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Abstract: Essential hypertension (EH) is a leading risk condition for cardiovascular and renal com-
plications. While multiple genes are associated with EH, little is known about its genetic etiology.
Therefore, this study aimed to screen for variants that are associated with EH in 100 hypertensive/
100 control patients comprising Qatari individuals using GWASs of whole-genome sequencing and
compare these findings with genetic data obtained from more than 10,000 published peer-reviewed
studies on EH. The GWAS analysis performed with 21,096 SNPs revealed 38 SNPs with a signifi-
cant ≥4 log-p value association with EH. The two highest EH-associated SNPs (rs921932379 and
rs113688672) revealed a significance score of ≥5 log-p value. These SNPs are located within the
inter-genic region of GMPS-SETP14 and ISCA1P6-AC012451.1, respectively. Text mining yielded
3748 genes and 3078 SNPs, where 51 genes and 24 SNPs were mentioned in more than 30 and
10 different articles, respectively. Comparing our GWAS results to previously published articles
revealed 194 that are unique to our patient cohort; of these, 13 genes that have 26 SNPs are the most
significant with ≥4 log-p value. Of these genes, C2orf47-SPATS2L contains nine EH-associated SNPs.
Most of EH-associated genes are related to ion gate channel activity and cardiac conduction. The
disease–gene analysis revealed that a large number of EH-associated genes are associated with a
variety of cardiovascular disorders. The clustering analysis using EH-associated SNPs across differ-
ent ethnic groups showed high frequency for the minor allele in different ethnic groups, including
Africans, East Asians, and South Asians. The combination of GWAS and text mining helped in
identifying the unique genetic susceptibility profile of Qatari patients with EH. To our knowledge,
this is the first small study that searched for genetic factors associated with EH in Qatari patients.

Keywords: genome-wide association; GWAS; hypertension; genomics; whole-genome sequencing;
genomic biomarkers; SNPs; precision medicine; Qatar Biobank; QBB; Qatar

1. Introduction

Cardiovascular disorders cause about 17 million deaths worldwide, with about one-
third of these being due to hypertension complications [1]. Essential hypertension (EH) is
a chronic and age-related disorder that frequently causes cardiovascular and renal risks.
EH affects 25–35% of the adult population in both developed and developing countries,
leading to stroke and cardiovascular disorders. Of these, up to 60–70% are in their mid-
sixties [2,3]. Several factors, such as the large arteries, endocrine factors, central nervous system,
and microcirculation, are involved. The correlation between these factors varies with age and
reflects the heterogeneous pattern of hemodynamic changes [2]. A data survey of the global
burden of disease showed that in 2015, 7.8 million deaths were related to a systolic blood
pressure of ≥140 mmHg, which is the current clinical threshold for identifying hypertension [4].
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Both genetic and environmental factors are involved in the development of EH symp-
toms [5,6]. Although several research efforts have been made, the genetic etiology of EH
remains partly unknown. EH is a polygenic condition that results from the inheritance of a
variety of risk genes, each with a small influence according to sex, age, race, or lifestyle [2,7].
Population-based studies have reported that hypertension runs in approximately 20% of
families, which might be related to genetic factors and/or dietary, lifestyle, and activity
levels [8]. In twin studies, this risk was up to 60%, where dizygotic twins showed a lower
association than monozygotic twins [2,9].

The hereditary contribution to hypertension variations is estimated to be around 30%,
but the genetic history of critical hypertension is ambiguous and poorly understood [10].
Several studies have associated dozens of genes with hypertension. However, genes linked
to the function of the kidneys that are involved in fluid and electrolyte balance control
are the most significant determinants of blood pressure [11]. These genes include aldos-
terone synthase genes CYP11B1 and CYP11B2 [12], HSD11B2 [13] eNOS [14], and others.
Genetic variants play a significant role in the malfunctioning of such genes, resulting in
unpredictability in the primary biological pathways controlling blood pressure. Further-
more, recent research indicates that epigenetic mechanisms, such as DNA methylation,
post-translational histone modifications, and microRNAs, play a significant role in the
molecular dynamics underlying EH etiopathogenesis. Some of these modifications affect
blood pressure and thus lead to a variety of cardiovascular disorders [12].

Single-nucleotide polymorphisms (SNPs) are one of the most common genetic vari-
ations in humans, and they are the most common and functionally important source of
evolution [15]. Rapid advances in sequencing technologies permit affordable, reliable
population SNP genotyping. These technologies offer the ability to screen thousands of
SNPs that could be used as biomarkers to identify hypertension susceptibility loci through
genome-wide association studies (GWAS) [7,16]. GWASs apply a statistical inference ap-
proach, applying estimation and hypothesis testing on the correlation between a trait and
variants such as SNPs [17]. The rate of identification of validated SNPs in GWASs asso-
ciated with blood pressure has recently increased exponentially [18,19]. GWASs enabled
medical researchers to identify several loci that may contain causative variants or genes
that lead to overall EH susceptibility at a single locus [20]. Furthermore, the ongoing global
development of national biobanks has provided researchers with sufficient bio-specimens
for well-established cohort studies to explore genome-wide significant associations for EH
in specific ethnic groups [21].

Drawing inferences from what is already known is an important process in creating
knowledge [22]. In this context, we can draw more insightful conclusions by analyzing the
available information about EH. Text mining is a method of data mining in which a large
volume of structured and unstructured text data are processed to generate potentially valu-
able information [23]. Due to the significant expansion of medical knowledge, text mining
is being used to enhance medical analysis and provide more comprehensive techniques
for data processing. It is a rich resource for the acquisition of knowledge from the current
research literature. The only downside is that it requires a high level of data filtration and
manipulation skills [24,25]. It enables researchers to classify various database resources,
speed up the structuring of information derived from unstructured data, and gain deeper
insights. A text mining approach was used to organize and evaluate published scientific
literatures on cancer [26], diabetes [27], and schizophrenia [28]. Some reports used text
mining to classify biomedical literatures in hypertension and to identify useful treatments
using linguistic techniques [29].

We conducted a GWAS on 100 Qatari patients with hypertension and 100 normal
Qatar individuals. Additionally, we performed text-mining analysis to identify the unique
variants that predispose Qataris to hypertension.
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2. Methodology
2.1. SNPs Associated with EH in Qatari Population
2.1.1. Study Design and Statistical Analysis

Figure 1 is a schematic representation of the methodology section. The data of the
cohort studied were acquired from the Qatar Biobank (QBB), which comprised 100 patients
with EH and 100 normal controls. All participants were Qatari [30] and were sequenced
through the national Qatar genome project [31] (Figure 1A). The eligibility criteria for
hypertensive subjects were: (1) age ≥ 35–70; (2) systolic blood pressure (SBP) ≥ 140 mmHg
and/or diastolic blood pressure (DBP) ≥ 90 mmHg; (3) absence of secondary causes of
hypertension based on comprehensive biochemical and clinical studies; and (5) absence
of pharmacological therapy for hypertension. Fifty-three different associated data of
both the control and patients were retrieved from QBB and used for statistical analysis
(Supplementary S1). These data include clinical parameters, such as age, blood pressure
factors, body mass index, sodium, potassium, chloride, bicarbonate, urea, creatine kinase,
creatinine, glucose, total protein, albumin, cholesterol, triglyceride, calcium, phosphorus,
iron, magnesium, Fibrinogen, vitamin B12, insulin, and others. The statistical analyses,
which included principal component analysis and correlation, were carried out in R, and
missing values were imputed using the “mice” package with the predictive mean matching
(PMM) method [32].
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Figure 1. A flowchart representing the genetic resources and bioinformatics methods used in the
present research. Thousands of hypertension-related articles were reviewed, as well as the SNP
genotyping of 200 Qataris with high blood pressure (A) using text mining (B), statistical analysis
(C), and GWAS (D). The text mining analysis included eliminating redundant words, recognizing
unique phrases, detecting genes and SNP expressions, and categorizing these genes and SNPs
based on their prevalence and redundancy (B). Fifty-three different clinical data of the studied
patients were retrieved from QBB and used for statistical analysis (C). The SNP genotyping data were
analyzed using a quality control method before being aligned/mapped to the human genome, where
discovered SNPs were annotated and their association with high blood pressure was investigated
using GWAS analysis (D). The details obtained from text mining and GWAS analysis was analyzed
using gene ontology and enrichment analyses (E).
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2.1.2. SNP Genotyping and Computational Analysis

DNA was isolated from 5 mL of blood samples using the Puregene DNA extraction
kit (Gentra Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions.
DNA quantification was performed using Fluorometer Qubit 2.0 (Invitrogen, Carlsbad,
CA, USA). Whole-genome sequencing (WGS) was conducted by QBB on DNA samples
from 200 participants. Illumina HiSeq X Ten sequencers were used for WGS analysis,
where raw data were processed using bioinformatics pipelines (Figure 1C). FastQ data
were converted to paired-end FASTQ format using bcl2fastq conversion tool. FastQC
software was used to assess the raw data quality. The human genome GRCh37 version was
used as a reference for data passing quality control using Burrow-Wheeler Aligner (BWA)
aligner (v7.12). SNP calling was performed using HaplotypeCaller provided by Genome
Analysis Toolkit (GATK v3.3) [33]. The SNP effect and annotation were categorized using
SnpEff (v4.1) [34]. SNP was discarded from analysis if the genotyping call rate was <95%,
the minor allele frequency (MAF) was <1%, the heritability error rate was >1%, or the
Hardy–Weinberg equilibrium was p < 10−6. Filtered SNPs were used for further analysis.
Fisher’s exact test [35] was conducted to determine the statistical significance of allele
frequency differences between case and control groups (Figure 1C).

2.2. Exploring Published Hypertension Literature

The available hypertension reports were explored in order to obtain more context on
the prior information of the genetic mechanism of hypertension (Figure 1A,B). PubMed–
NCBI was used to retrieve all abstracts of the scientific articles that reported hypertension-
associated genes and SNPs (Figure 1A,B). The query of “hypertension genes” was used
to download all abstracts of medical articles published up to “Tue, 24 November 2020
05:35:29”. The text analysis included “10,001” different articles. The data mining was
conducted through Python programming language (Supplementary S2). Common English
phrases and word redundancy were removed. A list of human gene terminology was
prepared using human genome (GRCh38 version) obtained from the NCBI database. The
SNP reference numbers (RSs) were extracted using regular expression and string-searching
algorithms (Supplementary S2).

2.3. Gene and SNP Enrichment Analysis

The collected hypertension-associated genes from the GWAS and text mining analyses
were used for gene annotation and enrichment analysis. Comprehensive computational
analysis was conducted using several bioinformatics tools (Figure 1D). Gene enrichment
analysis was conducted using ShinyGo [36] and uniport database [37]. SNPnexus and En-
sembl [38] platforms were used to collect more information about hypertension-associated
SNPs retrieved from text mining and GWAS analyses, including allele frequencies in
different ethnic populations, gene annotation, and pathway analysis. We analyzed protein–
protein interactions (PPIs) using the STRING database and Cytoscape software, and gene
names were used as queries to extract information from gene ontology databases in STRING
platform [39] (Figure 1D). Text mining and GWAS results are represented using Circos soft-
ware [40], R-ggplot2 [41], and GeneSyno [25] according to the human genomic data. Online
Clustvis tool was used to perform statistical clustering [42]. The disease gene analysis was
conducted using disease genomics of DisGeNET [43].

3. Results
3.1. Statistical Analysis

Principle component analysis (PCA) is a common analysis used for sample classifica-
tion and clustering. It reduces the dimensionality of the investigated dataset, improving
interpretability while minimizing information loss. We used this type of analysis to group
the studied individuals (100 case and 100 controls) based on several clinical data parameters
that did not include the medical diagnosis. The PCA analysis showed that the clinical
parameters obtained in this study were useful in highlighting the main characteristics that
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distinguish hypertension. The PCA analysis revealed that the patients studied were clus-
tered based on their hypertension diagnosis (Figure 2). The statistical correlation of clinical
data revealed a significant correlation between blood pressure factors such as systolic blood
pressure, diastolic blood pressure, blood pressure/pulse rate, and several clinical parame-
ters (Figure 3A,B). For instance, systolic and diastolic blood pressure showed a significant
positive correlation with body mass index, Alkaline phosphatase, and C peptide, while
blood pressure/pulse rate was positively correlated with C peptide, insulin, Fibrinogen,
and HbA1C (Figure 3A).
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different clinical parameters from the 200 Qataris obtained from QBB, with blood pressure parameters
highlighted in red circles. (A) Graph of a correlation matrix showing positive and negative correlations
with significance indicated by p values less than 0.01. (B) A correlation network graph displaying the
statistical interaction between various clinical parameters, including blood pressure factors in red.

3.2. SNPs Associated with EH in Qatari Population

In this study, we investigated the association between hypertension and 21,096 SNPs
in 1503 genes across the human genome that are specific to our patient cohort (100 cases vs.
100 normal controls) (Figure 4A). Our analysis revealed hypertension-associated genes in
four human chromosomes (Chr 1, 2, 3, and 4) that are specific to our 100 patients. Chr2
had the highest number of SNPs, followed by chromosome Chr1. The SNP density for
1 Mbp was 30, 36, 29, and 28 for Chr1, 2, 3, and 4, respectively (Figure 4A). The estimated
functional consequences of the distribution indicate that the used SNPs are mainly located
within coding regions (Figure 4C). Most of the SNPs are located in genes (12,913), while
8995 SNPs are upstream or downstream genes with a distance varying from 5 bp to 21 Mbp.
Genes such as DPP10 (119 SNPs), AC007319.1 (105 SNPs), RN7SKP61 (101 SNPs), and
RN7SL647P (92 SNPs) acquired the highest number of SNPs (Supplementary S3).
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Figure 4. The chromosomal distribution of the identified SNPs and their association scores with EH.
The colored small circles represent SNPs’ location on the human genome and their hypertension
association score (−log10 of p value) according to the Fisher’s exact test. Blue and small circles
represent non-significant SNPs, while large and red circles represent significant SNPs (A). The
number of SNPs according to human chromosome (B). Predicted functional consequences. SNPs are
classified into several groups based on their location in and effect on gene structures, which include
coding and non-coding regions according to different databases (C).
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The correlations between allele count (AC), Fisher’s exact test (FET), genic region,
and allele frequency are plotted in Figure 5. This correlation is important to reveal any
potential misinterpretation of the genetic association with EH and visually demonstrate the
potential impact of each genetic variation feature on SNP association with EH manifestation.
Furthermore, examining the relationship between genetic variation components and EH
may reveal previously unknown parameters that could be used in future EH genetic
research to increase the number of significant SNPs. Mostly, smaller numbers of SNPs
with higher FET have more AC and AF, which could indicate their importance in EH.
SNPs with FET ≥ 4 are located in the intergenic region (20 SNPs), intron variant (10 SNPs),
intragenic variant (5 SNPs), and upstream gene variant (3 SNPs) (Figure 5, Table 1 and
Supplementary S4). The FET analysis revealed 336 SNPs with ≥3 log-p value, 38 SNPs with
≥4 log-p value, and 2 SNPs (rs921932379 and rs113688672) with ≥5 log-p value (located
within regions of GMPS-SETP14 and ISCA1P6-AC012451.1 genes) (Figure 4, Table 1, and
Supplementary S4). These SNPs are near/adjoined to 215 genes (Figures 5 and 6 and
Supplementary S5), and the SNPs’ distribution across the gene structure can be seen in
Figures 5 and 6.

Table 1. Top SNP markers associated with EH in studied Qatari population (p ≤ 1 × 10−5).

SNP ID Chr Position Ref Alt Gene AC FET Logpval

rs921932379 3 155674348 T TA GMPS-SETP14 17 5.27
rs113688672 2 129289164 C T ISCA1P6-AC012451.1 16 4.95
rs_new-95 4 40521676 CTTTTTTTTTTTTT C RBM47 16 4.7
rs35166853 2 232850730 C T DIS3L2 15 4.63
rs11591086 1 30925979 G A RP4-591L5.2-MATN1 14 4.32
rs11893181 2 18313644 G A KCNS3 14 4.32

rs1491266756 2 52292323 TTA T AC007682.1 14 4.32
rs17199733 2 232824585 G A DIS3L2 14 4.32
rs34189801 2 232808692 G A NPPC-DIS3L2 14 4.32
rs34553499 2 232820162 C T NPPC-DIS3L2 14 4.32
rs60554757 3 122342303 G A PARP15 14 4.32
rs652625 1 12225351 T A TNFRSF1B 14 4.32

rs66825295 2 216896216 GAGAA G MREG 14 4.32
rs6752063 2 121556047 G A GLI2 14 4.32

rs73858324 3 122337678 G A PARP15 14 4.32
rs61762198 1 3500434 G GCAGCCACCAGACAACGCA MEGF6 17 4.28

rs1217727360 2 230419573 A AAAGAG DNER 16 4.25
rs369201055 2 138779802 A AAC HNMT-AC069394.1 15 4.19

rs_new-56 2 193355414 A ACAGGGCTGCAGGAAAAAGGG
AATGCCTATAGAC TMEFF2-AC013401.1 8 4.11

rs1345206935 3 18848380 G GTTTTTTTTTTTTTTTTTTTTTTTTTT AC144521.1 13 4.09
rs57679512 3 61057088 GA G FHIT 13 4.03
rs7646137 3 162408311 T A RP13-526J3.1-RP11-10O22.1 15 4.01

rs770631619 1 72759661 C CTTTTTTTTTTTTT NEGR1-RPL31P12 15 4.01
rs10931882 2 200917613 T C C2orf47-SPATS2L 13 4
rs10931883 2 200917675 T C C2orf47-SPATS2L 13 4
rs11291368 3 172047831 AG A FNDC3B 13 4
rs11897782 2 200916495 G A C2orf47-SPATS2L 13 4
rs11903185 2 200916506 T C C2orf47-SPATS2L 13 4
rs12032899 1 3999592 G C RP13-614K11.1 13 4
rs12464998 2 200893820 T C C2orf47-SPATS2L 13 4
rs12470336 2 201000860 A T C2orf47-SPATS2L 13 4
rs2700337 1 96116213 A G RP11-286B14.1 13 4
rs4673652 2 200903578 C T C2orf47-SPATS2L 13 4

rs73141887 2 8590888 T G LINC00299-AC011747.3 13 4
rs73858322 3 122335609 T A PARP15 13 4
rs7608345 2 8590943 G A LINC00299-AC011747.3 13 4

rs77321003 2 201005171 C A C2orf47-SPATS2L 13 4
rs79953652 2 200913138 T C C2orf47-SPATS2L 13 4
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-log10 of the studied SNP variants. Allele frequency of SNP variants (x-axis) vs. FET scores -log10
(y-axis), the SNP genic region (color) and the maximum allele count in studied population (size).
(B) The percentage of SNPs distribution across gene structure.

We identified three novel SNPs: rs_new-95 (4.70 log-p value), rs_new-58 (3.06 log-
p value), and rs_new-56 (4.11 log-p value). These SNPs are located in Chr4:40521676,
Chr2:221398860, and Chr2:193355414, respectively (Table 1 and Supplementary S4). A total
of seven genes have ten or more SNPs with ≥3 log-p value, including MAIP1 (23 SNPs),
SPATS2L (21 SNPs), ULK4 (17 SNPs), PKN2-AS1 (14 SNPs), AC092966.1 (11 SNPs), FHIT
(10 SNPs), and RNA5SP52 (10 SNPs) genes (Figure 6 and Supplementary S3). The PPI
analysis for the genes where significant SNPs are located demonstrated interaction activity
across the hypertension-associated proteins. On the other hand, it shows high significance
of functional analysis for genes related to ion-gated channel activity and cardiac conduction
(Figure 7, Table 1).
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found through GWAS and literature analysis separately and together; connecting lines (D) signify
the biological interactions.

We explored the correlation between our detected EH-associated SNPs and a variety
of cardiovascular disorders. The gene–disease association analysis revealed that 60 EH-
associated genes are linked to 270 cardiovascular disorders (Figure 8 and Supplementary S6).
The SCN5A gene that showed a correlation between rs74947646 and EH with a log-p value
of 3 is linked to more than 121 cardiovascular disorders (Supplementary S6). The various
types of long QT syndrome (LQTS) were highly represented in the disease associated with
SCN5A variants (Supplementary S6). The RYR2 gene was linked to 60 different cardiovascu-
lar disorders, the majority of which affect the functionality of ventricular hypertrophy. We
identified rs1391189881 in the RYR2 gene with a significant association of a log-p value of 3
(Supplementary S4). Furthermore, genes of SCN10A, EPAS1, NPPC, ACKR3, CHRM3, and
HDAC4 were linked to 51, 28, 27, 27, 23, and 23 cardio disorders, respectively (Figure 8 and
Supplementary S4). Both EPAS1 and NPPC have been linked to two SNPs: rs113717961 (3
log-p value) and rs115272974 (3 log-p value), and rs34189801 (4.316952962 log-p value) and
rs34553499 (4.316952962 log-p value), respectively (Supplementary S4). Hypertensive dis-
ease was represented by 20 different EH-associated genes, followed by multiple myeloma
(17 genes), congestive heart failure (13 genes), atherosclerosis (13 genes), arteriosclerosis
(12 genes), coronary heart disease (11 genes), heart failure (10 genes), myocardial infarction
(10 genes), ischemic stroke (10 genes), and coronary artery disease (10 genes) (Figure 8
and Supplementary S4). Idiopathic pulmonary arterial hypertension, pulmonary arterial
hypertension, hypertensive nephropathy, and renin-induced hypertension are all examples
of EH-like disorders associated with the identified EH genes (Supplementary S4). These
disorders were found to be linked to 14 different genes and 16 SNPs (Supplementary S4).
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3.3. Hypertension-Associated Genes’ Recent Status in the Literature

We used text mining to screen previously published research articles related to gene
associations with EH. Our search yielded 10,001 hypertension-related articles published in
the last ten years, which we compared with our GWAS findings and the published data, en-
abling us to map unique or novel gene/variants that are specific to our cohort. The text min-
ing analysis revealed 3078 SNPs in more than 3748 genes. Of these, 51 genes and 24 SNPs
were mentioned in more than 30 and 10 different articles, respectively (Supplementary S7).
Among these genes, eNOS, BMPR2, VEGF, MTHFR, CYP11B2, P450, and NADPH were
mentioned in more than 100 scientific articles (Figure 9 and Supplementary S7). The SNPs
of rs1799983, rs2070744 (NOS3 gene), rs699 (AGT gene), and rs5186 (AGTR1 gene) were
detected in more than 20 different articles (Supplementary S7). The gene enrichment
analysis revealed a high association with functional categories such as the circulatory
system process, blood circulation, and regulation of blood pressure (Figure 9). The PPI
analysis showed that genes such as MAPK3, NOS3, AGTR1, DECR1, VEGFA, GNB3, APOE,
CYP11B2, EGFR, POMC, and STAT3 were highly interactive in pathways that are related to
homeostatic processes, nitric-oxide-mediated signal transduction, blood circulation, and
regulation of blood pressure (Figure 7).
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Figure 9. The most frequently mentioned genes in the hypertension literature (A,B). The size of the
circle, as well as the numbers included, represent the number of articles that mentioned a genetic link
between these genes and EH disorder (A). The most frequently mentioned genes in the hypertension
literature and their corresponding biological processes according to the enrichment analysis (C). The
histogram depicts the number of hypertension publications that listed these genes (A,B). Biological
processes were allocated to hypertension-associated genes (C), with gray bars representing the
number of genes found within these processes and colored connections representing genes that
contribute to these processes. A colored link is shown between the biological process and the
corresponding EH-linked genes, with each gene potentially linked to multiple pathways or vice
versa (D).

3.4. GWAS and Text Mining Results Comparison

The text mining analysis yielded 3748 genes that are associated with hypertension
in the published literature (Supplementary S7). We compared this list of genes with
our GWAS hypertension-related genes with SNPs with ≥3 log-p value association scores.
We identified 21 genes that are common between the GWASs and text mining that con-
tain 50 SNPs significantly associated with hypertension in our studied cohort (Figure 10
and Supplementary S4 and S8). Genes of ULK4 and FHIT have the highest number of
hypertension-associated SNPs for genes mentioned in previous studies (Supplementary S5).
ULK4 and FHIT genes have 17 and 10 EH-associated SNPs, respectively, while FNDC3B,
FHIT, NPPC-DIS3L2, GLI2, and RBM47 include SNPs that have a ≥4 log-p value association
with hypertension in the studied cohort. On the other hand, 194 are unique to our patient
cohort; of these, 13 genes that have 26 SNPs are the most significant with ≥4 log-p value.
Of these genes, C2orf47-SPATS2L contains nine EH-associated SNPs.
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3.5. Allele Frequency of EH-Associated SNPs across Ethnic Groups

To study the frequency of the SNPs identified through our GWAS with ≥3 log-p
value in different ethnic populations, we screened our associated SNPs in EUR, SAS, AFR,
AMR, ASJ, EAS, FIN, NFE, and OTH populations (Figure 11 and Supplementary S9). The
clustering analysis of SNPs’ frequency across different ethnic groups demonstrated high
frequency for the minor alleles, especially in AFR, EAS, and SAS populations. For instance,
rs1004840 shows a high-frequency rate of 0.24 for the minor allele (T) in the AFR population
compared to the major allele (C:0.76) (Supplementary S9). Additionally, the clustering anal-
ysis using EH-associated SNPs revealed some consistency for SNP clustering depending on
the p values, AC, overlapped gene (OG), nearest upstream gene (NUG), and nearest down-
stream gene. Furthermore, a high number of EH-SNPs (rs11591086, rs77321003, rs12470336,
rs10931883, rs12464998, rs4673652, rs79953652, rs10931882, rs11903185, and rs11897782)
have separated the populations of AMR, ASJ, SAS, and EAS with high frequencies for the
major allele (Figure 11). These SNPs are located near the SPATS2L (nine SNPs) and MATN1
(one SNP).
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4. Discussion

Hypertension is a complicated cardiovascular condition that is influenced by various
genetic and environmental factors. More basic research and sophisticated tools are needed
to understand the missing part of heritability of hypertension. The strength of this study is
the combination of a GWAS of 100 hypertensive cases and 100 controls of whole-genome-
sequenced individuals and text mining of past reports about the genetic association with
hypertension in the past ten years.

We studied 53 different health parameters of both the cases and controls. PCA demon-
strated that the clinical parameters obtained in this study were useful in highlighting the
main characteristics that distinguish hypertension (Figure 2). PCA demonstrated a good
clustering of EH patients and was useful in distinguishing the majority of patients from
controls based on the clinical data. A low number of explanations were detected on both
axes. On the other hand, this could be attributed to the high complexity of EH and the low
precision of clinical parameters alone in detecting EH contributing factors. The correlation
analysis of the clinical data revealed a strong association between high blood pressure
factors and several clinical parameters (Figure 3). Additionally, clinical parameters related
to alkaline phosphatase and C peptide, fibrinogen, HbA1C, iron, homocysteine, and serum
ferritin showed a significant association with hypertension (Figure 3).

4.1. Genome-Wide Association

The outcome of the GWAS of 100 hypertensive patients and 100 normal controls
yielded 21,096 SNPs within 1503 genes that associated with hypertension (Figures 4 and 6).
Our study identified two SNPs, rs921932379 and rs113688672, associated with hypertension
(≥5 log-p value), which are located within the intergenic region of GMPS-SETP14 and
ISCA1P6-AC012451.1 genes, respectively (Table 1, Figures 5 and 6). The association between
these loci and hypertension risk has not been reported in the medical literature. GMPS
(guanine monophosphate synthesis) is engaged in guanine nucleotide de novo synthesis
providing GTP, which is involved in cellular processes that are critical for cell division [44].
GTP is the primary source of cyclic guanosine monophosphate (cGMP), which catalyzes
a variety of cardio-protective functions [45]. cGMP signaling stimulation is a possible
therapeutic strategy for heart failure [46]. The association between the AC012451.1 gene
(a long non-coding RNA/lincRNA) and hypertension may be due to their role in gene
regulation [47]. On the other hand, SETP14 and ISCA1P6 are pseudogenes, which are
non-functional segments of DNA that resemble functional genes. The link between certain
pseudogene genes and heart disease has previously been reported in human and model
animal studies and is currently an active area of medical research [48–50]. For example, the
HK2P1 pseudogene may contribute to preeclampsia by acting as a competing endogenous
RNA for hexokinase 2 and impairing decidualization [48].

We identified three novel SNPs through our GWAS: rs_new-95 (4.70 log-p value),
rs_new-56 (4.11 log-p value), and rs_new-58 (3.06 log-p value) (Table 1, Supplementary S4).
These are insertion and deletion SNPs found within RBM47, TMEFF2-AC013401.1, and
AC067956.1, respectively. The RBM47 (RNA Binding Motif Protein 47) gene is an RNA-
binding protein that controls cell fate decisions and has been suggested to be a tumor
suppressor [51]. Rare putative functional hypertension-associated variants in the RBM47
gene were discovered [52]. These reported rare SNPs could promote hypertension under
some environmental factors [53,54]. TMEFF2 (Transmembrane Protein with EGF-Like and
Two Follistatin-Like Domains 2) has two follistatin-like domains that interact directly with
TGF-β and thus regulate associated growth factor signaling and, as a result, blood pressure
regulation. TMEFF2 has been linked to hypertension and cardiac hypertrophy, according
to previous research [55,56].

Seven genes have more than 10 SNPs with ≥3 log-p value (Supplementary S2). Among
these genes, Spermatogenesis-Associated Serine-Rich 2 (SPATS2L) revealed 21 hypertension-
associated SNPs, of which 9 SNPs were ≥4 log-p value (Table 1). SPATS2L has a well-known
role in the manifestation of some human disorders such as asthma [57] and hepatocellular
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carcinoma [58]. Recently, some reports have defined a clear link between SPATS2L and
atrial fibrillation, which is an abnormal and sometimes rapid heart rate that occurs when
the two upper chambers of the heart have unstable electrical signals [59]. Additionally, the
Unc-51-Like Kinase 4 (ULK4) gene revealed 17 SNPs with ≥3 log-p value (Figures 4 and 6).
Several reports have mentioned the association between the ULK4 gene and heart disorders,
including acute aortic dissections [60] and hypertension [61]. ULK4 has a well-known role
in neuronal growth and tyrosine kinase activity [62]. Among genes with a high number
of hypertension-associated SNPs, the PKN2-AS1 lncRNA region revealed 14 SNPs. The
Protein Kinase N2 (PKN2) gene plays a role in the regulation of cell cycle progression, cell
migration, actin cytoskeleton assembly, and tumor cell invasion. Several blood-pressure-
associated loci were reported in PKN2 [63]. Additionally, the Fragile Histidine Triad
Diadenosine Triphosphatase (FHIT) gene revealed 10 hypertension-associated SNPs with
≥3 log-p value, 1 of which was an SNP (rs57679512) with ≤4 log-p value. FHIT was a hot
point for cancer research for decades [64]. Recently, FHIT has gained great interest as a
key factor for pulmonary arterial hypertension, where its reductions were associated with
endothelial and smooth muscle cell dysfunction [65].

The PPI analysis revealed interaction activity across the previously hypertension-
associated genes; this could be due to their unknown interaction on the cellular level and
possible unseen links. On the other hand, the PPI shows high significance of functional
analysis for genes related to ion-gated channel activity and cardiac conduction (Figure 7).
This is highly accepted as most of genes are correlated with signal transduction activity
and muscle proliferation and regulation. The relationship between hypertension and cell
voltage-gated ion channels, especially in arteries, is well-known where this cellular process
is related to multifactorial mechanisms [66].

Disease–Gene Relationship

The disease–gene relationship analysis reveals that cardiovascular disorders, including
hypertension, are more closely associated with genetic variants located in a specific several
hub genes (Figure 8B,C). These genes are linked to a number of biological pathways that are
important in regulating cellular processes, such as signal transduction and cell development.
We found that 61 of the detected EH-associated genes are linked to 270 cardiovascular disor-
ders (Figure 8 and Supplementary S6). SCN5A was linked to 121 cardiovascular disorders
(Figure 5 and Supplementary S6). Several studies have examined the relationship be-
tween SCN5A and a variety of cardiac disorders [67]. Dilated cardiomyopathy, cardiac
conduction disease, and sick sinus syndrome are all cardiac conditions linked to variants in
SCN5A [68,69]. The alpha subunit of the main cardiac sodium channel Nav1.5 is encoded
by SCN5A, which regulates cardiac electrophysiological function [69]. Our study revealed
that rs74947646 (located in SCN5A-SCN10A) is associated with EH (log-p value ≥ 3) (Sup-
plementary S4). Similarly, RYR2, which contains rs1391189881 (log-p value ≥ 3), has been
linked to 60 different cardiovascular disorders (Supplementary S4 and S6). The RYR2 gene
codes for a protein known as ryanodine receptor 2, which forms channels within cells
that transport positively charged calcium ions. These channels are important in the heart
contraction process [70]. The identified EH-associated SCN10A is known for its influence
on cardiac conduction by controlling the activity of sodium channels, which are required
for electrical signal transmission in cells [71]. SCN10A has been linked to 51 cardiovascular
disorders and shares an EH-associated SNP with SCN5A according to our GWAS analysis
(rs1391189881 with log-p value ≥ 3) (Supplementary S4 and S6). Interestingly, some known
SCN10A variants have been reported to modulate cardiac SCN5A expression, influencing
cardiac physiology and factors that predispose individuals to arrhythmia [71]. Further-
more, EPAS1 has a high number of cardio disorders and is linked to two different EH-SNPs
(Supplementary S4). EPAS1 induces adrenomedullin hormone expression and plays an
important role in cardiac myocyte inflammation [72,73]. These results suggest that our
identified SNPs associated with EH are likely to be correlated with EH. In addition, we
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discovered that the majority of EH-associated genes are strongly linked to cardiovascular
disorders via 14 different genes and 16 SNPs (Supplementary S4).

4.2. Text Mining in the Hypertension Literature

The text mining analysis was used to explore the previously reported genes associated
with hypertension. The hypertension articles published in the last decade revealed a small
number of highly redundant hypertension-associated genes and SNPs. We identified
51 genes; each of them was mentioned at least in 30 articles. In addition, 24 SNPs were
captured, each of which was mentioned in at least 10 research articles (Figure 9 and
Supplementary S7). This could lend credence to the known complexities of the key factors
that govern such a condition [74]. Most of these genes are correlated with blood circulation,
while others are related to ion transportation, the metamorphosis of coronary arteries,
and blood vessels (Figure 9C). Among these genes, eNOS/NOS3, BMPR2, VEGF, MTHFR,
CYP11B2, P450, and NADPH were highly redundant (Figure 9B). Because of their well-
known and mostly direct link to hypertension molecular mechanisms, these genes are
frequently mentioned in the hypertension-related studies.

The PPI network was constructed for the genes identified with text mining to visualize
the EH-associated genes. Interaction activity revealed a collection of genes forming a hot
spot of biological activity (Figure 7). These highly interactive genes are mostly related
to the homeostatic process, nitric-oxide-mediated signal transduction, blood circulation,
and regulation of blood pressure. Genes such as MAPK3, NOS3, AGTR1, DECR1, VEGFA,
GNB3, APOE, CYP11B2, EGFR, POMC, and STAT3 were highly interactive (Figure 7). Some
of these genes are a part of the AGE/RAGE pathway (NOS3, MAPK3, STAT3, and EGFR).
Several studies have shown a link between AGE–RAGE stress and the pathophysiology of
a variety of cardiovascular disorders, including essential and pulmonary hypertension [75].
On the other hand, the AGTR1 and CYP11B2 genes are linked to the ACE inhibitor pathway
and are used to treat cardiovascular disorders such as hypertension [76]. ACE inhibitors
prevent ACE from transforming angiotensin I into angiotensin II, lowering blood pressure
by suppressing smooth muscle constriction and decreasing aldosterone release [77]. Ad-
ditionally, GNB3, VEGFA, and APOE genes function on the cell-size level, where they are
mostly linked to artery morphogenesis [78,79].

4.3. Differences and Similarities between the GWAS and Text Mining

Combining text mining and GWAS analysis yielded a set of genes that were shared
by both methods of analysis (Figure 10 and Supplementary S8). Most of these genes are
correlated with heart muscle activity and heart rate and are associated with cell proliferation
and cell migration (HDAC4, EPAS1, SCN5, FGFR3, AKT3, and ULK4). For instance, histone
deacetylases (HDACs) and histone acetyltransferases (HATs) regulate a broad range of
biological processes by controlling transcription factors’ accessibility to the gene promoter
by histone acetylation or deacetylation [80]. HDAC4 is one of these genes that has been
connected to cardiovascular disorders, where in cultured cardiomyocytes, it regulates
neointimal hyperplasia by inducing the proliferation and migration of vascular smooth
muscle cells [81]. CYP11B2 is one of the most important genes that regulate hypertension
manifestation due to its role as a key enzyme in aldosterone biosynthesis and aldosterone
synthase. because the renin-angiotensin system is critical in regulating intravascular
volume and blood pressure. The text mining analysis highlighted the importance of this
gene by reflecting its high frequency of EH articles (Figure 7) and high interaction activity
in PPI analysis (Figure 7). The GWAS reported no SNPs near or close to this or similar
genes; this could be due to the exclusion criteria used to recruit the Qatari cases for EH,
which excluded cases with secondary causes of EH such as kidney disease and diabetes.
We excluded these individuals to focus our search on just the genes that are associated with
only the EH phenotype without interference from secondary causes.
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4.4. Allele Frequency of EH-Associated SNPs across Ethnic Groups

Additionally, we studied the allele frequency of EH-associated SNPs across a range
of ethnic groups (Figure 11 and Supplementary S9). The clustering analysis of SNPs’
frequency across different ethnic groups shows a high frequency for the minor allele,
especially in AFR, EAS, and SAS populations, which are more likely to be risk alleles [82]
(Figure 11 and Supplementary S9). The AFR population was distinguished from the other
populations, whereas SAS and EAS were grouped together. According to the World Health
Organization (WHO), hypertension affects approximately 46% of adults aged 25 and older
in Africa, compared to 35 to 40% in other parts of the world [83]. This could explain the high
divergence of the AFR population in the EH-associated SNP data compared to other ethnic
groups (Supplementary S5). The majority of the EH-associated SNPs that differentiated
between ethnic groups are located near the SPATS2L gene, which has previously been
linked to blood pressure in some ethnic groups such as Koreans [84,85].

5. Conclusions

We combined a GWAS for 100 hypertensive patients and 100 normal controls and
text mining of over 10,000 research articles relevant to EH-gene association to map unique
genes/variants to our patients with hypertension; we mapped 194 unique to our Qatari
patients that are significantly associated with hypertension. Of these, 26 SNPs in 13 genes
have a log-p value ≥ 4. The most significant region was the intergenic region of C2orf47-
SPATS2L, which contains nine EH-associated SNPs that are highly related to hypertension,
which was not previously reported in the literature. Interestingly, we identified three
novel SNPs, rs_new-95 (4.70 log-p value), rs_new-58, and rs_new-56, located in the loci
RBM47, TMEFF2-AC013401.1, and AC067956.1, respectively. The gene–disease association
analysis identified 60 EH-associated genes that are linked to 270 different cardiovascular
diseases. The SCN5A gene that showed a correlation between rs74947646 and EH with a
log-p value of 3 is linked to more than 121 cardiovascular disorders. The RYR2 gene was
linked to 60 different cardiovascular diseases, the majority of which affect the functionality
of ventricular hypertrophy. Our research found that rs1391189881, which is located in
RYR2, has a significant association with EH, with a log-p value of 3. Furthermore, genes
of SCN10A, EPAS1, NPPC, ACKR3, CHRM3, and HDAC4 were linked to 51, 28, 27, 27,
23, and 23 cardio disorders, respectively. In addition, we identified 21 common genes
that are shared between the GWAS and text mining analyses; of these, FNDC3B, FHIT,
NPPC-DIS3L2, GLI2, and RBM47 genes are the most highly associated with hypertension.
Successfully, our analysis revealed two SNPs with a hypertension association of ≥5 p
value log-p value (rs921932379 and rs113688672), which are located within the intergenic
region of GMPS-SETP14 and ISCA1P6-AC012451.1 genes. Allele frequency of our GWAS
indicates that our patients’ susceptibility to hypertension are more related to Africans and
Asians than other ethnic groups. Text mining analysis aided GWAS analysis by providing a
comprehensive catalogue of known and previously undiscovered EH-associated genes. The
limitation of our study is the low number of WGS samples; therefore, more patients with
EH need to be included to increase the statistical power of association with hypertension in
our population.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12050722/s1. Supplementary S1: A summary table compar-
ing the values of control and patient clinical parameters. Supplementary S2: Computer program-
ming scripts used for text mining; Supplementary S3: Genes studied according to their number of
EH-associated SNPs; Supplementary S4: Fisher’s exact test scores for SNPs’ association with EH;
Supplementary S5: Genes containing EH-associated SNPs; Supplementary S6: The cardiovascular
disorders related to EH-associated SNPs detected in the current study; Supplementary S7: The
highest frequently mentioned genes and SNPs in the hypertension literature; Supplementary S8:
Text mining and GWAS comparison using Venn analysis; Supplementary S9: The allele frequency of
EH-associated SNPs in different ethnic groups according to Ensemble database.

https://www.mdpi.com/article/10.3390/jpm12050722/s1
https://www.mdpi.com/article/10.3390/jpm12050722/s1


J. Pers. Med. 2022, 12, 722 19 of 22

Author Contributions: Conceptualization, H.Z.; methodology, H.Z. and H.A.; writing—original
draft preparation, H.Z. and A.M.A.; writing—review and editing, H.Z. and A.M.A.; supervision,
H.Z.; project administration, H.Z.; formal analysis, H.Z., H.A. and A.M.A.; visualization, H.Z. and
A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Qatar university grants QUST-1-CHS-2019-11 and QUST-
1-CHS-2019-12.

Institutional Review Board Statement: The study was approved through the Expedited category of
the QBB Institutional Review Board (QBB IRB) E-2019-QF-QBB- RES-ACC-0159-0082.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available within the article or its supplementary materials.

Acknowledgments: We thank Qatar Biobank and Qatar genome project for their efforts to share with
us the data used in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.;

Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor
clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260.
[CrossRef]

2. Staessen, J.A.; Wang, J.; Bianchi, G.; Birkenhger, W.H. Essential hypertension. Lancet 2003, 361, 1629–1641. [CrossRef]
3. Lawes, C.M.M.; Hoorn, S.V.; Rodgers, A.; International Society of Hypertension. Global burden of blood-pressure-related disease,

2001. Lancet 2008, 371, 1513–1518. [CrossRef]
4. Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Abate, K.H.;

Akinyemiju, T.F.; et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm hg, 1990–2015. JAMA
2017, 317, 165–182. [CrossRef]

5. Yagil, Y.; Yagil, C. The search for the genetic basis of hypertension. Curr. Opin. Nephrol. Hypertens. 2005, 14, 141–147. [CrossRef]
6. Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.;

Wright, J.T., Jr.; et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high
blood pressure. Hypertension 2003, 42, 1206–1252. [CrossRef]

7. Singh, M.; Singh, A.K.; Pandey, P.; Chandra, S.; Singh, K.A.; Gambhir, I.S. Molecular genetics of essential hypertension. Clin. Exp.
Hypertens. 2016, 38, 268–277. [CrossRef]

8. Niiranen, T.J.; McCabe, E.L.; Larson, M.G.; Henglin, M.; Lakdawala, N.K.; Vasan, R.S.; Cheng, S. Risk for hypertension crosses
generations in the community: A multi-generational cohort study. Eur. Heart J. 2017, 38, 2300–2308. [CrossRef]

9. Luft, F.C. Twins in cardiovascular genetic research. Hypertension 2001, 37, 350–356. [CrossRef]
10. Naber, C.K.; Siffert, W. Genetics of human arterial hypertension. Minerva Med. 2004, 95, 347–356.
11. Cowley, A.W. The genetic dissection of essential hypertension. Nat. Rev. Genet. 2006, 7, 829–840. [CrossRef]
12. Arif, M.; Sadayappan, S.; Becker, R.C.; Martin, L.J.; Urbina, E.M. Epigenetic modification: A regulatory mechanism in essential

hypertension. Hypertens. Res. 2019, 42, 1099–1113. [CrossRef]
13. Ueda, K.; Nishimoto, M.; Hirohama, D.; Ayuzawa, N.; Kawarazaki, W.; Watanabe, A.; Shimosawa, T.; Loffing, J.; Zhang, M.-Z.;

Marumo, T.; et al. Renal dysfunction induced by kidney-specific gene deletion of hsd11b2 as a primary cause of salt-dependent
hypertension. Hypertension 2017, 70, 111–118. [CrossRef]

14. Sogawa, Y.; Nagasu, H.; Itano, S.; Kidokoro, K.; Taniguchi, S.; Takahashi, M.; Kadoya, H.; Satoh, M.; Sasaki, T.; Kashihara, N. The
eNOS-NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone-induced renal
injury model mice. PLoS ONE 2018, 13, e0203823. [CrossRef]

15. Woo, Y.H.; Li, W.-H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat.
Commun. 2012, 3, 1004. [CrossRef]

16. Doris, P.A. Hypertension genetics, single nucleotide polymorphisms, and the common disease: Common variant hypothesis.
Hypertension 2002, 39, 323–331. [CrossRef]

17. Bodily, P.M.; Fujimoto, M.S.; Page, J.T.; Clement, M.J.; Ebbert, M.T.W.; Ridge, P.G. A novel approach for multi-SNP GWAS and its
application in Alzheimer’s disease. BMC Bioinform. 2016, 17, 455–463. [CrossRef]

18. Padmanabhan, S.; Joe, B. Towards precision medicine for hypertension: A review of genomic, epigenomic, and microbiomic
effects on blood pressure in experimental rat models and humans. Physiol. Rev. 2017, 97, 1469–1528. [CrossRef]

19. Giri, A.; Hellwege, J.N.; Keaton, J.M.; Park, J.; Qiu, C.; Warren, H.R.; Torstenson, E.S.; Kovesdy, C.P.; Sun, Y.V.; Wilson, O.D.; et al.
Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 2019, 51, 51–62. [CrossRef]

20. Flister, M.J.; Tsaih, S.-W.; O’Meara, C.C.; Endres, B.; Hoffman, M.J.; Geurts, A.M.; Dwinell, M.R.; Lazar, J.; Jacob, H.J.; Moreno, C.
Identifying multiple causative genes at a single GWAS locus. Genome Res. 2013, 23, 1996–2002. [CrossRef]

http://doi.org/10.1016/S0140-6736(12)61766-8
http://doi.org/10.1016/S0140-6736(03)13302-8
http://doi.org/10.1016/S0140-6736(08)60655-8
http://doi.org/10.1001/jama.2016.19043
http://doi.org/10.1097/00041552-200503000-00009
http://doi.org/10.1161/01.HYP.0000107251.49515.c2
http://doi.org/10.3109/10641963.2015.1116543
http://doi.org/10.1093/eurheartj/ehx134
http://doi.org/10.1161/01.HYP.37.2.350
http://doi.org/10.1038/nrg1967
http://doi.org/10.1038/s41440-019-0248-0
http://doi.org/10.1161/HYPERTENSIONAHA.116.08966
http://doi.org/10.1371/journal.pone.0203823
http://doi.org/10.1038/ncomms1982
http://doi.org/10.1161/hy0202.104087
http://doi.org/10.1186/s12859-016-1093-7
http://doi.org/10.1152/physrev.00035.2016
http://doi.org/10.1038/s41588-018-0303-9
http://doi.org/10.1101/gr.160283.113


J. Pers. Med. 2022, 12, 722 20 of 22

21. Fowdar, J.Y.; Grealy, R.; Lu, Y.; Griffiths, L.R. A genome-wide association study of essential hypertension in an Australian
population using a DNA pooling approach. Mol. Genet. Genom. 2017, 292, 307–324. [CrossRef]

22. Davies, R. The creation of new knowledge by information retrieval and classification. J. Doc. 1989, 45, 273–301. [CrossRef]
23. Bhardwaj, P.; Khosla, P. Review of text mining techniques. IITM J. Manag. IT 2017, 8, 27–31.
24. Luque, C.; Luna, J.M.; Luque, M.; Ventura, S. An advanced review on text mining in medicine. WIREs Data Min. Knowl. Discov.

2019, 9, e1302. [CrossRef]
25. Alsamman, A.M.; Habib, P.T. GeneSyno: Simple tool to extract gene sequence from the human genome despite synonymous gene

terms. Highlights Biosci. 2019, 2. [CrossRef]
26. Baker, S.; Ali, I.; Silins, I.; Pyysalo, S.; Guo, Y.; Högberg, J.; Stenius, U.; Korhonen, A. Cancer Hallmarks Analytics Tool (CHAT): A

text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics 2017, 33, 3973–3981. [CrossRef]
27. Hansson, L.K.; Hansen, R.B.; Pletscher-Frankild, S.; Berzins, R.; Hansen, D.H.; Madsen, D.; Christensen, S.B.; Christiansen, M.R.;

Boulund, U.; Wolf, X.A.; et al. Semantic text mining in early drug discovery for type 2 diabetes. PLoS ONE 2020, 15, e0233956.
[CrossRef]

28. Nam, H.J.; Ryu, S. Text-Mining Analyses of News Articles on Schizophrenia. Korean J. Schizophr. Res. 2020, 23, 58–64. [CrossRef]
29. Rodzuan, N.A.S.; Kasim, S.; Sithambranathan, M.; Hassan, M.Z. Classification of biomedical literature in hypertension and

diabetes. Int. J. Data Sci. 2020, 1, 114–119. [CrossRef]
30. Al Kuwari, H.; Al Thani, A.; Al Marri, A.; Al Kaabi, A.; Abderrahim, H.; Afifi, N.; Qafoud, F.; Chan, Q.; Tzoulaki, I.;

Downey, P.; et al. The Qatar Biobank: Background and methods. BMC Public Health 2015, 15, 1–9. [CrossRef]
31. Zayed, H. The Arab genome: Health and wealth. Gene 2016, 592, 239–243. [CrossRef]
32. Zhang, Z. Multiple imputation with multivariate imputation by chained equation (MICE) package. Ann. Transl. Med. 2016, 4, 30.

[CrossRef]
33. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.;

Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
Genome Res. 2010, 20, 1297–1303. [CrossRef]

34. Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating
and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118;
iso-2; iso-3. Fly 2012, 6, 80–92. [CrossRef]

35. Fisher, R.A. On the interpretation of χ2 from contingency tables, and the calculation of P. J. R. Stat. Soc. 1922, 85, 87–94. [CrossRef]
36. Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629.

[CrossRef]
37. UniProt Consortium. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [CrossRef]
38. Ullah, A.Z.D.; Oscanoa, J.; Wang, J.; Nagano, A.; Lemoine, N.R.; Chelala, C. SNPnexus: Assessing the functional relevance of

genetic variation to facilitate the promise of precision medicine. Nucleic Acids Res. 2018, 46, W109–W113. [CrossRef]
39. von Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations

between proteins. Nucleic Acids Res. 2003, 31, 258–261. [CrossRef]
40. Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information

aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [CrossRef]
41. Wickham, H. ggplot2. WIREs Comput. Stat. 2011, 3, 180–185. [CrossRef]
42. Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and

heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [CrossRef]
43. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge

platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [CrossRef]
44. Wang, J.; Wu, Y.; Li, Y.; Wang, Y.; Shen, F.; Zhou, J.; Chen, Y. Guanosine monophosphate synthase upregulation mediates cervical

cancer progression by inhibiting the apoptosis of cervical cancer cells via the Stat3/P53 pathway. Int. J. Oncol. 2021, 58, 3.
[CrossRef]

45. Ying, W.; Zhao, D.; Ouyang, P.; Subramanya, V.; Vaidya, D.; Ndumele, C.E.; Guallar, E.; Sharma, K.; Shah, S.J.; Kass, D.A.; et al.
Associations between the cyclic guanosine monophosphate pathway and cardiovascular risk factors: MESA. J. Am. Heart Assoc.
2019, 8, e013149. [CrossRef]

46. Muraki, Y.; Naito, T.; Tohyama, K.; Shibata, S.; Kuniyeda, K.; Nio, Y.; Hazama, M.; Matsuo, T. Improvement of pulmonary arterial
hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of
monocrotaline-induced pulmonary hypertension. Biosci. Biotechnol. Biochem. 2019, 83, 1000–1010. [CrossRef]

47. Cheng, G.; He, L.; Zhang, Y. LincRNA-Cox2 promotes pulmonary arterial hypertension by regulating the let-7a-mediated STAT3
signaling pathway. Mol. Cell. Biochem. 2020, 475, 239–247. [CrossRef]

48. Lv, H.; Tong, J.; Yang, J.; Lv, S.; Li, W.-P.; Zhang, C.; Chen, Z.-J. Dysregulated pseudogene HK2P1 may contribute to preeclampsia
as a competing endogenous RNA for hexokinase 2 by impairing decidualization. Hypertension 2018, 71, 648–658. [CrossRef]

49. Nojima, H.; Sokabe, H. Genes and pseudogenes for calmodulin in the spontaneously hypertensive rat. J. Hypertens. 1988, 6,
S231–S233. [CrossRef]

50. Qi, Y.; Wang, X.; Li, W.; Chen, D.; Meng, H.; An, S. Pseudogenes in cardiovascular disease. Front. Mol. Biosci. 2021, 7, 622540.
[CrossRef]

http://doi.org/10.1007/s00438-016-1274-0
http://doi.org/10.1108/eb026846
http://doi.org/10.1002/widm.1302
http://doi.org/10.36462/H.BioSci.20195
http://doi.org/10.1093/bioinformatics/btx454
http://doi.org/10.1371/journal.pone.0233956
http://doi.org/10.16946/kjsr.2020.23.2.58
http://doi.org/10.18517/ijods.1.2.114-119.2020
http://doi.org/10.1186/s12889-015-2522-7
http://doi.org/10.1016/j.gene.2016.07.007
http://doi.org/10.3978/j.issn.2305-5839.2015.12.63
http://doi.org/10.1101/gr.107524.110
http://doi.org/10.4161/fly.19695
http://doi.org/10.2307/2340521
http://doi.org/10.1093/bioinformatics/btz931
http://doi.org/10.1093/nar/gku989
http://doi.org/10.1093/nar/gky399
http://doi.org/10.1093/nar/gkg034
http://doi.org/10.1101/gr.092759.109
http://doi.org/10.1002/wics.147
http://doi.org/10.1093/nar/gkv468
http://doi.org/10.1093/nar/gkz1021
http://doi.org/10.3892/ijo.2021.5183
http://doi.org/10.1161/JAHA.119.013149
http://doi.org/10.1080/09168451.2019.1584520
http://doi.org/10.1007/s11010-020-03877-6
http://doi.org/10.1161/HYPERTENSIONAHA.117.10084
http://doi.org/10.1097/00004872-198812040-00069
http://doi.org/10.3389/fmolb.2020.622540


J. Pers. Med. 2022, 12, 722 21 of 22

51. Radine, C.; Peters, D.; Reese, A.; Neuwahl, J.; Budach, W.; Jänicke, R.U.; Sohn, D. The RNA-binding protein RBM47 is a novel
regulator of cell fate decisions by transcriptionally controlling the p53-p21-axis. Cell Death Differ. 2020, 27, 1274–1285. [CrossRef]

52. Russo, A.; Di Gaetano, C.; Cugliari, G.; Matullo, G. Advances in the genetics of hypertension: The effect of rare variants. Int. J.
Mol. Sci. 2018, 19, 688. [CrossRef]

53. Ji, L.-D.; Tang, N.L.S.; Xu, Z.-F.; Xu, J. Genes regulate blood pressure, but “environments” cause hypertension. Front. Genet. 2020,
11, 580443. [CrossRef]

54. Surendran, P.; Drenos, F.; Young, R.; Warren, H.; Cook, J.P.; Manning, A.K.; Grarup, N.; Sim, X.; Barnes, D.R.; Witkowska, K.; et al.
Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet.
2016, 48, 1151–1161. [CrossRef]

55. Overcash, R.F.; Chappell, V.A.; Green, T.; Geyer, C.B.; Asch, A.S.; Ruiz-Echevarría, M.J. Androgen signaling promotes translation
of TMEFF2 in prostate cancer cells via phosphorylation of the α subunit of the translation initiation factor 2. PLoS ONE 2013,
8, e55257. [CrossRef]

56. Kumarasamy, S.; Gopalakrishnan, K.; Toland, E.J.; Yerga-Woolwine, S.; Farms, P.; Morgan, E.E.; Joe, B. Refined mapping of blood
pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens. Res.
2011, 34, 1263–1270. [CrossRef]

57. Himes, B.E.; Jiang, X.; Hu, R.; Wu, A.C.; Lasky-Su, J.A.; Klanderman, B.J.; Ziniti, J.; Senter-Sylvia, J.; Lima, J.J.; Irvin, C.G.; et al.
Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet.
2012, 8, e1002824. [CrossRef]

58. Min, P.; Li, W.; Zeng, D.; Ma, Y.; Xu, D.; Zheng, W.; Tang, F.; Chen, J.; Shi, J.; Hu, H.; et al. A single nucleotide variant in
microRNA-1269a promotes the occurrence and process of hepatocellular carcinoma by targeting to oncogenes SPATS2L and LRP6.
Bull. Cancer 2017, 104, 311–320. [CrossRef]

59. van Ouwerkerk, A.F.; Bosada, F.M.; van Duijvenboden, K.; Hill, M.C.; Montefiori, L.E.; Scholman, K.T.; Liu, J.; de Vries, A.A.F.;
Boukens, B.J.; Ellinor, P.T.; et al. Identification of atrial fibrillation associated genes and functional non-coding variants. Nat.
Commun. 2019, 10, 1–14. [CrossRef]

60. Guo, D.-C.; Grove, M.L.; Prakash, S.K.; Eriksson, P.; Hostetler, E.M.; LeMaire, S.A.; Body, S.C.; Shalhub, S.; Estrera, A.L.;
Safi, H.J.; et al. Genetic variants in LRP1 and ULK4 are associated with acute aortic dissections. Am. J. Hum. Genet. 2016, 99,
762–769. [CrossRef]

61. Datta, A.S.; Zhang, Y.; Zhang, L.; Biswas, S. Association of rare haplotypes on ULK4 and MAP4 genes with hypertension. BMC
Proc. 2016, 10, 363–369. [CrossRef]

62. Lang, B.; Pu, J.; Hunter, I.; Liu, M.; Martin-Granados, C.; Reilly, T.J.; Gao, G.-D.; Guan, Z.-L.; Li, W.-D.; Shi, Y.-Y.; et al. Recurrent
deletions of ULK4 in schizophrenia: A novel gene crucial for neuritogenesis and neuronal motility. J. Cell Sci. 2013, 127, 630–640.
[CrossRef]

63. Kraja, A.T.; Cook, J.P.; Warren, H.R.; Surendran, P.; Liu, C.; Evangelou, E.; Manning, A.K.; Grarup, N.; Drenos, F.; Sim, X.; et al.
New blood pressure—Associated loci identified in meta-analyses of 475,000 individuals. Circ. Cardiovasc. Genet. 2017, 10, e001778.
[CrossRef]

64. Croce, C.M.; Sozzi, G.; Huebner, K. Role of FHIT in human cancer. J. Clin. Oncol. 1999, 17, 1618. [CrossRef]
65. Prosseda, S.D.; Tian, X.; Kuramoto, K.; Boehm, M.; Sudheendra, D.; Miyagawa, K.; Zhang, F.; Solow-Cordero, D.; Saldivar, J.C.;

Austin, E.D.; et al. FHIT, a novel modifier gene in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2019, 199, 83–98.
[CrossRef]

66. Cox, R.H.; Rusch, N.J. New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure.
Microcirculation 2002, 9, 243–257. [CrossRef]

67. Glazer, A.M.; Wada, Y.; Li, B.; Muhammad, A.; Kalash, O.R.; O’Neill, M.J.; Shields, T.; Hall, L.; Short, L.; Blair, M.A.; et al.
High-throughput reclassification of SCN5A variants. Am. J. Hum. Genet. 2020, 107, 111–123. [CrossRef]

68. Wilde, A.A.M.; Amin, A.S. Clinical spectrum of SCN5A mutations: Long QT syndrome, brugada syndrome, and cardiomyopathy.
JACC Clin. Electrophysiol. 2018, 4, 569–579. [CrossRef]

69. Li, W.; Yin, L.; Shen, C.; Hu, K.; Ge, J.; Sun, A. SCN5A variants: Association with cardiac disorders. Front. Physiol. 2018, 9, 1372.
[CrossRef]

70. Hamilton, S.; Terentyeva, R.; Martin, B.; Perger, F.; Li, J.; Stepanov, A.; Bonilla, I.M.; Knollmann, B.C.; Radwański, P.B.;
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