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Abstract

Objectives. This paper outlines the development of a new nte{split component synthesis; SCS)
for meta-analysis of diagnostic accuracy studiab assesses its performance against the commonly
used bivariate random effects model.

Methods: The SCS method summarises the study-specific aldtugarithm of the diagnostic odds
ratios (In(DOR)), which mainly reflects test disomation rather than threshold effects, and then
splits the summary In(DOR) into its component paldgit of sensitivity and logit of specificity.
Performance of the estimator under the SCS mettasdassessed through simulation and compared
against the bivariate random effects model estimatterms of bias, mean squared error (MSE), and
coverage probability across varying degrees of betastudies heterogeneity.

Results: The SCS estimator for the DOR, Se, and Sp wereblased and had smaller MSE than the
bivariate model estimators. Despite the wider widththe 95% confidence intervals under the
bivariate model, the latter had a poorer coveragbability compared to that under the SCS method.
Conclusion: The SCS estimator outperforms the bivariate medémator and thus represents an
improvement in our approach to diagnostic metayamesl The SCS method is available to
researchers through thdeagma module in Stata and tf8Smeta function inR.

Keywords. diagnostic odds ratio; diagnostic accuracy, peréoroe; hierarchical; bivariate; meta-
analysis
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Key findings

A new method is outlined that implements a uniéggroach to meta-analysis of diagnostic
accuracy studies (the SCS method)

Traditional bivariate methods for meta-analysis@fsitivity and specificity pairs have both
more error and poorer error estimation than the 888 method reported in this paper

What thisaddsto what is known

Meta-analysis of diagnostic accuracy studies shstad with the unified construct
(diagnostic odds ratios) and not sensitivity anelcHity pairs

Better quality evidence can be generated througndistic accuracy meta-analyses by
changing our approach to such meta-analyses

What isthe implication/what should change now

The new SCS method should be adopted for meta-sisalf/diagnostic accuracy studies
Researchers can access this method througtidgaa module in Stata an8CSmeta
function in R.
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Introduction

As first stated by David Sackett and endorsed widalidence-based medicine (EBM) aims
to provide the best care for patients through censious, explicit, and judicious use of clinical
evidence [1]. To ensure the best available evidancelinical diagnosis, the performance of
diagnostic tests need to be properly establishadh ®valuations usually involve multiple studies
whose results are synthesised to produce a sunesanyate of test performance.

When initially implemented, meta-analyses of diegjitoaccuracy studies generally pooled
sensitivity (Se), specificity (Sp), positive (pLB) negative (nLR) likelihood ratios. However, this
approach lost support because it did not accounthf® correlation between Se/Sp or pLR/nLR
resulting in impossible values when summary LRsavaemverted into Se or Sp [2;3]. This led to the
increasing uptake of a method proposed by Mosed at®hberg of combining independent studies
of diagnostic tests into a summary ROC (sROC) cy#/B]. They had proposed that the study-
specific logit-transformed Se (logit(Se)) and SW{(Sp)) be used to fit a linear regression madel
estimate the natural logarithm of the summary diggjn odds ratio (In(DOR)), which could be used
as a single overall indicator of diagnostic accynaben transformed back to the natural scale.

The Moses-Littenburg method did not, however, preséhe two-dimensional nature of the
underlying data and therefore the pooled Se ande3p not available. For this reason their approach
was eventually replaced by the bivariate modelppsed by Reitsma et al. in 2005 [6], which
produced summary estimates of Se and Sp. Thisiaiganodelling approach produced equivalent
results to the hierarchical summary receiver opggatharacteristic (HSROC) model described by
Rutter and Gatsonis in 2001 [7] and the empiricayd®s approach introduced by Macaskill in 2004
[8]. Chu and Cole [9] proposed an extension tohtivariate model of Reitsma et al. in 2006, which
was a generalised linear mixed model that utiliaestatistical modelling approach for sparse data

(instead of the continuity correction) and was pladed to perform better in the situation of lovil ce
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counts. The bivariate model was eventually adopiedr the univariate or Moses-Littenburg
approaches [10;11] and today is the most commased unethod for diagnostic meta-analysis [12].

An issue with bivariate models are that the inputs the model are the study-specific pairs
of Se and Sp, and the latter can demonstrate lgeteedy across studies either due to systematic
differences or dissimilarity in test thresholdsboth. The bivariate approach to such heterogeiity
to assume random effects within the modelling aggioms and the latter will typically be
approximations at best and are hard to verify [T3le new-style [14] random effects assumption
underpinning the bivariate models may, to somergxexplain why performance deteriorates when
systematic error related between-study heterogem&iteases and when number of studies decrease
[15]. Another issue is that some of the betweenlystrariability could be due to some degree of
threshold variability [16] and while the bivariaapproach takes the negative correlation between Se
and Sp into account when modelling Se/Sp paird) sucorrelation may also be artefactual due to
systematic error (study biases), spectrum effecisnplicit variations in thresholds when tests are
interpreted differently. Of note, a pre-requisitedan implicit assumption to any diagnostic meta-
analysis is that there is a similar threshold fo test of interest across all studies and the -meta
analysis output is, therefore, for this fixed threlsl.

In contrast, the DOR and area under the curve (Adr€)solely indices of test discrimination
whose maximum values indicate absolute discrimomabietween diseased and non-diseased states.
There has been some suggestion that the DOR ctsddvary across thresholds [17;18] in which
case the shape of the ROC curve may become asyimmahetrhis is thought to depend on the
underlying distribution of test results in patientsth and without the target condition [18].
Regardless of the latter observations, in mostscse diagnostic test measures tend to be normally
distributed within diseased and non-diseased subbptpns and it has been shown that for a very
wide range of choices of the threshold there isoainthe same value of the sum of the logit(Se) and

logit(Sp) [19;20]. In other words, the In(DOR) (atidus the DOR) is almost invariant under choice
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of the threshold with the most widely seen testreson medicine. It follows therefore that while
Se/Sp pairs reflect both test discrimination améghold effects, the DOR and AUC are relatively
immune to threshold effects and therefore are bettedidates for synthesis in meta-analysis.

The four key measures discussed above make uptagrah part of a unified diagnostic

performance metric and can be related to each {2h4e22] as follows:

= 9

DOR= )
=) @) L4

In(DOR) = logit(Se) + logit(Sp,) [1.2]

logit(AUC) =In(DOR)/2 (if DOR = 1) [1.3]
wheret represents a particular test threshold for th&Sgegvair. Thus, for a heterogeneous set of
studies, it makes sense to synthesize the DOR andedsummary estimates of Se/Sp by splitting
the summary DOR into its component parts [23]. Thifows from expressions 1.1 and 1.2, and
once the Se and Sp are derived, the LRs can alswaloalated. In addition, the DOR can be
converted into the AUC given expression 1.3..

We utilise these principles for the developmenaafew method for the meta-analysis of the
results of diagnostic accuracy studies. In thisgpawe outline the development of the new method
and compare its performance (through simulatiomjregg the bivariate model in terms of bias, mean
squared error (MSE), and coverage, especially where is systematic error leading to between-

studies heterogeneity.

Development of the new method

This new method (henceforth called the split congmbrsynthesis [SCS] method) starts off
with the meta-analysis of the DOR across studiesgua robust inverse variance heterogeneity
(IVhet) model of meta-analysis [24] that is knowmn rhaintain performance characteristics under

considerable heterogeneity [25] and has no assangtin the outcome distribution. Although other
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meta-analytical models can be used (e.g. the rarefteots model [26]) this is strongly discouraged
as it will result in a rapid drop off in coveragktlbe confidence interval of the summary DOR and is
associated with a larger MSE [25]. Once the sumnraOR and its standard error are obtained,
the summary In DOR needs to be split into its congmb logit Se and logit Sp.

The principle behind the splitting of the DOR iathvhen the DOR in a study changes due to
systematic or random error the Se and/or Sp isdinge study will move in the same direction. What
is needed is to determine from a set of such sfu@ik of which have been presumably subject to
varying degrees of systematic and/or random ewbgt summary pair of logit Se/Sp corresponds to
the summary In DOR. To do this we use ordinarytlegsiares (OLS) regression of study-specific
logit Se or logit Sp on the centred In DOR (i.ewdstspecific In DOR - summary In DOR), and this
will produce an intercept equal to the desired samnhogit Se or logit Sp. This procedure makes
sense because OLS regression minimises the presemoedhat leads to the varying Se and Sp. Of
note, if some of the studies utilize a differentethold, they can be picked up as they will have a
different intercept from the rest of the studies e regression plot (assuming this is not
overshadowed by the extent of systematic errorjceSthe OLS regression is used in a predictive
modelling approach this obviates any concern reggrdegression dilution and though the
dependent and independent variables are correlfiieds not a problem because variance estimates
from the regression are not of interest.

The next step is to determine the variance of thransary logit Se and logit Sp. The OLS
regression itself does not provide any informatdout the variance of the summary logit Se and
logit Sp. However, from expression 1.2, the In DiSRhe sum of these two estimates; hence the sum
of the variance of these two estimates equals #rewce of the In DOR. The variance of the
summary logit Se and logit Sp are obtained by tspditthe variance of the summary In DOR. The

split is not done equally as the variance of thegprtions is dependent on the size of the propustio
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and thus the split is done as explained in exprassiand expression-8 in supplementary material
S1.

The summary DOR, Se and Sp, and their varianceg tise SCS method are now available.
In a similar fashion, the summary LRs can be oleiby proportioning the variance of the In DOR
based on their proportional absolute values owestim of the absolute values for the In pLR and In
nLR. The summary AUC is estimated from expressid) Whereas the standard error of the logit
AUC is half of the standard error of the In DOR eT$pecific steps involved in the SCS method are

provided in the supplementary material S1.

Summary ROC plot
The sROC plot from the SCS method is created fersiimmary DOR by selecting several
Se values across its range and computing its p&pedccording to the following expression which

Is a rearrangement of expression 1.1 as follows:
S = (DOR(1-%p)) /((DOR(1- %))+ )

The summary Se and Sp intersection point is indicain the ROC curve as a solid square
and its confidence interval indicated by a shadettangle whose upper and lower boundaries
represent the confidence limits of the Se anddett right boundaries the confidence limit of 1-Sp.
The confidence limits of the DOR are also indicabedthe plot. Individual study Se / Sp pairs are

indicated on the plot as open circles with sizepprtonal to the inverse of the variance of thelgtu

In DOR (Figure 1A and 1B).

Simulation
Data generation
The aim of the simulation was to generate the Astrlcture of the data for each studipy, (

fp, fn, andtn). To do this a true value of Sp and Se were asdigis well as the study diseased

8
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population size and non-diseased population sizemREhese 4 parameters, the true cell counts were
obtained. The Se was then subjected to repeatedsdram a beta distribution with parametgps
andfn; while the Sp was subjected to repeated draws &drata distribution with parametdrnsand
fp. This was sufficient to introduce random errort buadd in systematic error the 4-cell counts
were divided by a positive scaled parameter witltaasing value greater than 1 across runs. After
application of the scale parameter, the Se and & wirawn from the beta distributions with
rescaled values ofp & fn, or tn & fp respectively. The scale variable was derived by a
transformation of the bias variance whose computdtas been described previously [25].

In this simulation, 10 levels of bias variance d@herefore 10 levels of increasing values of
the scale variable were set. Therefore, the simomatvas conducted in 10 runs with run 1
representing random error alone (scale parametg@rand runs 2 — 10 having increasing value of the
scale parameter and thus additional systematic.gbrme thousand meta-analyses were simulated in
each run, each containing 10 studies, althoughrdnge of studies was from 6-10 as the beta
distribution in Stata reports a missing value attate extremes which allowed us to examine
performance under varying study numbers per meddysis. The population size of diseased and
non-diseased in each study was drawn from a unitbstnibution between 35 and 175 to mirror the
sample sizes reported in such studies [27]. Thelaimon protocol for the data generation is dethile

within the Stata code in the supplementary mat&zal

Performance comparison between the SCS method and the bivariate model

For each level of heterogeneity, summary DOR, 8é,Sp estimated by the SCS method and
the bivariate model (using the generalised lineaethmodel approach [9]) were compared based on
mean absolute estimation error squared (bias sdyavtSE, width of the confidence interval, and
coverage probability as we have previously desdri2&]. The actual degree of systematic error in

each run was estimated by the median between stwdigance (t&l) computed for each meta-
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analysis. The Stata codes used for the performeocgarison are provided in the supplementary
material S3-S5.

The simulation study results revealed that the 8&Bnator (for DOR, Se, and Sp) was less
biased (Figure 2A) and had a smaller MSE than thariate model estimator (Figure 2B). Despite
the wider width of the 95% confidence intervals enthe bivariate model (Figure 2C), it had a
poorer coverage probability of the confidence waércompared to that under the SCS method
(Figure 2D).

When extensive heterogeneity was introduced (iediam tad >1), there was a substantial
drop in performance for the bivariate model witkignificant increase in type | error of up to 35%.
The SCS method coverage probability remained stable under extensive heterogeneity and
increased sample sizes of 200 — 2000 per simutdtety (Supplementary material S6 & S7). The
simulation was repeated 19 times with meta-analyszgding different pairs of Se/Sp (DORs from
0.1 - 0.9 in steps of 0.1, DOR of 1 and DORs 2 +nlieps of 1) and the performance comparisons

remained similar (results not shown).

Application to data from a published meta-analysis

A diagnostic meta-analysis by Wacker et al. [28raimed the performance of procalcitonin
in differentiation of septic patients (i.e. sepssyere sepsis, or septic shock) from those with a
systemic inflammatory response syndrome of norctidas origin. The performance of
procalcitonin was examined using the SCS methodtheadivariate model (using the generalised
linear mixed model approach). The analysis was coted in Stata MP-64 version 14, College
Station, TX using thenidas module [29] for the bivariate model while the S@®thod was run
using a new Stata module created with this pagiegiha) [30] as well as th&CSmeta R function

with code given in supplementary material S8 [31].
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The meta-analysis included 31 datasets (3244 patits) and all the estimates from the SCS
method were more conservative than with the bitamaethod. Both methods had similar summary
Se and Sp; however, the DOR (8 and 13), AUC (OritB(@a85) were very different across the two
methods (Table 1 and Figure 1) and this was expdmeause the bivariate analysis computes the

DOR from its components instead of the proper vieesa sequence. .

Discussion

In this paper, we introduce the SCS method and detraie that its performance under
systematic error was superior to that of the batarmethod currently being used. This is probably
because the SCS method starts off with input ofi@R and has no modelling assumptions while
inputs are the Se/Sp pairs and random effects ssensed under the hierarchical and bivariate
models [6;13]. Of note, the SCS method had smailes and MSE and the coverage was kept to
nominal levels despite a narrower width of the aerice interval.

The discriminative capacity of a diagnostic test b summarised by two main measures
(that are mostly independent of threshold) — theRD#EDd the AUC [19;20]. The larger these values
are for a test, the more discrimination it has leetwdiseased and non-diseased individuals. The
main difference between the DOR and the AUC ish@irtranges and interpretation. The DOR
ranges between 0 and while the AUC ranges between 0 and 1. Nevertheldg®sr pragmatic
ranges are between 1 andor the DOR and 0.5 and 1 for the AUC. Given télationship between
In(DOR) and logit(AUC) (as shown in expression 1.BYDOR) can be transformed into the
logit(AUC) and vice versa. While the DOR is an ird# test discrimination, it can be partitioned
into several other indices of test performance 8& Sp, pLR, and nLR) [23]. For every DOR there
are many (sometimes infinite) values for thesedeslibecause they are threshold dependant unlike

the DOR. It is therefore not appropriate to metabgse these four measures in a univariate or

11
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bivariate analysis when there is systematic ereiwben studies, because the distinction between
variation due to systematic error and variation thuémplicit variation in thresholds gets blurred.
This is one reason why the bivariate model failsathieve optimal performance when there is
heterogeneity [13;15]. The bivariate method modiets correlation both between and within study
between Se and Sp [32;33]. Riley et al have shdven the bivariate method may produce an
increased precision of results compared to a mdtaticdoes not consider such correlations although
such benefits are likely to be marginal at besi.[3®/e do not demonstrate this benefit with the
bivariate method within our simulations probablycéese we no longer simulate the way the data
will be analysed which was a weakness in previdudiss. The performance estimates from the
simulation in this paper do not confirm this benhefi

The improvement proposed here is to meta-analyseDOR and then partition it into its
component parts. One limitation that may arisehis approach is when false positive (or false
negative) values equal O leading to unidentifiaD®R and bias in the SCS method. In such
instances, the continuity correction is utilizeds-is the case with the classical meta-analysB3rof
— which may introduce some bias associated wifB4i}. Nevertheless, even in this case, the MSE
and coverage are still better than the correspgnestimates under the bivariate model. Hence, the
overall model performance remains better for thé& Sethod, even though some theoretical bias
may be — and is — introduced in this case.

One form of variability across diagnostic studisghe spectrum effect which implies that
disease symptomatology and severity or charadteyief patients can affect Se and Sp, or both. In
this situation, research has shown that bias mayomur because the Se and Sp move in opposite
directions and the pLR and nLR within the subgrougy remain similar to the overall pLR/nLR
[35]. This means that spectrum effects may not #tie discrimination of a test but will act ashet
threshold has changed and studies may clusterffatetit points on the SROC plot based on the

disease/patient spectrum. The meta-analysis valieflore produce an average Se and Sp across all

12
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305

patient spectrums. For this reason, Moons et &l fidve suggested that Se and Sp may have no
direct diagnostic meaning because they vary acpaggent populations and subgroups within
populations and support the argument that postpredtabilities remain stable as discussed above. It
is our view that there is an advantage in purs@agnd Sp over and above post-test probabilities,
and that is to determine, for an average subjedheftypes represented in the trials, what the
expected false-positive and false-negative ratedilely to be. It is therefore important to obtain
summary estimates of the component parts of the (%2RSp, pLR and nLR) for decision making.

The suggestion by some researchers that these cemgoof the DOR are affected by
prevalence [37] is actually reflected by three s/pé& problems: a spectrum effect at different Isvel
of prevalence, low precision in low prevalence egabr different implicit thresholds at different
levels of prevalence [38]. These are all probleaiated to systematic error and, in the simulations
performed, a relationship with study level prevakertould also be demonstrated in some of the
heterogeneous meta-analyses. The latter probalflycte systematic error mimicking spectrum
effects. By extension of this logic, meta-analysdipredictive values [39] will have a similar issa®
these measures are not solely characteristiceedest, but instead reflect the prevalence in tingys
population. This also has implications for the driate synthesis of Se, Sp, and prevalence [40] and
thus all these concepts linked to prevalence adadie need to be reconsidered when contemplating
meta-analysis of diagnostic accuracy studies.

The sROC plot, given that we assume that the metlsis is of studies at a common
threshold, will always be symmetric since multiBle and Sp values are computed from a single
summary DOR to create the curve as shown in Figarel hus, asymmetric ROC curves do not
occur with the SCS method and it is important tmpout that if the test threshold varies across
studies, the SCS method can still be used to sgiziehe DOR, but not its Se/Sp components. A
way to check for varying thresholds is to lookta scatter of study points on the sROC plot and if

the studies cluster at different points on the sROQe (as opposed to a scatter around one point on

13
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the curve), it is likely that thresholds are vagyiithe latter is however not very sensitive as the
scatter patterns may look similar with systematroreor spectrum effects, If the SCS method is used
to synthesize components of the DOR when theréhategght to be spectrum effects, it results in an
average across the spectrum of disease.

Another issue with diagnostic meta-analyses isipatibn bias. We noticed very high levels
of asymmetry under simulated heterogeneity andishisot surprising since Begg [41] concluded,
based on data from Deeks et al., [42] that theditgliof tests of publication bias is compromised
when the DOR is high, cut-off value is extreme anelvalence of disease is low; reflecting the fact
that these features tend to lead to extreme 2xgalith low cell frequencies in which the
undesired correlation between DOR and its variamoeost apparent. We therefore advocate caution
in concluding that asymmetry indicates publicatimas when these circumstances are present. The
method for publication bias incorporated into thagma module is not P-value driven [43] but
nevertheless depends on the variance of the st@fy &nd suffers from the same issues flagged by
Begg when used for diagnostic meta-analyses. Weostphe recommendation by Begg of first
examining the results for heterogeneity and them rimasons behind the heterogeneity as the
preferred approach for making sense of the data [41

In conclusion, our results suggest that the new B€®od represents an improvement in our
approach to meta-analysis of diagnostic accuraayiest given that it is associated with less MSE
and better coverage (despite a smaller width of dbefidence interval) than is seen with the
commonly used bivariate and related hierarchicatlet®® To make the SCS method accessible to
researchers, we have developeddiagma module [30] which is available in Stata (tygse install

diagma in the command window) and ti8€Smeta function in R [31].

14



332

333
334
335
336
337
338

339
340
341
342
343
344
345
346
347
348
349
350
351

352

Acknowledgement

Author CRedi T statement

L uis Furuya-Kanamori: Methodology,Formal analysis, Software, Writing - Review & Eddi
Data curationPolychronis Koustoulas: Formal analysisSoftware, Writing - Review & Editing.
Suhail Doi: Conceptualization, Methodology, Supervision, Foraralysis, Writing - Original
Draft, Writing - Review & Editing , Funding acquisin.

Funding

This work was made possible by Program Grant #NPRHR9-170274 from the Qatar National
Research Fund (a member of Qatar Foundation) t@iSAh Doi. The findings herein reflect the
work, and are solely the responsibility of the aush All authors had full access to all the datthm
study and the corresponding author (SD) had fieaponsibility for the decision to submit for
publication and is the guarantor of this study.

LFK was supported by an Australian National Healtld Medical Research Council Fellowship
(APP1158469).

Conflicts of interest

The authors do not have any conflicts of interesteclare.

15



353
354
355
356

357
358

359
360

361
362
363

364
365

366
367
368

369
370

371
372

373
374
375

376
377
378

379
380
381

382
383
384

385
386

387
388
389

390

=

10.

11.

12.

13.

14.

15.

References

Knottnerus, J.A. & Tugwell, P. (2017) Evidertz&#sed medicine: achievements and prospects.
J Clin Epidemiol, 84, 1-2.

Zwinderman, A.H. & Bossuyt, P.M. (2008) We slabomiot pool diagnostic likelihood ratios in
systematic reviewstat Med, 27, 687-97.

Shapiro, D.E. (1995) Issues in combining indeleait estimates of the sensitivity and
specificity of a diagnostic tesicad Radiol, 2 Suppl 1, S37-47; discussion S65-9, S83.

Moses, L.E., Shapiro, D., & Littenberg, B. (B9€ombining independent studies of a
diagnostic test into a summary ROC curve: datdytioapproaches and some additional
considerationstat Med, 12, 1293-316.

Littenberg, B. & Moses, L.E. (1993) Estimatiiggnostic accuracy from multiple conflicting
reports: a new meta-analytic methived Decis Making, 13, 313-21.

Reitsma, J.B., Glas, A.S., Rutjes, AW., Sa@mIR.J., Bossuyt, P.M., & Zwinderman, A.H.
(2005) Bivariate analysis of sensitivity and spiedy produces informative summary measures
in diagnostic reviewsl Clin Epidemiol, 58, 982-90.

Rutter, C.M. & Gatsonis, C.A. (2001) A hieraazi regression approach to meta-analysis of
diagnostic test accuracy evaluatiofst Med, 20, 2865-84.

Macaskill, P. (2004) Empirical Bayes estimaererated in a hierarchical summary ROC
analysis agreed closely with those of a full Bagesinalysis] Clin Epidemiol, 57, 925-32.

Chu, H. & Cole, S.R. (2006) Bivariate meta-ga@ of sensitivity and specificity with sparse
data: a generalized linear mixed model approa€tin Epidemiol, 59, 1331-2; author reply
1332-3.

Dinnes, J., Mallett, S., Hopewell, S., Roderk.J., & Deeks, J.J. (2016) The Moses-Littenberg
meta-analytical method generates systematic diftergin test accuracy compared to
hierarchical meta-analytical modelsClin Epidemiol, 80, 77-87.

Harbord, R.M., Whiting, P., Sterne, J.A., Bgd#., Deeks, J.J., Shang, A., & Bachmann, L.M.
(2008) An empirical comparison of methods for matalysis of diagnostic accuracy showed
hierarchical models are necessarlin Epidemiol, 61, 1095-103.

Ochodo, E.A., Reitsma, J.B., Bossuyt, P.MLegflang, M.M. (2013) Survey revealed a lack
of clarity about recommended methods for meta-amalyf diagnostic accuracy dafeClin
Epidemiol, 66, 1281-8.

Begg, C.B. (2008) Meta-analysis methods fagdostic accuracy.Clin Epidemiol, 61, 1081-
2; discussion 1083-4.

Hodges, J.S. (2013) Random effects old and meRichly Parameterized Linear Models.
Additive, Time Series, and Spatial Models Using Random Effects (Hodges, J.S., ed), pp. 285-
302. Chapman and Hall/CRC, USA.

Diaz, M. Performance measures of the bivareteom effects model for meta-analyses of

16



391

392
393
394

395
396

397
398

399
400

401
402

403
404
405

406
407
408

409
410

411
412
413

414
415

416
417

418
419
420

421
422
423

424
425
426

427

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

diagnostic accuracy. Computational Statistics &Danalysis 83, 82-90. 2015.

Naaktgeboren, C.A., Ochodo, E.A., Van EnstA\Wde Groot, J.A.H., Hooft, L., Leeflang,
M.M.G., Bossuyt, P.M., Moons, K.G.M., & ReitsmaBJ(2016) Assessing variability in
results in systematic reviews of diagnostic stud®4C Med Res Methodol, 16, 6.

Irwig, L., Macaskill, P., Glasziou, P., & Fah&l. (1995) Meta-analytic methods for
diagnostic test accuracyClin Epidemiol, 48, 119-30; discussion 131-2.

Glas, A.S., Lijmer, J.G., Prins, M.H., BongglJ., & Bossuyt, P.M. (2003) The diagnostic
odds ratio: a single indicator of test performardagélin Epidemiol, 56, 1129-35.

Edwards, J.H. Some Taxonomic Implications Gugaious Feature of the Bivariate Normal
Surface. Br J Prev Soc Med 20[1], 42-43. 1966.

Hasselblad, V. & Hedges, L.V. (1995) Meta-gaisl of screening and diagnostic te&s/chol
Bull, 117, 167-78.

Suzuki, S., Moro-oka, T., & Choudhry, N.K. @) The conditional relative odds ratio
provided less biased results for comparing diafiméesst accuracy in meta-analysé€lin
Epidemiol, 57, 461-9.

Walter, S.D. & Sinuff, T. (2007) Studies rejoog ROC curves of diagnostic and prediction
data can be incorporated into meta-analyses esimgsponding odds ratio3Clin Epidemiol,
60, 530-4.

Simel, D.L., Easter, J., & Tomlinson, G. (2PL&elihood ratios, sensitivity, and specificity
values can be back-calculated when the odds rateknownJ Clin Epidemiol, 66, 458-60.

Doi, S.A., Barendregt, J.J., Khan, S., Thalipb& Williams, G.M. (2015) Advances in the
meta-analysis of heterogeneous clinical trialshie Thverse variance heterogeneity model.
Contemp Clin Trials, 45, 130-8.

Doi, S.A.R. & Furuya-Kanamori, L. (2020) Sdieg the best meta-analytic estimator for
evidence-based practice: a simulation sty Evid Based Healthc, 18, 86-94.

DerSimonian, R. & Laird, N. (1986) Meta-anadyis clinical trials.Control Clin Trials, 7,
177-88.

Bachmann, L.M., Puhan, M.A., Ter Riet, G., &Buyt, P.M. Sample sizes of studies on
diagnostic accuracy: literature survey. BMJ 332[15%127-1129. 2006. British Medical
Journal Publishing Group.

Wacker, C., Prkno, A., Brunkhorst, F.M., & &ttmann, P. (2013) Procalcitonin as a
diagnostic marker for sepsis: a systematic reviewv eneta-analysid.ancet Infect Dis, 13,
426-35.

MIDAS: Stata module for meta-analytical intgen of diagnostic test accuracy studies.
Dwamena, B. 2007. https://ideas.repec.org/c/bactbe/s456880.html, Boston College
Department of Economics. Statistical Software Congnos.

DIAGMA: Stata module for DIAGnostic Meta-Analg using the split component synthesis

17



428
429
430

431
432
433

434
435
436

437
438
439

440
441

442
443

444
445

446
447

448
449

450
451
452

453
454
455

456
457
458

459
460
461

462
463
464

465

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

method. Furuya-Kanamori, L. and Doi, S. A. R. 2020
https://ideas.repec.org/c/boc/bocode/s458815.lBodton College Department of Economics,
Statistical Software Components.

SCSmeta: The Split Component Synthesis fumdtometa-analysis of diagnostic test
accuracy studies. Kostoulas, P., Furuya-Kanamaramhd Doi, S. A. R. 2020.
https://rpubs.com/polyvet/SCSMeta.

Riley, R.D., Abrams, K.R., Lambert, P.C., 8aoftA.J., & Thompson, J.R. (2007) An
evaluation of bivariate random-effects meta-analjai the joint synthesis of two correlated
outcomesSat Med, 26, 78-97.

Riley, R.D., Abrams, K.R., Sutton, A.J., Lamtb®.C., & Thompson, J.R. (2007) Bivariate
random-effects meta-analysis and the estimatidreteen-study correlatioBMC Med Res
Methodol, 7, 3.

Sweeting, M.J., Sutton, A.J., & Lambert, RZD04) What to add to nothing? Use and
avoidance of continuity corrections in meta-anaysgisparse dat&at Med, 23, 1351-75.

Goehring, C., Perrier, A., & Morabia, A. (20@pectrum bias: a quantitative and graphical
analysis of the variability of medical diagnodest performanceat Med, 23, 125-35.

Moons, K.G. & Harrell, F.E. (2003) Sensitivapnd specificity should be de-emphasized in
diagnostic accuracy studie&cad Radiol, 10, 670-2.

Leeflang, M.M., Bossuyt, P.M., & Irwig, L. (@0) Diagnostic test accuracy may vary with
prevalence: implications for evidence-based diagnad Clin Epidemiol, 62, 5-12.

Li, J. & Fine, J.P. (2011) Assessing the ddpane of sensitivity and specificity on prevalence
in meta-analysiBiostatistics, 12, 710-22.

Leeflang, M.M., Deeks, J.J., Rutjes, A.W.,tReir, J.B., & Bossuyt, P.M. (2012) Bivariate
meta-analysis of predictive values of diagnoststdean be an alternative to bivariate meta-
analysis of sensitivity and specificity Clin Epidemiol, 65, 1088-97.

Chu, H., Nie, L., Cole, S.R., & Poole, C. (2DpMeta-analysis of diagnostic accuracy studies
accounting for disease prevalence: alternativerpaterizations and model selecti@at Med,
28, 2384-99.

Begg, C.B. (2005) Systematic reviews of diagicaaccuracy studies require study by study
examination: first for heterogeneity, and thendources of heterogeneityClin Epidemiol,
58, 865-6.

Deeks, J.J., MacaskKill, P., & Irwig, L. (2008)e performance of tests of publication bias and
other sample size effects in systematic reviewdiagnostic test accuracy was asses$€iin
Epidemiol, 58, 882-93.

Furuya-Kanamori, L., Xu, C., Lin, L., Doan, Thu, H., Thalib, L., & Doi, S.A.R. (2020) P

value-driven methods were underpowered to detddtqation bias: analysis of Cochrane
review meta-analysed.Clin Epidemiol, 118, 86-92.

18



Journal Pre-proof

466
467

19



468
469
470

471

Table 1. Summary estimates using the split component syistinesthod and the bivariate model for
31 datasets that assessed procalcitonin as a gdiagnarker for sepsis in critically ill patients

Split component synthesis

method Bivariate model
Sensitivity 0.72 (0.66-0.78) 0.77 (0.72-0.81)
Specificity 0.74 (0.68-0.80) 0.79 (0.74-0.84)
Positive likelihood ratio 2.82 (2.07-3.82) 3.70 (2.95-4.63)
Negative likelihood ratio  0.37 (0.28-0.50) 0.29 (0.24-0.36)
Diagnostic odds ratio 7.57 (4.93-11.61) 12.56 (8.82-17.88)
Area under the curve 0.73 (0.69-0.77) 0.85 (0.81-0.88)

Between-study heterogeneity (I-squared): 66.3%
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Highlights

e Meta-analysis of diagnostic studies are currently undertaken by
synthesizing sensitivity (Se) and specificity (Sp) pairs from included
studies

« Bivariate linear mixed models are the most popular method for synthesis

« The Se/Sp pairs are components of the diagnostic odds ratio (DOR) but
are threshold variant unlike the DOR

e This paper proposes that synthesis models should start from the DOR
and then split this into its components rather than the reverse as is
currently done

 The new method describes how this split can be achieved and has two
main strengths:lt is free of modelling assumptions and circumvents
threshold effects at the synthesis stage

e Performance measures demonstrate a lower mean squared error and
nominal coverage for the new method with smaller Cl width all of which
are poorer with the traditional approach

« Software is available to run the new method
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