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Abstract 24 

Objectives: This paper outlines the development of a new method (split component synthesis; SCS) 25 
for meta-analysis of diagnostic accuracy studies and assesses its performance against the commonly 26 
used bivariate random effects model. 27 
Methods: The SCS method summarises the study-specific natural logarithm of the diagnostic odds 28 
ratios (ln(DOR)), which mainly reflects test discrimination rather than threshold effects, and then 29 
splits the summary ln(DOR) into its component parts, logit of sensitivity and logit of specificity. 30 
Performance of the estimator under the SCS method was assessed through simulation and compared 31 
against the bivariate random effects model estimator in terms of bias, mean squared error (MSE), and 32 
coverage probability across varying degrees of between-studies heterogeneity. 33 
Results: The SCS estimator for the DOR, Se, and Sp were less biased and had smaller MSE than the 34 
bivariate model estimators. Despite the wider width of the 95% confidence intervals under the 35 
bivariate model, the latter had a poorer coverage probability compared to that under the SCS method.  36 
Conclusion: The SCS estimator outperforms the bivariate model estimator and thus represents an 37 
improvement in our approach to diagnostic meta-analyses. The SCS method is available to 38 
researchers through the diagma module in Stata and the SCSmeta function in R.  39 
 40 

Keywords: diagnostic odds ratio; diagnostic accuracy, performance; hierarchical; bivariate; meta-41 
analysis 42 
 43 
  44 
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Key findings 45 
• A new method is outlined that implements a unified approach to meta-analysis of diagnostic 46 

accuracy studies (the SCS method) 47 
• Traditional bivariate methods for meta-analysis of sensitivity and specificity pairs have both 48 

more error and poorer error estimation than the new SCS method reported in this paper 49 
What this adds to what is known 50 

• Meta-analysis of diagnostic accuracy studies should start with the unified construct 51 
(diagnostic odds ratios) and not sensitivity and specificity pairs 52 

• Better quality evidence can be generated through diagnostic accuracy meta-analyses by 53 
changing our approach to such meta-analyses 54 

What is the implication/what should change now 55 
• The new SCS method should be adopted for meta-analysis of diagnostic accuracy studies 56 
• Researchers can access this method through the diagma module in Stata and SCSmeta 57 

function in R. 58 
  59 
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Introduction 60 

As first stated by David Sackett and endorsed widely, evidence-based medicine (EBM) aims 61 

to provide the best care for patients through conscientious, explicit, and judicious use of clinical 62 

evidence [1]. To ensure the best available evidence in clinical diagnosis, the performance of 63 

diagnostic tests need to be properly established. Such evaluations usually involve multiple studies 64 

whose results are synthesised to produce a summary estimate of test performance. 65 

When initially implemented, meta-analyses of diagnostic accuracy studies generally pooled 66 

sensitivity (Se),  specificity (Sp), positive (pLR) or negative (nLR) likelihood ratios. However, this 67 

approach lost support because it did not account for the correlation between Se/Sp or pLR/nLR 68 

resulting in impossible values when summary LRs were converted into Se or Sp [2;3]. This led to the 69 

increasing uptake of a method proposed by Moses and Littenberg of combining independent studies 70 

of diagnostic tests into a summary ROC (sROC) curve [4;5]. They had proposed that the study-71 

specific logit-transformed Se (logit(Se)) and Sp (logit(Sp)) be used to fit a linear regression model to 72 

estimate the natural logarithm of the summary diagnostic odds ratio (ln(DOR)), which could be used 73 

as a single overall indicator of diagnostic accuracy when transformed back to the natural scale.  74 

The Moses-Littenburg method did not, however, preserve the two-dimensional nature of the 75 

underlying data and therefore the pooled Se and Sp were not available. For this reason their approach 76 

was eventually replaced by the bivariate model, proposed by Reitsma et al. in 2005 [6], which 77 

produced summary estimates of Se and Sp. This bivariate modelling approach produced equivalent 78 

results to the hierarchical summary receiver operating characteristic (HSROC) model described by 79 

Rutter and Gatsonis in 2001 [7] and the empirical Bayes approach introduced by Macaskill in 2004 80 

[8]. Chu and Cole [9] proposed an extension to the bivariate model of Reitsma et al. in 2006, which 81 

was a generalised linear mixed model that utilized a statistical modelling approach for sparse data 82 

(instead of the continuity correction) and was postulated to perform better in the situation of low cell 83 
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counts. The bivariate model was eventually adopted over the univariate or Moses-Littenburg 84 

approaches [10;11] and today is the most commonly used method for diagnostic meta-analysis [12]. 85 

An issue with bivariate models are that the inputs into the model are the study-specific pairs 86 

of Se and Sp, and the latter can demonstrate heterogeneity across studies either due to systematic 87 

differences or dissimilarity in test thresholds or both. The bivariate approach to such heterogeneity is 88 

to assume random effects within the modelling assumptions and the latter will typically be 89 

approximations at best and are hard to verify [13]. The new-style [14] random effects assumption 90 

underpinning the bivariate models may, to some extent, explain why performance deteriorates when 91 

systematic error related between-study heterogeneity increases and when number of studies decrease 92 

[15]. Another issue is that some of the between study variability could be due to some degree of 93 

threshold variability [16] and while the bivariate approach takes the negative correlation between Se 94 

and Sp into account when modelling Se/Sp pairs, such a correlation may also be artefactual due to 95 

systematic error (study biases), spectrum effects or implicit variations in thresholds when tests are 96 

interpreted differently. Of note, a pre-requisite and an implicit assumption to any diagnostic meta-97 

analysis is that there is a similar threshold for the test of interest across all studies and the meta-98 

analysis output is, therefore, for this fixed threshold. 99 

In contrast, the DOR and area under the curve (AUC) are solely indices of test discrimination 100 

whose maximum values indicate absolute discrimination between diseased and non-diseased states. 101 

There has been some suggestion that the DOR could also vary across thresholds [17;18] in which 102 

case the shape of the ROC curve may become asymmetrical. This is thought to depend on the 103 

underlying distribution of test results in patients with and without the target condition [18]. 104 

Regardless of the latter observations, in most cases the diagnostic test measures tend to be normally 105 

distributed within diseased and non-diseased subpopulations and it has been shown that for a very 106 

wide range of choices of the threshold there is almost the same value of the sum of the logit(Se) and 107 

logit(Sp) [19;20]. In other words, the ln(DOR) (and thus the DOR) is almost invariant under choice 108 
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of the threshold with the most widely seen test scores in medicine. It follows therefore that while 109 

Se/Sp pairs reflect both test discrimination and threshold effects, the DOR and AUC are relatively 110 

immune to threshold effects and therefore are better candidates for synthesis in meta-analysis.  111 

The four key measures discussed above make up an integral part of a unified diagnostic 112 

performance metric and can be related to each other [21;22] as follows: 113 

( )1 (1 )
t t

t t

Se Sp
DOR

Se Sp
= ×

− −
     [1.1] 114 

ln( ) logit( ) + logit( )t tDOR Se Sp=      [1.2] 115 

logit( ) ln( ) 2  (if DOR  1) AUC DOR= ≥      [1.3] 116 

where t represents a particular test threshold for the Se/Sp pair. Thus, for a heterogeneous set of 117 

studies, it makes sense to synthesize the DOR and derive summary estimates of Se/Sp by splitting 118 

the summary DOR into its component parts [23]. This follows from expressions 1.1 and 1.2, and 119 

once the Se and Sp are derived, the LRs can also be calculated. In addition, the DOR can be 120 

converted into the AUC given expression 1.3.. 121 

We utilise these principles for the development of a new method for the meta-analysis of the 122 

results of diagnostic accuracy studies. In this paper, we outline the development of the new method 123 

and compare its performance (through simulation) against the bivariate model in terms of bias, mean 124 

squared error (MSE), and coverage, especially when there is systematic error leading to between-125 

studies heterogeneity.  126 

 127 

Development of the new method 128 

This new method (henceforth called the split component synthesis [SCS] method) starts off 129 

with the meta-analysis of the DOR across studies using a robust inverse variance heterogeneity 130 

(IVhet) model of meta-analysis [24] that is known to maintain performance characteristics under 131 

considerable heterogeneity [25] and has no assumptions on the outcome distribution. Although other 132 
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meta-analytical models can be used (e.g. the random effects model [26]) this is strongly discouraged 133 

as it will result in a rapid drop off in coverage of the confidence interval of the summary DOR and is 134 

associated with a larger MSE [25]. Once the summary ln DOR and its standard error are obtained, 135 

the summary ln DOR needs to be split into its component logit Se and logit Sp.  136 

The principle behind the splitting of the DOR is that when the DOR in a study changes due to 137 

systematic or random error the Se and/or Sp in the same study will move in the same direction. What 138 

is needed is to determine from a set of such studies (all of which have been presumably subject to 139 

varying degrees of systematic and/or random error) what summary pair of logit Se/Sp corresponds to 140 

the summary ln DOR. To do this we use ordinary least squares (OLS) regression of study-specific 141 

logit Se or logit Sp on the centred ln DOR (i.e. study-specific ln DOR - summary ln DOR), and this 142 

will produce an intercept equal to the desired summary logit Se or logit Sp. This procedure makes 143 

sense because OLS regression minimises the presumed error that leads to the varying Se and Sp. Of 144 

note, if some of the studies utilize a different threshold, they can be picked up as they will have a 145 

different intercept from the rest of the studies on the regression plot (assuming this is not 146 

overshadowed by the extent of systematic error). Since the OLS regression is used in a predictive 147 

modelling approach this obviates any concern regarding regression dilution and though the 148 

dependent and independent variables are correlated, this is not a problem because variance estimates 149 

from the regression are not of interest.    150 

The next step is to determine the variance of the summary logit Se and logit Sp. The OLS 151 

regression itself does not provide any information about the variance of the summary logit Se and 152 

logit Sp. However, from expression 1.2, the ln DOR is the sum of these two estimates; hence the sum 153 

of the variance of these two estimates equals the variance of the ln DOR. The variance of the 154 

summary logit Se and logit Sp are obtained by splitting the variance of the summary ln DOR. The 155 

split is not done equally as the variance of the proportions is dependent on the size of the proportions 156 
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and thus the split is done as explained in expression-7 and expression-8 in supplementary material 157 

S1.  158 

The summary DOR, Se and Sp, and their variances using the SCS method are now available. 159 

In a similar fashion, the summary LRs can be obtained by proportioning the variance of the ln DOR 160 

based on their proportional absolute values over the sum of the absolute values for the ln pLR and ln 161 

nLR. The summary AUC is estimated from expression 1.3, whereas the standard error of the logit 162 

AUC is half of the standard error of the ln DOR. The specific steps involved in the SCS method are 163 

provided in the supplementary material S1.  164 

 165 

Summary ROC plot 166 

The sROC plot from the SCS method is created for the summary DOR by selecting several 167 

Se values across its range and computing its paired Sp according to the following expression which 168 

is a rearrangement of expression 1.1 as follows: 169 

( )( ) ( )( )( )  1 / 1Se DOR Sp DOR Sp Sp= − − +      170 

The summary Se and Sp intersection point is indicated on the ROC curve as a solid square 171 

and its confidence interval indicated by a shaded rectangle whose upper and lower boundaries 172 

represent the confidence limits of the Se and left and right boundaries the confidence limit of 1-Sp. 173 

The confidence limits of the DOR are also indicated on the plot. Individual study Se / Sp pairs are 174 

indicated on the plot as open circles with size proportional to the inverse of the variance of the study 175 

ln DOR (Figure 1A and 1B).  176 

 177 

Simulation 178 

Data generation 179 

The aim of the simulation was to generate the 4-cell structure of the data for each study (tp, 180 

fp, fn, and tn). To do this a true value of Sp and Se were assigned as well as the study diseased 181 
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population size and non-diseased population size. From these 4 parameters, the true cell counts were 182 

obtained. The Se was then subjected to repeated draws from a beta distribution with parameters tp 183 

and fn; while the Sp was subjected to repeated draws from a beta distribution with parameters tn and 184 

fp. This was sufficient to introduce random error, but to add in systematic error the 4-cell counts 185 

were divided by a positive scaled parameter with increasing value greater than 1 across runs. After 186 

application of the scale parameter, the Se and Sp were drawn from the beta distributions with 187 

rescaled values of tp & fn, or tn & fp respectively. The scale variable was derived by a 188 

transformation of the bias variance whose computation has been described previously [25].  189 

In this simulation, 10 levels of bias variance and therefore 10 levels of increasing values of 190 

the scale variable were set. Therefore, the simulation was conducted in 10 runs with run 1 191 

representing random error alone (scale parameter = 1) and runs 2 – 10 having increasing value of the 192 

scale parameter and thus additional systematic error. One thousand meta-analyses were simulated in 193 

each run, each containing 10 studies, although the range of studies was from 6-10 as the beta 194 

distribution in Stata reports a missing value at certain extremes which allowed us to examine 195 

performance under varying study numbers per meta-analysis. The population size of diseased and 196 

non-diseased in each study was drawn from a uniform distribution between 35 and 175 to mirror the 197 

sample sizes reported in such studies [27]. The simulation protocol for the data generation is detailed 198 

within the Stata code in the supplementary material S2.  199 

 200 

Performance comparison between the SCS method and the bivariate model 201 

For each level of heterogeneity, summary DOR, Se, and Sp estimated by the SCS method and 202 

the bivariate model (using the generalised linear mixed model approach [9]) were compared based on 203 

mean absolute estimation error squared (bias squared), MSE, width of the confidence interval, and 204 

coverage probability as we have previously described [25]. The actual degree of systematic error in 205 

each run was estimated by the median between studies variance (tau2) computed for each meta-206 

Jo
urn

al 
Pre-

pro
of



10 
 

analysis. The Stata codes used for the performance comparison are provided in the supplementary 207 

material S3–S5. 208 

The simulation study results revealed that the SCS estimator (for DOR, Se, and Sp) was less 209 

biased (Figure 2A) and had a smaller MSE than the bivariate model estimator (Figure 2B). Despite 210 

the wider width of the 95% confidence intervals under the bivariate model (Figure 2C), it had a 211 

poorer coverage probability of the confidence interval compared to that under the SCS method 212 

(Figure 2D).  213 

When extensive heterogeneity was introduced (i.e. median tau2 >1), there was a substantial 214 

drop in performance for the bivariate model with a significant increase in type I error of up to 35%. 215 

The SCS method coverage probability remained stable bot under extensive heterogeneity and 216 

increased sample sizes of 200 – 2000 per simulated study  (Supplementary material S6 & S7). The 217 

simulation was repeated 19 times with meta-analyses including different pairs of Se/Sp (DORs from 218 

0.1 – 0.9 in steps of 0.1, DOR of 1 and DORs 2 – 10 in steps of 1) and the performance comparisons 219 

remained similar (results not shown).  220 

 221 

Application to data from a published meta-analysis 222 

A diagnostic meta-analysis by Wacker et al. [28] examined the performance of procalcitonin 223 

in differentiation of septic patients (i.e. sepsis, severe sepsis, or septic shock) from those with a 224 

systemic inflammatory response syndrome of non-infectious origin. The performance of 225 

procalcitonin was examined using the SCS method and the bivariate model (using the generalised 226 

linear mixed model approach). The analysis was conducted in Stata MP-64 version 14, College 227 

Station, TX using the midas module [29] for the bivariate model while the SCS method was run 228 

using a new Stata module created with this paper (diagma) [30] as well as the SCSmeta R function 229 

with code given in supplementary material S8 [31].  230 
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The meta-analysis included 31 datasets (3244 participants) and all the estimates from the SCS 231 

method were more conservative than with the bivariate method. Both methods had similar summary 232 

Se and Sp; however, the DOR (8 and 13), AUC (0.73 and 0.85) were very different across the two 233 

methods (Table 1 and Figure 1) and this was expected because the bivariate analysis computes the 234 

DOR from its components instead of the proper vice-versa sequence. . 235 

 236 

 237 

Discussion 238 

In this paper, we introduce the SCS method and demonstrate that its performance under 239 

systematic error was superior to that of the bivariate method currently being used. This is probably 240 

because the SCS method starts off with input of the DOR and has no modelling assumptions while 241 

inputs are the Se/Sp pairs and random effects are assumed under the hierarchical and bivariate 242 

models [6;13]. Of note, the SCS method had smaller bias and MSE and the coverage was kept to 243 

nominal levels despite a narrower width of the confidence interval. 244 

The discriminative capacity of a diagnostic test can be summarised by two main measures 245 

(that are mostly independent of threshold) – the DOR and the AUC [19;20]. The larger these values 246 

are for a test, the more discrimination it has between diseased and non-diseased individuals. The 247 

main difference between the DOR and the AUC is in their ranges and interpretation. The DOR 248 

ranges between 0 and ∞ while the AUC ranges between 0 and 1. Nevertheless, their pragmatic 249 

ranges are between 1 and ∞ for the DOR and 0.5 and 1 for the AUC. Given the relationship between 250 

ln(DOR) and logit(AUC) (as shown in expression 1.3), ln(DOR) can be transformed into the 251 

logit(AUC) and vice versa. While the DOR is an index of test discrimination, it can be partitioned 252 

into several other indices of test performance (i.e. Se, Sp, pLR, and nLR) [23]. For every DOR there 253 

are many (sometimes infinite) values for these indices because they are threshold dependant unlike 254 

the DOR. It is therefore not appropriate to meta-analyse these four measures in a univariate or 255 
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bivariate analysis when there is systematic error between studies, because the distinction between 256 

variation due to systematic error and variation due to implicit variation in thresholds gets blurred. 257 

This is one reason why the bivariate model fails to achieve optimal performance when there is 258 

heterogeneity [13;15]. The bivariate method models the correlation both between and within study 259 

between Se and Sp [32;33]. Riley et al have shown that the bivariate method may produce an 260 

increased precision of results compared to a method that does not consider such correlations although 261 

such benefits are likely to be marginal at best [32].  We do not demonstrate this benefit with the 262 

bivariate method within our simulations probably because we no longer simulate the way the data 263 

will be analysed which was a weakness in previous studies. The performance estimates from the 264 

simulation in this paper do not confirm this benefit.  265 

The improvement proposed here is to meta-analyse the DOR and then partition it into its 266 

component parts.  One limitation that may arise in this approach is when false positive (or false 267 

negative) values equal 0 leading to unidentifiable DOR and bias in the SCS method. In such 268 

instances, the continuity correction is utilized – as is the case with the classical meta-analysis of OR 269 

– which may introduce some bias associated with it [34]. Nevertheless, even in this case, the MSE 270 

and coverage are still better than the corresponding estimates under the bivariate model. Hence, the 271 

overall model performance remains better for the SCS method, even though some theoretical bias 272 

may be – and is – introduced in this case. 273 

One form of variability across diagnostic studies is the spectrum effect which implies that 274 

disease symptomatology and severity or characteristics of patients can affect Se and Sp, or both. In 275 

this situation, research has shown that bias may not occur because the Se and Sp move in opposite 276 

directions and the pLR and nLR within the subgroup may remain similar to the overall pLR/nLR 277 

[35]. This means that spectrum effects may not alter the discrimination of a test but will act as if the 278 

threshold has changed and studies may cluster at different points on the SROC plot based on the 279 

disease/patient spectrum. The meta-analysis will therefore produce an average Se and Sp across all 280 
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patient spectrums. For this reason, Moons et al. [36] have suggested that Se and Sp may have no 281 

direct diagnostic meaning because they vary across patient populations and subgroups within 282 

populations and support the argument that post-test probabilities remain stable as discussed above. It 283 

is our view that there is an advantage in pursuing Se and Sp over and above post-test probabilities, 284 

and that is to determine, for an average subject of the types represented in the trials, what the 285 

expected false-positive and false-negative rates are likely to be. It is therefore important to obtain 286 

summary estimates of the component parts of the DOR (Se, Sp, pLR and nLR) for decision making.  287 

The suggestion by some researchers that these components of the DOR are affected by 288 

prevalence [37] is actually reflected by three types of problems: a spectrum effect at different levels 289 

of prevalence, low precision in low prevalence states or different implicit thresholds at different 290 

levels of prevalence [38]. These are all problems related to systematic error and, in the simulations 291 

performed, a relationship with study level prevalence could also be demonstrated in some of the 292 

heterogeneous meta-analyses. The latter probably reflects systematic error mimicking spectrum 293 

effects. By extension of this logic, meta-analysis of predictive values [39] will have a similar issue as 294 

these measures are not solely characteristics of the test, but instead reflect the prevalence in the study 295 

population. This also has implications for the trivariate synthesis of Se, Sp, and prevalence [40] and 296 

thus all these concepts linked to prevalence of disease need to be reconsidered when contemplating 297 

meta-analysis of diagnostic accuracy studies. 298 

The sROC plot, given that we assume that the meta-analysis is of studies at a common 299 

threshold, will always be symmetric since multiple Se and Sp values are computed from a single 300 

summary DOR to create the curve as shown in Figure 1A. Thus, asymmetric ROC curves do not 301 

occur with the SCS method and it is important to point out that if the test threshold varies across 302 

studies, the SCS method can still be used to synthesize the DOR, but not its Se/Sp components. A 303 

way to check for varying thresholds is to look at the scatter of study points on the sROC plot and if 304 

the studies cluster at different points on the sROC curve (as opposed to a scatter around one point on 305 
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the curve), it is likely that thresholds are varying. The latter is however not very sensitive as the 306 

scatter patterns may look similar with systematic error or spectrum effects, If the SCS method is used 307 

to synthesize components of the DOR when there are thought to be spectrum effects, it results in an 308 

average across the spectrum of disease. 309 

Another issue with diagnostic meta-analyses is publication bias. We noticed very high levels 310 

of asymmetry under simulated heterogeneity and this is not surprising since Begg [41] concluded, 311 

based on data from Deeks et al., [42] that the validity of tests of publication bias is compromised 312 

when the DOR is high,  cut-off value is extreme and prevalence of disease is low; reflecting the fact 313 

that these features tend to lead to extreme 2x2 tables with low cell frequencies in which the 314 

undesired correlation between DOR and its variance is most apparent. We therefore advocate caution 315 

in concluding that asymmetry indicates publication bias when these circumstances are present. The 316 

method for publication bias incorporated into the diagma module is not P-value driven [43] but 317 

nevertheless depends on the variance of the study DOR and suffers from the same issues flagged by 318 

Begg when used for diagnostic meta-analyses. We support the recommendation by Begg of first 319 

examining the results for heterogeneity and then the reasons behind the heterogeneity as the 320 

preferred approach for making sense of the data [41].  321 

In conclusion, our results suggest that the new SCS method represents an improvement in our 322 

approach to meta-analysis of diagnostic accuracy studies given that it is associated with less MSE 323 

and better coverage (despite a smaller width of the confidence interval) than is seen with the 324 

commonly used bivariate and related hierarchical models. To make the SCS method accessible to 325 

researchers, we have developed the diagma module [30] which is available in Stata (type ssc install 326 

diagma in the command window) and the SCSmeta function in R [31].  327 

 328 
 329 

 330 

 331 
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Table 1. Summary estimates using the split component synthesis method and the bivariate model for 468 
31 datasets that assessed procalcitonin as a diagnostic marker for sepsis in critically ill patients 469 
 470 

 
Split component synthesis 
method Bivariate model 

Sensitivity 0.72 (0.66-0.78) 0.77 (0.72-0.81) 
Specificity 0.74 (0.68-0.80) 0.79 (0.74-0.84) 
Positive likelihood ratio 2.82 (2.07-3.82) 3.70 (2.95-4.63) 
Negative likelihood ratio 0.37 (0.28-0.50) 0.29 (0.24-0.36) 
Diagnostic odds ratio 7.57 (4.93-11.61) 12.56 (8.82-17.88) 
Area under the curve 0.73 (0.69-0.77) 0.85 (0.81-0.88) 
Between-study heterogeneity (I-squared): 66.3% 
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Figure 1. Summary ROC plots using the SCS method (A, diagma in Stata and B, SCSmeta in R) and 
the bivariate model (C, midas in Stata) for 31 datasets that assessed procalcitonin as a diagnostic 
marker for sepsis in critically ill patients 
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Figure 2. Performance comparison of diagnostic odds ratio (triangle), sensitivity (circle), and 
specificity (square) between the split component synthesis method (continuous) and the bivariate 
model (dashed) 
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Highlights 

• Meta-analysis of diagnostic studies are currently undertaken by 

synthesizing sensitivity (Se) and specificity (Sp) pairs from included 

studies 

• Bivariate linear mixed models are the most popular method for synthesis 

• The Se/Sp pairs are components of the diagnostic odds ratio (DOR) but 

are threshold variant unlike the DOR  

• This paper proposes that synthesis models should start from the DOR 

and then split this into its components rather than the reverse as is 

currently done 

• The new method describes how this split can be achieved and has two 

main strengths:It is free of modelling assumptions and circumvents 

threshold effects at the synthesis stage  

• Performance measures demonstrate a lower mean squared error and 

nominal coverage for the new method with smaller CI width all of which 

are poorer with the traditional approach 

• Software is available to run the new method 
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