

Gas Sensors based on PANI/Cu-ZnS porous microsphere film for CO₂ detection

Hemalatha Parangusan¹, Jolly Bhadra¹, Zubair Ahmed¹, Shoaib Mallick², Farid Touati², Noora Al-Thani*¹ ¹Center for Advanced Materials, Qatar university, Qatar

²Department of Electrical Engineering, College of Engineering, Qatar university, Qatar

Cu-ZnS

حاممة قطر **QATAR UNIVERSITY**

Faculty and Postdoc Energy, Environment & Resource sustainability

Introduction

- monitoring of carbon dioxide particularly (CO_2) is vital greenhouses, air-quality, food packaging and to maintain the healthy environment.
- Carbon dioxide (CO₂) is one of the primary greenhouse gasses, which leads to the adverse effects on the environment. Also, the monitoring of CO₂ level is very crucial in the greenhouses, where the growth of plants directly depends on the CO₂ concentration.
- In this work, we prepared the PANI coated Cu-ZnS microsphere composite for the potential application in CO₂ PANI/Cu-ZnS sensing. porous microspheres were prepared by in situpolymerization method.

Synthesis of PANI composite

Fabrication of PANI/Cu-ZnS thin film

Gas sensor setup

Structural properties

(a) XRD patterns of Pure PANI and PANI/Cu-ZnS composite, (b) TGA curves of PANI, Cu-ZnS and PANI/Cu-ZnS composite.

Morphology

SEM and TEM images of pure PANI and PANI/Cu-ZnS composite.

Optical properties

(a, b) UV-vis absorption spectra of pure PANI and PANI/Cu-ZnS composite.

Band gap measurements

PANI/Cu-ZnS

CO₂ sensing response of (a) Cu-ZnS, (b) PANI/Cu-ZnS, **(d)** PANI, **(C)** Repeatability curve.

Conclusion

- *PANI coated Cu-ZnS microspheres with unique surface morphology were synthesized.
- The porous microsphere composite exhibits quick response and recovery behavior and good reproducibility towards the CO₂ sensing. The response and recovery times are 31 s and 23 s.

Acknowledgement

This work is supported by Qatar University Internal Grant No. QUCG-CAM-2019-1. The findings achieved herein are solely the responsibility of the authors.