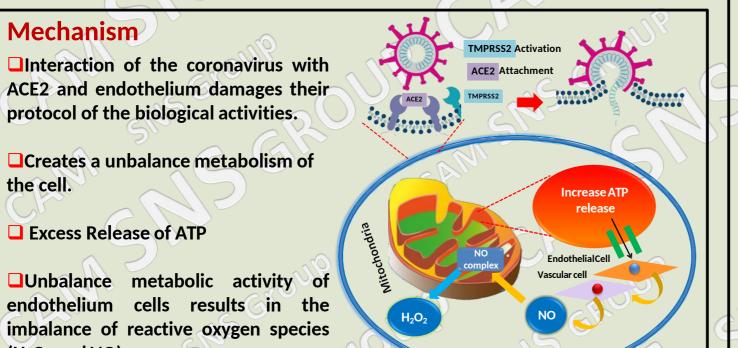
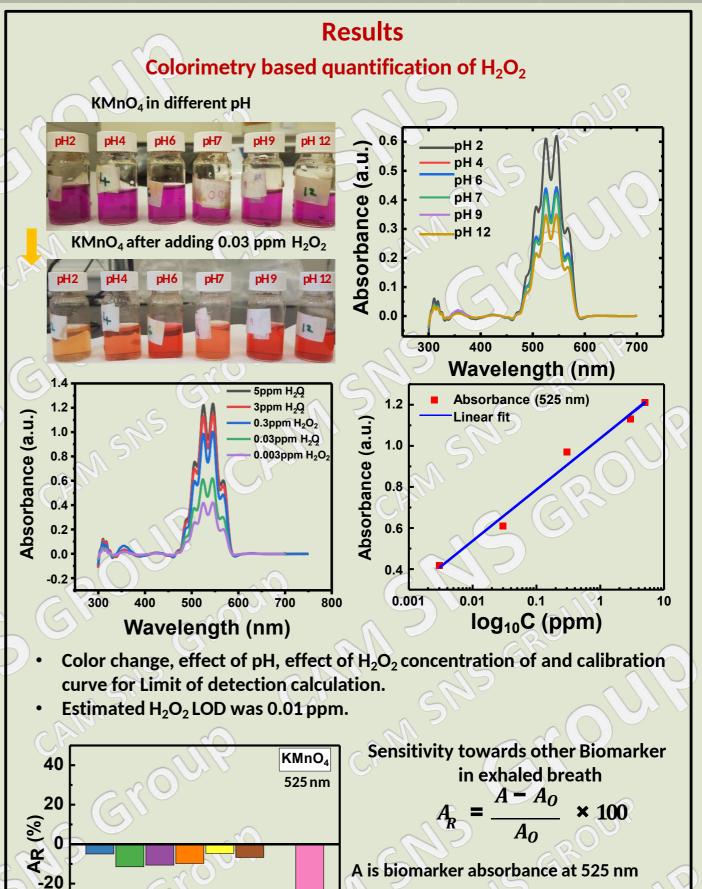


Undergraduate Student, Health and Biomedical Science

Colorimetry-Based Detection of Biomarkers in Exhaled Breath for Predicting COVID-19 Disease

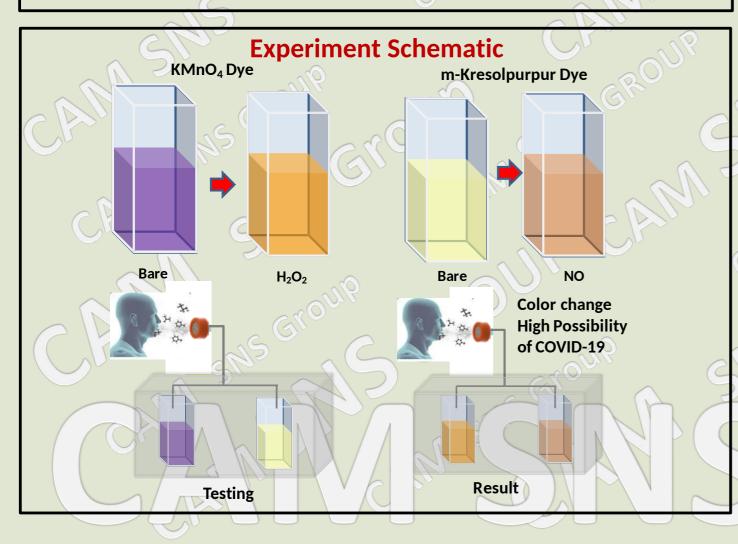
Fatimatulzahraa Alsaedi¹, Najam-US-Sahar Riyaz¹, Hagar Morsy², Raghad Abuznad¹, Alaa Elsafi Ahmed¹, Aeshah Alruwaili², Muna Ibrahim¹,Mizaj Shabil Sha³, Haseena Onthath³, Muni Raj Maurya³, Kishor Kumar Sadasivuni^{3.} * and Peter Kasak³

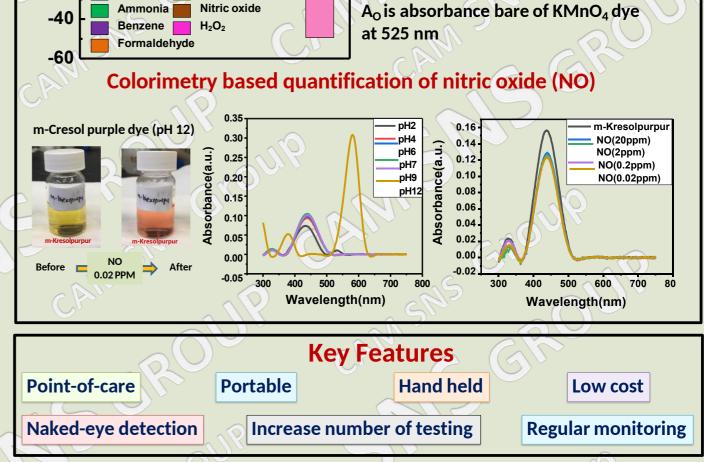



¹College of Art and Science-Chemistry and Earth Science, Qatar University, Qatar ²Department of Chemistry, Qatar University, Qatar ³Center for Advanced Materials, Qatar University, Qatar <u>*kishor_kumars@yahoo.com</u>

Abstract

Exhaled breath is the biological medium that carries relevant medical information and can be used to analyse biomarkers characteristic for detecting abnormal health status. Thus, by systematically analysing the interaction mechanism of the coronavirus with the human cell and its effect on the biological activity, it is possible to indentify the compounds whose proportion in the exhale breath is affected. One such biomarkers are hydrogen peroxide (H_2O_2) and nitric oxide (NO), which represents oxidative stress in the body. The present study represents the colorimetrybased quantification of H_2O_2 and NO using KMnO₄ and m-Cresol Purple dye, respectively. The dyes exhibited 0.01 ppm limit of detection (LOD) for H_2O_2 and LOD of 0.02 ppm was estimated for NO. Moreover, dyes apprehended high degree of selectivity towards other bio-compounds present in the breath. The colorimetry sensor is best suited for quantifying oxidative stress in the body, which is one of the indicator of coronavirus infection. Thus, the sensor offers rapid point-of-detection for predicting COVID-19 infection in human body.


Keywords:- Non-invasive; Exhaled breath; Oxidative stress; Colorimetry; COVID-19



 $(H_2O_2 and NO)$

Review No.			
Diseases	Biomarkers	Disease/Condition	NO Level
Smoking	8-isoprostane,H ₂ O ₂	Covid 19	≤25ppb
Chronic Obstructive pulmonary disease	H_2O_2 , cytokines	Asthma	>45 ppb
Asthma	Leukotrienes, H ₂ O ₂ , 8-	Severe COPD	<10 ppb
	isoprostane,	PAH	<10 ppb
Bronchiectasis	H ₂ O ₂	Heart failure	>20 ppb
Cystic fibrosis/idiopathic pulmonary fibrosis	Nitrite,, H ₂ O ₂ , 8- isoprostane,	Atherosclerosis	<10 ppb
Acute Respiratory Distress Syndrome	H_2O_2 , 8-isoprostane	Psoriasis	>20 ppb

Conclusion

> The dyes show increase in the absorption peak with increase in the ppm level of H_2O_2 and NO

> The dyes offers detection limit of 0.01ppm towards H_2O_2 and 0.02ppm towards NO.

> The dyes shows nearly linear increase in the absorption peak with increase in the ppm level of H_2O_2 .

> The linear increase behaviors of the dyes assists in easy characterization of various ppm level of NO and H_2O_2 .

Acknowledgement

This work was carried by the UREP grant # UREP27-044-3-016 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors"