, f 6= T( f ) and g 6= T(g), we have

τ + F(d(g, T(g))) ≤ F(d( f , T( f ))).

Hence, all the conditions of Theorem 1 are satisfied. Bc is the set of fixed points of T.

Definition 5. A function ψ : [0, ∞)→ [0, ∞) is said to be a sublinear altering distance function, if it satisfies
the following:
1. ψ is monotonic increasing and continuous.
2. ψ(t) = 0 iff t = 0.
3. ψ(a + b) ≤ ψ(a) + ψ(b), for any a, b ∈ [0, ∞).

Example 10. The map ψ : [0, ∞)→ [0, ∞) defined by f (x) = ax (a > 0) is a sublinear altering function.

Example 11. Let us define ψ : [0, ∞) → [0, ∞) defined by f (x) =
√

x. Then, ψ is a sublinear altering
function.

Definition 6. Let (X, d,�) be an ordered metric space and T : X → X be a self-mapping. T is said an
(ψ, φ, Ft)-contraction, if for F ∈ F , there exists τ > 0 such that for all x, y ∈ X with x 6= Tx, y 6= Ty and
x ≺ y, we have

τ + F[ψ(d(y, T(y))] ≤ F[ψ(d(x, T(x)))− φ(d(x, T(x)))], (7)

where ψ is a sublinear altering function, φ : [0, ∞)→ [0, ∞) is such that φ(t) = 0 iff t = 0 and ψ(t) > φ(t)
for each t > 0.

Our second fixed point result is:

Theorem 2. Let (X, d,�) be an ordered metric space having t-property. Let T : X → X be an
(ψ, φ, Ft)-contraction. Suppose that T is non-decreasing and there exists x0 ∈ X such that x0 � T(x0).
Then, T has a fixed point in X.

Proof. Let x0 ∈ X be such that x0 � T(x0). If x0 = T(x0), the proof is completed. Otherwise, choose
x1 = T(x0) such that x0 ≺ x1. Proceeding similarly as Theorem 1, we get a strictly increasing sequence
{xn} in X such that xn+1 = T(xn). As x0 ≺ x1, by Equation (7),

τ + F[ψ(d(x1, T(x1))] ≤ F[ψ(d(x0, T(x0)))− φ(d(x0, T(x0)))].

By a property of φ, we get

F[ψ(d(x1, T(x1))] ≤ F[ψ(d(x0, T(x0)))]− τ.
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Since x1 ≺ x2, by Equation (7), we have

τ + F[ψ(d(x2, T(x2))] ≤ F[ψ(d(x1, T(x1)))− φ(d(x1, T(x1)))].

Again,
F[ψ(d(x2, T(x2))] ≤ F[ψ(d(x0, T(x0)))]− 2τ.

Continuing in the same way, we get

F[ψ(d(xn, T(xn))] ≤ F[ψ(d(x0, T(x0)))]− nτ. (8)

Denote γn = ψ(d(xn, T(xn))) for n ∈ N. By (8), we obtain

F(γn) ≤ F(γn−1)− τ ≤ ... ≤ F(γ0)− nτ. (9)

We get lim
n→∞

F(γn) = −∞. By (F2), we have

lim
n→∞

γn = 0. (10)

Using (F3), there exists k ∈ (0, 1) such that

lim
n→∞

γk
nF(γn) = 0. (11)

By Equation (9), we have for all n

γk
nF(γn)− γk

nF(γ0) ≤ −γk
nnτ ≤ 0. (12)

Letting n→ ∞ in Equation (12) and using Equations (10) and (11), we get

lim
n→∞

nγk
n = 0.

Hence, there exists n1 ∈ N such that nγk
n ≤ 1 for all n ≥ n1, i.e.,

γn ≤
1

n1/k . (13)

Now, we show that {xn} is a Cauchy sequence. Using the triangular inequality, properties of ψ

and Equation (13), we have

ψ(d(xn, xm)) ≤ ψ[d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)]

≤ ψ[d(xn, T(xn))] + ψ[d(xn+1, T(xn+1))] + ... + ψ[d(xm−1, T(xm−1))]

= γn + γn+1 + ... + γm−1

=
m−1

∑
i=n

γi ≤
∞

∑
i=n

γi ≤
∞

∑
i=n

1
i1/k .

Letting n → ∞, we get lim
n→∞

ψ[d(xn, xm)] = 0. By properties of ψ, we get lim
n,m→∞

d(xn, xm) = 0.

Thus, {xn} is a strictly increasing Cauchy sequence in X, which has the t-property, so there exists
u ∈ X such that xn ≺ u. If T(u) = u, the proof is completed. Otherwise, by Equation (7), we have

τ + F[ψ(d(u, T(u))] ≤ F[ψ(d(xn, T(xn)))− φ(d(xn, T(xn)))],
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From Equation (8),

F[ψ(d(u, T(u))] ≤ F[ψ(d(x0, T(x0)))− (n + 1)τ.

Hence, lim
n→∞

F[ψ(d(u, T(u))] = −∞. By (F2), we have lim
n→∞

ψ(d(u, T(u)) = 0. This implies that

d(u, T(u)) = 0, i.e., T(u) = u. Hence, u is a fixed point of T in X.

Example 12. Let A = {an : an+1 = 4an + 1 for n ≥ 0 and a0 = −1} and B = (−1, 0] ∩Q. Take
X = A ∪ B, then X = {...,−43,−11,−3,−1} ∪ B. Endow X with the usual metric on R and the natural
ordering ≤. Clearly, (X, d,≤) has the t-property, but it is not complete. Define T : X → X by

T(x) =

{
4x + 1, i f x ∈ A,

x, i f x ∈ B.

Then, T is non-decreasing. Further, define ψ, φ : [0, ∞) → [0, ∞) by ψ(t) = 4t and φ(t) = 2t. We
prove that Equation (7) is satisfied. Take F(α) = ln(α) + α ∈ F and τ = 4 > 0. Let x, y ∈ X such that
x < y, x 6= T(x) and y 6= T(y). Then, x < y ≤ −1, d(x, T(x)) = −(3x + 1), d(y, T(y)) = −(3y + 1) and
6y− 3x ≥ 3. In addition,

F[ψ(d(x, T(x)))− φ(d(x, T(x)))]− F[ψ(d(y, T(y))] = F[−2(3x + 1)]− F[−4(3y + 1)],

= {ln[−2(3x + 1)]− 2(3x + 1)}
−{ln[−4(3y + 1)]− 4(3y + 1)},

= ln[
−2(3x + 1)
−4(3y + 1)

]− 6x + 12y + 2,

≥ (6y− 3x) + 1,

≥ 4 = τ.

Thus, all the conditions of Theorem 2 hold, so there exists a fixed point of T in X.
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