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ABSTRACT Nowadays, machine learning has emerged as a promising alternative for condition monitoring
of industrial processes, making it indispensable for maintenance planning. Such a learning model is able
to assess health states in real time provided that both training and testing samples are complete and have
the same probability distribution. However, it is rare and difficult in practical applications to meet these
requirements due to the continuous change in working conditions. Besides, conventional hyperparameters
tuning via grid search or manual tuning requires a lot of human intervention and becomes inflexible for
users. Two objectives are targeted in this work. In an attempt to remedy the data distribution mismatch
issue, we firstly introduce a feature extraction and selection approach built upon correlation analysis and
dimensionality reduction. Secondly, to diminish human intervention burdens, we propose an Automatic
artificial Neural network with an Augmented Hidden Layer (Auto-NAHL) for the classification of health
states. Within the designed network, it is worthy to mention that the novelty of the implemented neural
architecture is attributed to the newmultiple feature mappings of the inputs, where such configuration allows
the hidden layer to learn multiple representations from several random linear mappings and produce a single
final efficient representation. Hyperparameters tuning including the network architecture, is fully automated
by incorporating Particle Swarm Optimization (PSO) technique. The designed learning process is evaluated
on a complex industrial plant as well as various classification problems. Based on the obtained results, it can
be claimed that our proposal yields better response to new hidden representations by obtaining a higher
approximation compared to some previous works.

INDEX TERMS Compressed sensing, condition monitoring, fault detection, hydraulic systems, industrial
system, machine learning, neural networks, particle swarm optimization, predictive maintenance.

I. INTRODUCTION
Real time automated Condition Monitoring (CM) tools are
the primary effectivemeans for ensuring the continuity of sys-
tems operations and maximizing their revenue [1]. By fulfill-
ing a well structured Condition-based Maintenance (CBM)
policy, systems are repaired just at the right necessary time
without affecting the entire workflow by unsuitable down-
times. Generally speaking, maintenance decisions are based
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on the failure detection process, where in most cases Time-
To-Repair (TTR) is known or can be estimated by quali-
fied persons. As a result, accelerating the diagnostic process
(failures/faults detection and identification) may constitute
the predominant function in the design of a reliable fore-
casting model [2]. In fact, there are three fundamental ways
to develop a coherent model capable of emulating the real
operating behavior, namely: physical modeling, data-driven
modeling and hybrid modeling. Deriving mathematical for-
mulas from physical laws is an efficient way to provide
an authentic simulation [3], [4]. However, the increasing
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complexity of systems in terms of subcomponents and inter-
action dynamics like in the recent era of ‘‘Industry 4.0’’
makes the modeling procedure based on physical interpreta-
tions an intractable task to achieve. This situation therefore
shifted the modeling tendencies toward hybrid and data-
drivenmodeling processes [5]. It has been noticed that among
data-driven analytical approaches (e.g. statistical analysis),
Machine Learning (ML) methods have gained a central posi-
tion as reflected by the large amount of recently published
works. The cornerstone of the model construction depends
on solving one of the three problems related to the nature
of the timely driven-samples: classification, regression and
clustering. The Volume, Velocity and Variety (i.e. the 3V
of Big data) of the training samples reflect the depth of the
encountered problem in the sense that deep 3V problems
are tightly correlated with more sophisticated solutions [6]
(The problem is also referred as ‘credit assignment path’, see
Schmidhuber [7], §3). This massive growth in data due to
advanced sensor technology results in a tremendous evolution
of ML modeling procedures. Thus, this leads in turn to a shift
from traditionalMLmodeling with both hybrid and ensemble
learning to deep learning (DL). Furthermore, the extension to
recent knowledge-driven learning paradigms such as Genera-
tive Adversial Networks (GANs) and Transfer Learning (TL)
cannot be neglected.

In the context of traditional ML tools, Roosefert
Mohan et al. [8] proposed a hybrid algorithm that integrates
both Adaptive Auto-Regressive Integrated Moving Average
(ARIMA) and Support Vector Machine (SVM) to reduce
catastrophic breakdowns of industrial machinery. Results
of their application on a hydraulic sand-molding machine,
by involving the oil contamination level as the primary health
indicator, revealed that zero downtime could be achieved
by increasing the Mean Time Between Failures (MTBF) up
to 800%. Steurtewagen and Van den Poel [9] suggested to
add a new aspect to ML prediction by considering statisti-
cal analysis using Shapley values to an XGBoost classifier
when predicting different health stages of an oil refiner. Two
gas compressor units, which are a very crucial part of an
Atmospheric Residue DeSulpherizer (ARDS) unit, have been
carefully studied through vibration analysis. Chen et al. [10]
integrated a dynamic adaptation mechanism to a Radial Basis
Function (RBF) neural network. This is done in order to
permit adaptive resilient control under highly changing data
with time delayed responses. The continuity of this work is
provided in [11], where further improvement of the adaptive
learning is proposed using a sliding mode control design.

On the other hand and under deep architectures, numerous
interesting works are available such as the one conducted
by Souza et al. [12]. Authors employed a deep Convolu-
tional Neural Network (CNN) for classification of rotating
machines faults by measuring the vibrations of motors and
bearings. She and Jia [13] used an adaptive DL algorithm,
named Bidirectional Gated Recurrent Unit (BiGRU), to solve
the regression problem related to the Remaining Useful
Life (RUL) prediction of the ball bearing. The algorithm

using vibration signals has been improved using the boot-
strap method. A two hidden layers Recurrent Neural Net-
work (RNN) is used by Chu et al. [14], to perform a double
adaptive control process of dynamic systems.

In order to take advantage of the new generation of
knowledge-guided learning paradigms such as GANs and
TL in CBM applications, the works of Ding et al. [15] and
Zhai et al. [16] are mentioned. Both GANs and TL can be
integrated in a single framework when filling the gaps pro-
duced by incomplete list of learning patterns. For example,
GANs are able to generate new instances so that the learning
set can be reasonably augmented. In the meantime, TL is able
to collect the necessary information from different learning
domains to import some additional assumptions and extend
the generalization process over both training/testing samples.

We conclude from the aforementioned works that almost
all considered problems concern multi-class classifications
treating a single target. Data is acquired via a few types of
sensors, which are in general vibration-recording accelerom-
eters with similar sampling rates. Multiple tools with dif-
ferent architectures and paradigms have been applied to
study rotating machines. However, in real world applications,
CM systems are usually characterized by multiple types of
measurements with multi-rate recording sensors, multiple
targets, and multi-classes for each target. In view of these
constraints, we are motivated by gaining additional benefits
through the support of such aspects at the level of CM within
complex industrial plants. To the best of our knowledge, the
case study of Helwig et al. [17] can be considered as the
most appropriate choice as it offers a wide range of general
investigations. By inspecting the available literature, a brief
overview ofworks conducted so far on this scope is presented.

Helwig et al. [17] proposed a study involving a simulation
model that makes it possible to mimic a reversible degra-
dation of components conditions associated to a complex
hydraulic system. After validating the physical modeling pro-
cess and collecting necessary learning patterns from differ-
ent scenarios including several types of sensors, the authors
gave indications on how to solve such a complex prediction
problem. The recorded data is massive with a higher level
of 3V similar to real industrial applications. In their work,
they refer to the problem as a feature selection problem
rather than a pure prediction problem. Hence, a features
extraction and selection process is initially opted to reduce
dimensionality (i.e. reduce algorithmic complexity), which
results in a more simplified version of the problem that can be
solved by exploiting ML techniques. They used Spearman’s
correlation analysis for features selection before dimension-
ality reduction with a Linear Discriminant Analysis (LDA) to
perform a classification task. The same problem was treated
by Schneider et al. [18], where a more efficient selection
and extraction approach was developed with full automation
for similar industrial applications. The authors introduced
correlation analysis to select important learning features from
different temporal and frequency statistical characteristics.
After that, they fed the learning parameters into the LDA
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algorithm for further processing (i.e. reducing dimensional-
ity) before training the Mahalanobis classifier. To enhance
the previous findings, Wu et al. [19] used a stacking based on
SVM classifier in the form of an ensemble learning algorithm
to solve the multi-class classification problem. The Random
Forest (RF) algorithm has been adopted as a meta-model that
brings together the results of several SVMmodels. In contrast
to the previous original work, they used Pearson’s correlation
coefficient for selection after extraction of statistical charac-
teristics. The last published paper on this topic was intro-
duced by Ma et al. [20], where they proposed a Multi-Rate
Sensor Information Fusion Strategy (MRSIFS) with parallel
convolutional mappings for the extraction of the necessary
learning patterns. In addition, time-frequency analysis has
been investigated for the detection of defect signatures before
the fine-tuning process of a CNN model.

We deduce from these works that very complex hybrid,
ensemble or deep architectures have been elaborated to obtain
higher classification results in the multi-task faults detec-
tion. Such type of faults is computationally expensive and
lacks flexibility due to the high number of needed interven-
tions. In addition, most of these algorithms rely on manual
adjustment of hyperparameters or grid search via manually
assigned parameters. Besides all these drawbacks, the pre-
diction is a complex process since it is defined basically as a
feature extraction and selection under a multi-class andmulti-
output prediction problem.

Therefore, and due to the efficiency of the DL repre-
sentations paradigm, our main objective in this work is to
reduce the generated data-driven modeling complexity in
terms of computational cost and human intervention without
disturbing learning performances. For this purpose, we used
new efficient feature extraction and selection tools in order
to reach satisfactory performances. In addition, we develop
an Automatic artificial Neural network with an Augmented
Hidden Layer (Auto-NAHL) to support addressing a non-
complex automatic DL process.

By consequence, our contributions dealing with faults clas-
sification of complex industrial systems can be summarized
as follows: i) Using multiple time-frequency features to col-
lect necessary statistical information via a sliding window for
an efficient training process; ii) Involving a two consecutive
features selection approach, namely Spearman’s correlation
and Compressed Sensing (CS), to guarantee more mean-
ingful and robust compressive representations; iii) Develop-
ing a new deep architecture for artificial neural network by
extending hidden layer representation with multiple abstrac-
tions and non-linear mapping; iv) Employing a simple and
non-complex learning scheme for the deep neural network
based on Least Squares (LS) methods to avoid expensive
iterative tuning of standard backpropagation algorithm when
searching for the optimal solutions; v) Fully automating the
new network thanks to Particle Swarm Optimization (PSO)
for avoiding human intervention and exhaustive grid search
during hyperparameters tuning. To validate this new learning
path, it is firstly tested with the help of a set of classification

problems. After obtaining sufficient results, the next step con-
sists of assessing its performance using a complex industrial
plant.

The rest of this is paper is organized as follows: Section II
describes the exploited methods and the designed learning
process. Section III depicts the studied system and associated
dataset. Section IV is dedicated to the application and results
discussion. Finally, Section V concludes with some remarks
and perspectives.

II. PROPOSED METHODOLOGY
The flow diagram of Fig.1 elucidates different followed steps
during health states classification. It can be noticed that three
main steps are necessary to accomplish the learning process
namely extraction, selection and automatic training of the
prediction network. This section provides a separate brief
description for each step.

FIGURE 1. Design methodology of the prediction model.

A. EXTRACTION
We have 15 different features obtained from both time and
frequency domains namely: mean, standard deviation (Std),
skewness, kurtosis, peak to peak indices (Peak2Peak), root
mean square (RMS), crest factor, shape factor, impulse fac-
tor, margin factor energy, spectral kurtosis mean (SKMean),
standard deviation of spectral kurtosis (SKStd), skewness of
spectral kurtosis (SKSkewness), kurtosis of spectral kurtosis
(SKKurtosis). These features are collected from time and
frequency domains by sliding a window over each one of
the recorded cycles in the training data. More information
about mathematical formulas of such statistical metrics can
be found in [21].
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The next step is to normalize these measurements in the
interval [0, 1] using the common min-max normalization as
expressed in (1) to equally distribute contribution chances in
the learning process. The set {xi, x̃i} denotes the original and
normalized inputs, respectively at time instant i.

x̃i =
xi − xmin

xmax − xmin
(1)

B. SELECTION
Although previous works [17]–[19] entirely depend on a
single feature selection process based on correlation analysis,
we propose in this work two consecutive steps relying on both
correlation analysis and sparse coding using Compressed
Sensing (CS).

1) CORRELATION ANALYSIS
As proved in Helwig et al. [17], the best selection based on
correlation analysis has been achieved via involving Spear-
man’s coefficient. We have adopted the same strategy for
features selection, however in our case the selection param-
eters have been chosen by involving expert’s knowledge.
Therefore, the elements associated to the correlation heatmap
in which their values belong to the interval [0.80, 1] have
been selected as the default criterion for the first step of each
extracted complete set of features.

2) COMPRESSED SENSING
Compressed Sampling (CS) recognized by different
appellations such as ‘‘compressed sensing’’, ‘‘magic recon-
struction’’, ‘‘compressive sampling’’, is one of the most
powerful sparse coding algorithms developed so far. Its role
is to shrink any full rank representation to a sparse domain
with higher level of zero coefficients. By doing so, a set
of important descriptive patterns is pushed to a single zone
within some sort of compression. Sparse domain transforms
such as wavelets, Fourier and discrete cosine transform can be
involved for this purpose. To measure the quality of results,
CS theories entail the exact and unique restoration of such
non-zero coefficient signals from their versions of higher
level of incomplete data.

Accordingly, and based on the reference paper published
by Donoho [22], the l1 norm optimization-based solutions
provide more adequate reconstruction leading to higher
compression.

For a given non-zero coefficients signal vector x represent-
ing learning inputs of the machine learning model in our case,
the full rank mapping8 of such a vector at higher dimensions
can be established via the rectangular matrix A with random
linearly independent parameters as illustrated by (2).

8 = Ax (2)

Obtaining the sparse representation 2 as given in (3)
can be achieved using several frequency domain
transforms tf including the previously mentioned

time frequency transforms.

2 = 98 (3)

where 9 stands for the sparse matrix of the identity matrix I
corresponding to the full rank feature mapping as explained
by (4).

9 = tf (I ) (4)

The reconstruction vector Ã subject to solving the linear
problem in (5) can be obtained by considering the l1 norm
minimization problem fmin provided by (6).

2 = Ãx (5)

fmin = min(||x||1) (6)

C. TRAINING OF THE AUTO-NAHL
Auto-NAHL is an artificial neural network designed with the
aim of providing a more robust representation under simple
non-iterative learning behavior. Training of the Auto-NAHL
involves twomain algorithms for two different processes. The
naturally inspired random search algorithm PSO is used to
tune the training hyperparameters. In the meantime, the LS
method is used for setting the learning weights. This section
presents the most important basics of the proposed network,
passing through its architecture and learning rules.

1) NETWORK ARCHITECTURE
Fig. 2 showcases the architecture of the proposed Auto-
NAHL. As observed, the structure consists of three main lay-
ers; the input layer, the augmented hidden layer and the output
layer. In the learning paradigms of conventional Artificial
Neural Networks (ANNs) and deep ANNs, the network is
typically initialized by generating random learning weights
and biases. After that, the weights and biases are updated
with iterative backpropagation by moving around the training
samples. If the training process achieves the desired results,
the learning must be completed; otherwise the learning will
start over with other initial weights. This reflects that learning
is a very expensive tuning process [23]. Alternative solutions
use a set of ANNs trained in parallel with different sets of
weights and biases to be able to analyze most of the possible
cases and judge which network is the best approximator [24].
However, and regardless of retraining, ensemble learning
with ANNs is a long and tedious approach. As a simple
solution to the weight selection problem, we have come up
with an augmented representation, which is a simple and
more effectiveway to train once the hidden layer without even
considering retraining.

Firstly, the driven samples must be mapped to multiple
representations in a form of several temporary hidden layers
without activation h̃, as explained by (7). The elements {w, b}
refer to the input weight matrices and biases vectors of each
feature mapping, respectively. Secondly, each temporary hid-
den layer is multiplied with a discount factor γ ∈ [0, 1] to
determine the importance of each feature map in the learning
process. Thirdly, these feature mappings are added together
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FIGURE 2. Architecture of the proposed Auto-NAHL (a) General
architecture with several temporary hidden layers; (b) ‘‘Zoom in’’ on a
single temporary hidden layer.

element by element and the result will be activated with an
activation function f as explained by (8). The parameter n is
the number of temporary hidden layers. The formula in (8) is
applicable only in case of temporary hidden layers having the
same number of neurons ln.

h̃i = wix + bi (7)

h = f (
n∑
i=1

γi(wix + bi)) = f (
n∑
i=1

γi(h̃i)) (8)

Once the hidden layer is analytically determined, the out-
puts y will be simply settled according to (9). The output
weights β are responsible for the process of universal approx-
imation and generalization of the entire neural network.

y = hβ (9)

2) WEIGHTS TUNING
To avoid the complexity of expensive iterative learning of
the backpropagation algorithm, we propose to train the neu-
ral network by considering the output weights as the main
element of the approximation. As a result, the input weights
for each temporary hidden layer are generated randomly and
independently of the training data as well as of each other.
Therefore, the output weights are determined analytically
according to LS methods as explained in so-called Extreme
Learning Machine (ELM) theories [25], [26]. Formula (10)
illustrates the method for weights tuning which is primarily
focused on using the hidden layer pseudo-inverse matrix
pinv(h). The simplest mathematical definition of the pinv
function is given by the inverse inv of the dot product of

matrix h and its transpose h′, with h a linearly independent
matrix (full rank). The reason for the term ‘‘pseudo’’ lies in its
similarity to the generalized known inverse of matrix variant.

β = pinv(h)y | pinv(h) = inv(h · h′) (10)

In this context, the main learning parameters (output
weight β) are calculated once through a single iteration.
Hence, it does not require any updating, which is different
from traditional iterative learning such as backpropagation
or contrastive divergence [27]. For this reason, the NAHL
by itself becomes an offline learning algorithm (cannot be
dynamically updated). Such situation motivates its adoption
in real time monitoring systems only if the monitored system
presents a static process.

3) HYPERPARAMETERS TUNING
In the current study, the learning hyperparameters are listed as
follows: number of neurons in each layer, number of tempo-
rary hidden layers, activation function type, and discount fac-
tors of each temporary hidden layer, which can be represented
by P = {ln, n, f , γ1, . . . , γn}. The notation P is considered as
a single particle (individual) in the PSO population ρ.

The PSO algorithm is one of the algorithms inspired by
Swarm Intelligence (SI) and it was introduced in 1995 [28].
It is widely used in the optimization of ML algorithms as
well as in ensemble learning and parameter selection due
to its simplicity, precision and speed of convergence. PSO
is an iterative algorithm that studies the vectors coordinates
movements of a complete set of randomly generated popula-
tion (initial solutions). It begins with a randomly generated
initial population and updates their positions and movement
velocities based on variations in the fitness function. Once
the search conditions are reached, the algorithm takes the best
particle as the best solution of the optimization problem. PSO
algorithm can be divided into the following steps [29]:

1) Initialize random search parameters including inertia
weights, lower bound LB and upper bound UB con-
straints for each element of the particle P;

2) Define the objective function and its constraints. In this
case, the approximation process of the Auto-NAHL is
our main objective;

3) Generate randomly an initial population Eρ, which rep-
resents a set of particles EP;

4) Evaluate the fitness function fit for each particle and
determine whether the stopping criterion satisfies the
tolerance error. In this case of the Auto-NAHL training,
the fitness function is defined as in (11). The notation
C is the classification rate of the testing set.

fit = ‖1− C‖2 (11)

5) Determine the best particle so far;
6) Update velocity Eν and current population using (12)

and (13). Also, check the boundary constraints.

Evnew = Evold + EU (0, �1)⊗ (Ep− Eρ)

+ EU (0, �2)⊗ (Ep− Eρ) (12)
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Eρnew = Eρold + Evold (13)

EU is randomly generated for each particle for different
iterations. Variables {�1, �2} are the inertia weights
for population directional purposes. The operator⊗ is
component-wise multiplication;

7) If the expected tolerance error is achieved or the maxi-
mum number of iterations is not reached, go to step 8.
Otherwise, the population update must be continued;

8) Generate a new population and repeat steps 4, 5
and 6 with rechecking the condition in step 7.

Since the main focus of this paper is to prove the NAHL
capability in universal approximation, automation of the
learning process wasmade upon the use of PSO in its standard
form. The pseudo-code presented in Algorithm 1 provides
further simplified representation of PSO technique.

Algorithm 1: Standard Algorithm of PSO Technique
Inputs: LB, UB, �1, �2, desired tolerance, iterations number.
Outputs: best particle P

1 Generate randomly initial population ρ of particles P;
2 Evaluate fitness function fit = ‖1− C‖2;
3 While tolerance or iterations conditions are not met, then
4 Update velocity

Evnew = Evold + EU (0, �1 )⊗ (Ep− Eρ)+ EU (0, �2)⊗ (Ep− Eρ);
5 Update population Eρnew = Eρold + Evold ;
6 Otherwise;
7 Break the random search mechanism;
8 EndWhile.

III. PROBLEM AND DATASET DESCRIPTION
Our faults prediction case study is built on a complex
hydraulic system dataset. This dataset is the simulation result
of reversible degradation of several sub-components of the
system. Eventually, it was made publically available by the
Center for Mechatronics and Automation Technology in
Saarbrücken, Germany [17], [19], [30]. As shown in Fig. 3,
this system is composed of twomain subsystems: the cooling-
filtration system and the working system. These two main
parts are connected to an oil tank.

In this system, the element MP1 appearing in Fig.3a is a
3.3 kW pumping motor of the working system and is mainly
controlled by the pressure relief valve V11. To simulate the
operating states of this moving machine, several cycles are
randomly generated with load variations according to previ-
ously well assigned boundary constraints. A total of 18 sen-
sors with different acquisition rates was placed at different
locations of the test rig to collect enough information for the
design of the condition monitoring system.

By saying ‘‘enough information’’ we are referring to the
fact that the training data should contain learning patterns
from the entire life cycle of the system. These learning
patterns may describe several health states under different
scenarios (working conditions). The amount of collected
samples for each health state in a particular scenario should

FIGURE 3. Components of the simulated hydraulic system [17] a) Working
system; b) Cooling and filtration system.

be quite balanced and contains no missing information or
labels. Besides, a primarily data-driven evaluation process on
acceptable amount of new unseen samples will further judge
if the training data is ‘‘complete’’ or not. Table 1 is elaborated
to recapitulate these sensors types, their names and sampling
rates.

TABLE 1. Components installed sensors on test rig.

The collected samples are continuously stored in a per-
sonal computer using the ‘‘Beckhoff CX5020 PLC’’ data
acquisition system. 2205 work cycles are recorded simul-
taneously every 60s. Each cycle begins with the closing of
V10 for the first 10 seconds, followed by 50s of random
variation of the proportional pressure of V11. Depending on
the recording rate of each sensor, each cycle (observation)
can contain from 60 to 6000 samples. The fault injection
process was carried out on four main components with each
component being subject to different types of faults. Table 2
summarizes in more detail the important information related
to the categories of health conditions. From Table 2, it can be
observed that the classes are distributed quietly in a balance
regarding abnormal function. The only subset which could
provide more prediction problems is the last one related to the
accumulator. This is the reason why even advanced methods
(seeWu et al. [19], Fig.7d) are not sufficient to achieve 100%
correct classification.
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TABLE 2. Studied health states of targeted complex system.

IV. APPLICATION AND RESULTS DISCUSSION
This section is devoted to the study of the designed algo-
rithm performance during the classification of different health
states of the targeted system. Therefore, in order to provide a
more rigorous investigation, we have divided the evaluation
process into two main phases; ‘‘phase I ’’ where a set of well-
known classification benchmarks are adopted to primarily
test the designed network and ‘‘phase II’’ where we apply
our methodology on the industrial complex system.

A. PHASE I
In this phase, the experiments were carried out on the list
of datasets presented in Table 3 and previously used in the
study of Lu et al. [31]. Datasets are already prepared, min-
max normalized, and split into training and testing sets using
k-fold cross validation (k = 5).

TABLE 3. Primarily evaluation data.

It is known in ELM theories of neural networks with a
single layer that incrementing the number of neurons will
automatically increase the precision of learning. As a result,
it leads us to introduce a comparison experiment as a first
attempt to provide conclusions on the newly designed Auto-
NAHL architecture. Consequently, the constraints of the
upper bound UB related to the number of neurons ln will be
gradually increased during the learning process. The accuracy
of the tests will be captured and recorded at each iteration.
Fig.4 depicts some examples of the incremental learning. The
convergence behavior of classification performance confirms
that Auto-NAHL divulges higher accuracy resulting in faster
stable responses. Consequently, augmented representations

have shown to be helpful in providing a more meaningful
representation than ordinary hidden layers, which directly
yields a more accurate estimation.

FIGURE 4. Variation of classification accuracy during incremental
learning.

Table 4 summarizes obtained classification rates compared
to ELM and the original source of these datasets. It is indi-
cated that Auto-NAHL is able to accurately classify unseen
samples better than both ELM and original works providing
the primarily evaluation datasets. This proves that the adopted
deep architecture exhibits better learning representation than
ordinary kernel or full rank mapping.

TABLE 4. Evaluation results of phase I.

B. PHASE II
The basic evaluation of the proposed architecture shows sig-
nificant improvement in the neural network learning perfor-
mance. Now, we are in position to tackle its application on
the complex industrial system. This part introduces feature
selection mechanism and classification results versus previ-
ous published works dealing with the same data.

1) FEATURES SELECTION
After extracting statistical features with the help of a sliding
window, each sensor is separately exposed to correlation
analysis with Spearman’s heatmap. Only important param-
eters that satisfy the selection conditions (i.e. [0.8, 1]) are
passed to the next step of compression with CS. The example
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of Fig.5 illustrates selected features in single sensor mea-
surements (i.e. Vibration sensor (VS1)). The labels tickets
are named after the type of extracted features. Green and
blue colors In Fig5a explains the weakness of correlation
between the learning features (they do not behave similarly).
However, in Fig.5b such non-correlation is reduced which
further improves quality of learning samples.

FIGURE 5. Selected features based on Spearman’s heat map (sensor CE)
a) Original features; b) Chosen features.

After selection based on correlation analysis, a feature
compression with CS is adopted. As indicated in Fig.6 and
with the help of frequency transform ‘‘Discrete Cosine Trans-
form (DCT)’’ algorithm, the more expressive features are
automatically pushed into a single zone with less number
of expressive elements, which makes it easier to be selected
according to predefined coefficient with respect to each
sensor.

In this case, the used software to train the CS algo-
rithm is the l1 magic reconstruction toolbox provided by
Candes et al. [32] at Stanford statistics web page [33]. The
selection mechanism is straightforward by choosing the
first 10 maximum consecutive elements from the sparse ver-
sion of the dataset in which it is specified using the red circle
(Fig.6d).

2) PREDICTING WITH AUTO-NAHL
The training process is immediately followed the feature
selection with compressed sensing in order to avoid algo-
rithmic complexity by repeating the experiments using cross
validation as in Helwig et al. [17]. Also, in order to prove that
the algorithm can improve data distribution by involving the
NAHL technique, we divide the simulated data randomly into
training and test sets with a training ratio equal to 80% then;
there is no need to tune the learning hyperparameters.

FIGURE 6. Features selection with compressed sensing a) Prepared data
after feature extraction; b) Reconstructed data from the sparse domain
(RMSE = 1.30× 10−16); c) Ordinary full rank mapping; d) Sparse version
of the features space.

In fact, the tuning process is fully automated with the
help of PSO algorithm. Fig.7 depicts discount parameters γ
updates when moving from the initial population to the final
best particles that can be considered for selection. Population
movement is recorded when the Auto-NAHL was trained on
the Cooler health state classification. It can be seen that the
population coordinates are entirely changed toward certain
specific points. As a result, such generated points are elected
as discount parameters among initial ones to design the best
universal approximation function.

In the meantime, Fig.8 emphasizes random search mech-
anism on the hidden layers neurons ln and best activation
function f for the Auto-NAHL.

Initial generated and finally updated populations are
clearly shown. After a well spread solutions, final judgment
with PSO entails the push of the learning parameters toward
a more effective architecture. This is a very useful approach
compared to traditional incremental construction with addi-
tive hidden nodes such as in Huang et al. [34].
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In each prediction problem, the best solution changes from
an application to another. However, all solutions agree on
the use of three temporary feature maps in case of the Auto-
NAHL. Accordingly, Table 5 is introduced to address results
of automatic hyperparameters tuning for each prediction
problem. The algorithm of random search PSO makes it easy
to study the adequate architecture for the learning process,
as it is able to determine the appropriate feature mapping and
necessary activation for the neural network.

Table 6 indicates the classification performances of the
designed algorithm with respect to some existing methods in
the literature.

FIGURE 7. Discount factor updates (for temporary hidden layers) during
random search with PSO algorithm.

FIGURE 8. Population updates when searching for the appropriate
number of neurons and activation functions.

TABLE 5. Results of automatic hyperparameters tuning.

It is noticed that the Auto-NAHL algorithm achieves
promising performances by providing the best classification
accuracy. This is due to the effective extraction and selection
approach that follows two main steps namely the Spearman’s
correlation analysis and CS mapping. Moreover, the advan-
tage of the time window sliding through multiple character-
istics should not be neglected.

TABLE 6. Evaluation results on the complex system.

The confusion matrix plotted in Fig.9 is an additional
metric that confirms the results of Table 6 by providing more
explanation regarding real and predicted classes. Moreover,
it is quite clear that the false negatives of confusion matrix
related to failure modes are less abundant to alter the predic-
tion process.

Numerical experiments of this study are carried out on a
personal computer having the following characteristics: Intel
(R) Core (TM) i5-3427 CPU @ 1.80 GHz 2.30 GHz, and
RAM memory of 8.00 GB. Table 7 addresses the time con-
sumed during the training process. It is shown that even with
additive search algorithm PSO, the entire learning process
needs less time compared to some similar works. Hence,
it becomes a very suitable CBM tool when diagnosing health
condition.

FIGURE 9. Confusion matrix of classification accuracy results.

TABLE 7. Learning time (s).

For a predictive maintenance algorithm, or ML prediction
algorithm in general, to be qualified as a good tool, three
elementary properties should be satisfied including accuracy,
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reduced complexity (i.e. be user-friendly) and low compu-
tation costs. The later criterion has been already explored
by Huang [35] (see [35], Fig.4), when investigating certain
comparisons between ELM and familiar iterative machine
learning methods. In our work, accuracy of the proposed
learning scheme is demonstrated by conducting comparisons
with respect to a set of previous published results as indicated
in subsections IV-A and IV-B. To consolidate this aspect,
numerical evaluation and visual metrics have been provided
as convincing arguments (Fig.4, Table 4 and Table 6). Fur-
thermore, the simplicity of the learning rules of the proposed
algorithm reflects its low complexity. Finally, the computa-
tion time depicted in Table 7 constitutes another prominent
measure that cannot be ignored for the evaluation of the
learning process simplicity.

At the current stage, we would like to point out that
our contributions are not only limited to enhancing the
observability of the studied hydraulic system based on ML
techniques but also to showcasing the Auto-NAHL supe-
rior capacity for this task. Hence, numerous comparative
analyses of our findings against similar works available in
literature dedicated to hydraulic systems. However, we did
not focus much more on recent deep complex networks due
to their well-known computational expensiveness even they
may offer good results [36].

To shed more light on the Auto-NAHL performance in
terms of classification rate, Table 8 highlights the comparison
with basic deep learning algorithms (i.e. LSTM, 1 dimen-
sional CNN (1D-CNN) and deep belief network (DBN)).
To make sure that the algorithms are studied under the same
criteria, we use only a single layer of feature maps for each
deep network (as in the Auto-NAHLwhere only a single aug-
mented layer is used). Hyperparameters are set to be updated
within a grid search mechanism. The generated classification
accuracy results also form in this experiment strong evidence
in favor of the Auto-NAHL. Both LSTM and DBN illustrate
universal approximation capacity better than 1D-CNN,which
justifies the compatibility of CNNwithmore complex predic-
tion procedures such as image processing.

The Auto-NAHL has an advantage of turning deep com-
plex and ensemble learning (i.e. multiple representations
for a single layer in the same classifier) into a very sim-
ple tuning scheme using the proposed tuning theories. With
regard to classification, the deep layered representations
boost the NAHL response for universal approximation tasks.
In our Auto-NAHL framework, there is no need of initial

TABLE 8. Comparison results against basic deep networks.

hyperparameters tuning since the whole process is automati-
cally preformed when user unleashes the training process.

V. CONCLUSION
Our goal in this work has been twofold. On the one hand,
a new artificial neural network approach named Auto-NAHL
specifically has been designed to evaluate health condition
of complex industrial systems. The main idea is to allow
the hidden layer to scan multiple effective representations
when dealing with the approximation problem. The tuning
mechanism has been simplified by following least squares
method as explained in ELM theories. Hyperparameters
search has been fully automated with the help of PSO algo-
rithm. On the other hand, this work has also introduced a
new feature extraction and selection scheme by involving
time frequency characteristics, correlation analysis and CS.
This learning methodology was firstly investigated on several
known classification problems to assess at a first glance the
algorithm performance, where satisfactory measures were
obtained. The next step concerns the algorithm application on
a complex hydraulic system. The obtained results support the
preprocessing scheme by showing promising performances
of reconstruction. In addition, classification metrics includ-
ing classification accuracy and confusion matrix allowed
demonstrating the efficacy of the Auto-NAHL. It is worth
mentioning that the computational time associated to weights
and biases tuning was significantly improved. As the current
Auto-NAHL was limited to deep architecture with a single
augmented hidden layer, one of the possible trends could
be the use of a deeper architecture with multiple augmented
hidden layers. Also, it is worthy to involve more representa-
tion learning paradigms of deep learning. Regarding training
frameworks, it is recommended to consider reprogramming
the Auto-NAHL by exploiting the standard backpropagation
method in order to gain further insights about the computation
time behavior of our proposed network.
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