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ABSTRACT This paper presents the detection of brain tumors through the YOLOv3 deep neural network
model in a portable electromagnetic (EM) imaging system. YOLOv3 is a popular object detectionmodel with
high accuracy and improved computational speed. Initially, the scattering parameters are collected from the
nine-antenna array setup with a tissue-mimicking head phantom, where one antenna acts as a transmitter
and the other eight antennas act as receivers. The images are then reconstructed from the post-processed
scattering parameters by applying the modified delay-multiply-and-sum algorithm that contains 416× 416
pixels. Fifty sample images are collected from the different head regions through the EM imaging system.
The images are later augmented to generate a final image data set for training, validation, and testing, where
the data set contains 1000 images, including fifty samples with a single and double tumor. 80% of the
images are utilized for training the network, whereas 10% are used for validation, and the rest 10% are
utilized for testing purposes. The detection performance is investigated with the different image data sets.
The achieved detection accuracy and F1 scores are 95.62% and 94.50%, respectively, which ensure better
detection accuracy. The training accuracy and validation losses are 96.74% and 9.21%, respectively. The
tumor detection with its location in different cases from the testing images is evaluated through YOLOv3,
which demonstrates its potential in the portable electromagnetic head imaging system.

INDEX TERMS Tumor detection, YOLOv3 model, data augmentation, electromagnetic imaging.

I. INTRODUCTION
Globally, brain tumor is one of the major causes of mortality
and disability because it invades the most vital organ of the
human body. A brain tumor is the growth of abnormal cells
that have formed inside the head. At present, brain cancer
is the 10th leading cause of death due to tumors for men
and women [1]. Brain tumors can be deadly, significantly
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impacting the quality of life and changing everything for
patients and their loved ones. A high death percentage is
caused due to the invasive properties of tumors. But it is
inspiring that the survival rate might increase if the diag-
nosis is performed at the early stage. In medical science,
the standard imaging technologies to identify the tumor are
computed tomography (CT) scans, MRI (magnetic resonance
imaging) scanning, positron emission tomography (PET),
ultrasound screening, and X-ray screening [2], [3]. The major
pitfalls of the traditional imaging technologies are ionizing
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radioactivity, lower susceptibility, growing cancerous haz-
ard, more expensive, etc. [3]–[8]. Nowadays, the possibility
of electromagnetic imaging technology for the detection of
brain tumors is gradually increased because of its special
features like noninvasive, inexpensive, nonionizing radia-
tion, and safe for the human body compared to the tradi-
tional technologies [9]–[12]. The antenna plays a significant
role in the EM imaging system by producing EM waves.
In EM imaging system, it is essential to design wideband
antennas which will work within the frequency range of
1 to 4 GHz with high gain, and unidirectional characteris-
tics [2], [9], [13]–[16]. A numerous number of EM imaging
systems have been developed over time by applying the
different types of antenna array [2], [9], [12], [17]–[19].
These systems use different types of imaging algorithm to
detect brain tumor [2], [12], [14], [16]–[23]. An EBG-based
microstrip patch antenna-based head imaging platform was
presented in [11] to detect tumor. The system has no scanning
process, and it uses a single antenna and confocal algorithm
for imaging purposes. The system can detect only a single
tumor along with the skull due to the lack of effectiveness of
the algorithm. In addition, the system created noisy images
due to the low bandwidth of the antenna and deficiency of
the head scanning process. So, it is challenging to detect the
tumor from the generated noisy images. A single 3D wide-
band antenna-based EM imaging system was developed to
detect brain tumors [24]. The antenna’s operating bandwidth
is very low. The system produced blurry image due to very
low bandwidth and coupling mismatch among the antennas
as well as it is hard to identify the exact tumor location in
the images. A unidirectional 3D antenna array-based system
was developed to detect brain tumors by applying the DAS
algorithm [25]. The used antenna and the imaging platform
are very large. The measurement result from the system
might be abnormal because of image slicing scenario. Besides
identify the brain stroke in EM images, a single antipodal
Vivaldi antenna-based head imaging system was presented
in [15]. The system used only a single antenna with a low gain
and DAS (delay-and-sum) image processing algorithm. As a
result, it generates a low resolution-based noisy image caused
by low gain and low operating bandwidth of the antenna. The
imaging system is not able to detect the stroke at the central
and depth position of the brain. In addition, a conformal wide-
band antenna-based head imaging system was developed to
monitoring the stroke by processing S-parameters [17]. The
system used multistatic delay-multiply-and-sum (DMAS)
imaging algorithm. For imaging purposes, the system col-
lects scattered (S-parameters) data from the thirteen antennas
array. However, the system is not able to detect the stroke at
the central and in-depth location due to lack of unidirectional
characteristics phenomena of the antenna. A head imaging
system with ten bowtie patch antennas array was devel-
oped and presented in [18]. The system collects scattered
data (S-parameters) from the ten different scanning positions
of the head surrounding. The system used Gauss-Newton
Iterative imaging algorithm to reconstruct the images.

This imaging mechanism is very complex and not usable due
to the large size of an imaging system. Moreover, an elec-
tromagnetic stroke imaging system was developed by the ten
wideband-monopole antennas array, where the used antenna
covered very low bandwidth [23]. The scheme used a linear
imaging algorithm and used the liquid as a testing phantom
to generate images. As a result, the system produces noisy
image, and hence hard to detect exact stroke location in the
generated images. A twenty-four low-complexity triangular
microstrip patch antennas array-based stroke imaging system
was presented in [16]. Experimental system and imaging
results were not presented in the literature. A compact 3D
antenna was proposed for an electromagnetic head imaging
system to detect brain stroke [13]. Only simulated imaging
system with an eight antennas array are explained in the
literature. But simulated imaging result with tumors was
not described. Also, a three-dimensional (3D) slotted-folded
dipole antenna-based stroke imaging system was imple-
mented and explained in [19]. The system consisted of a
vast sixteen antennas array and used the DAS algorithm
for stroke imaging. The used algorithm is processed from
S-parameters to generate the desired images, but it generates
noisy images due to the lack of effectiveness of the algo-
rithm. So, identification of the accurate stroke location in the
image is complicated. Furthermore, a 3D dipole metamaterial
loaded antenna-based head imaging system was developed to
identify the stroke location and presented in [12]. A modified
DMAS algorithm is used to detect stroke in the images.

Nowadays, deep learning technique (DLT) fascinates many
attentions and has been used in medical imaging applica-
tions [26]–[29]. At present, researchers aremotivated to apply
this technique in electromagnetic imaging applications due
to its abundant features [22], [30]–[32]. It can classify the
target objects by training the convolutional neural networks
(CNNs). It is noted that the deep learning approach with an
optimization algorithm can solve the electromagnetic scatter-
ing discrepancy to enhance the image classification and help
to detect the object from the generated EM images [33]. Clas-
sification of EM images and object detection is a challenging
task due to the variation in features, algorithms, architecture,
and training mechanism [27], [34]–[36]. A CNN architecture
based on a super-resolution algorithm for microwave imag-
ing is proposed in [37]. The architecture used a 33 × 33
image data set for training the network and produced 2D
images. The generated images are noisy due to the lack of
training data set. Therefore, identification of the accurate
location of the object in the image is tricky. An automated
brain tumor classification approach is demonstrated in [29].
Wavelet transform and principal component analysis (PCA)
techniques are used for feature extraction and DNN (deep
neural network) to classify tumors. Still, the classification
accuracy was very low because of the deficiency of train-
ing samples. The EM image reconstruction process by the
deep learning approach is presented in [30]. The approach
used 24 × 24 antenna array, auto-encoder, and decoder
for reconstructing the images. In addition, 32000 images
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(each image size was 128× 128 pixels) were used for recon-
structing the microwave image, but they did not demonstrate
the object detection development. A brain tumor segmen-
tation by the LinkNet [38] framework method is presented
in [22]. The classification of tumors in the brain based on
the MRI image data set is presented, but the tumor detection
procedure is not analyzed. An automatic brain tumor detec-
tion and segmentation using a fully convolutional network
(F-CNN) approach are demonstrated in [39]. In this approach,
the U-net framework [32] with Adam optimization algorithm
was used for segmentation of the image regions. From the
segmentation, the tumor could be detected, but the accurate
location of the tumor in the image is difficult to identify
due to the shortage of unbiased predictor. A residual deep
neural network approach is used to classify and detect the
tumor in the head [28]. The approach used data distillation
and augmentation methods to reduce the noise label in the
image, but detection scenario with experimental analysis is
not performed. Therefore, deep neural network-based object
detection model could be a new research finding for brain
tumor detection with accurate localization in EM imaging
systems.

It is noteworthy to mention that the reported head imag-
ing system used various conventional imaging algorithms
to detect tumor from the reconstructed images, but it is
challenging to identify the accurate location of the tumor
due to the low spatial resolution. In addition, it is very
much challenging to detect and localize the tumor from the
reconstructed images for the non-expert physician or patients.
Moreover, it is often confused by the physician if the recon-
structed images are noisy and blurry. Therefore, it is essen-
tial to indicate the tumor locations manually by the expert
physician, which is a crucial drawback of the conventional
EM imaging system. Thus, the motivation towards over-
coming the issue in the reported EM head imaging system
relies on a deep neural network model that can automati-
cally detect and localize the tumor from the scanned head
region.

In this article, we present a deep neural network based
YOLOv3 algorithm to detect tumor with their location in the
human brain. The main contributions of this research can be
stated below:
i) To the best of the authors’ knowledge, this is the first

work, where the deep learning technique is applied to
detect the target brain tumor and its location in EM head
images.

ii) Developed a new portable EM head imaging system by
using a compact three-dimension (3D) unidirectional,
high bandwidth wideband antennas array to generate
high resolution-based EM images.

iii) Implemented a darknet-53 deep neural network-based
YOLOv3 algorithm that able to automatically detect
tumor and their location, including bounding boxes in
generated EM images.

iv) The outcome of this research is verified by EM
image visualization and evaluated tumor detection

performances by applied different sizes of training and
testing data set.

TheYOLOv3 algorithm is based on darknet-53 deep neural
network architecture, which is applied to identify the target
tumor in the EM images. The algorithm is implemented by
using the Python programming language with TensorFlow
API. An experimental portable electromagnetic head imaging
system is implemented for imaging purposes. Electromag-
netic head images with tumor objects are generated by apply-
ing the modified delay-multiply-and-sum image processing
algorithm [12]. The single image contains 416× 416 pixels.
Fifty sample images from different scenarios are collected
through the developed EM imaging system. Furthermore,
the image augmentation method is used to produce the final
data set that will later be used for training, validation, and
testing purposes. The image data set consists of 1000 sam-
ples with a single and double tumor. Later, eight hundred
EM images are used for training the network, where one
hundred are used for validation, and the rest one hundred
are used for testing purposes. The tumor detection perfor-
mances with different data sets are examined. It is shown
that the detection accuracy was more than 95%, and F1 score
was more than 94%, when considered maximum images as
a training data set. In addition, the training Vs validation
accuracy and training Vs validation loss are also demon-
strated. The average training accuracy, training loss, vali-
dation accuracy, and validation loss are 96.74%, 14.01%,
98.84%, and 9.21%, respectively. Higher training accuracy,
F1 score, and lower validation loss ensure better detection
performances. Furthermore, tumor detection results in differ-
ent scenarios (i.e., with sing and double tumors) are evalu-
ated and presented. It is observed from the detection results
that the tumor location with different sizes is successfully
detected.

The rest of the paper is organized as follows: Experi-
mental validation of the EM imaging system is presented in
section II. Detailed analysis of the deep neural network-based
YOLOv3 model is demonstrated in section III. In section IV,
the procedure of training, validation, and testing of the images
are presented. Then, results and discussions are presented
in section V, and finally, the concluding statements are in
section VI.

II. EXPERIMENTAL VALIDATION OF EM SYSTEM
A wideband antenna is required in an EM head imaging
system within the range of 1 GHz to 4 GHz with unidirec-
tional radiation characteristics. A 3D antenna is designed
and fabricated on cost-effective Rogers RT5880 substrate
material, where the dielectric constant is 2.20, the loss tangent
is 0.0009, and the thickness is 1.575 mm. The optimized
antenna dimension is 53× 22× 21.575 mm3. The scattering
parameters |S11| are measured by the power network analyzer
(PNA). The simulated and measured scattering parameters
|S11| are illustrated in Figure 1(a). It can be observed that
the measured operating frequency of the antenna is 1.43 GHz
to 3.71 GHz, whereas the simulated operating frequency of
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FIGURE 1. Simulated and measured results of the antenna: (a) Reflection
coefficient in free space (b) Reflection coefficient with the head model.

the antenna is 1.51 GHz to 3.55 GHz, respectively. Later,
the 3D antenna is simulated with a Hugo head model and
measured with a fabricated head phantom model to evaluate
the performance stability of the antenna. The simulated and
measured reflection coefficient curves with a head model are
depicted in Figure 1(b).

It is notable that the reflection coefficient of the antenna
in head proximity maintains good agreement between the
simulated and measured results. An experimental setup is
developed to validate the performance of the antenna and
tissue-mimicking head phantom, which is later utilized to
reconstruct the tumor images. The overall experimental imag-
ing setup is depicted in Figure 2(a). The imaging setup con-
sists of nine 3D antennas array, where the gap between each
antenna is 40 mm. The distance of every antenna from the
centre of the top rotating disk is 100 mm, and the angle
of the antenna-to-antenna centre point is 40◦. The antenna
positions are numerically indicated by the green color in
Figure 2(a). Antenna 1 acts as a transmitter. The remaining
eight antennas are acted as receivers for receiving the scat-
tering signals. The mounted antenna array system is rotated
by the stepper motor from 0 to 2π around the fabricated

FIGURE 2. (a) Developed EM head imaging system (b-c) scattering
parameters.

head phantom. Figure 2(b-c) depicts the scattering parameters
(i.e., with and without tumor) of each antenna. The backscat-
tered signals (S2, 1,S3, 1,S4, 1,S5, 1, . . . . . . . . .S9, 1) are
collected in every 7.2 degrees rotation. Therefore, the total
9 × 8 × 50 locations are scanned to assess and generate
high-resolution images. Later, the collected backscattered
signals are post-processed by the modified delay-multiply-
and-sum frequency domain image algorithm [12] to recon-
struct the images of head regions. Figure 3 represents the
tissue-mimicking phantom and the reconstructed images of
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FIGURE 3. Fabricated tissue-mimicking head phantom and reconstructed
images (a) Reconstructed blank image (without tumor) (b-c) two different
configurations of the same phantom with single and (d-e) two different
configurations of the same phantom with double tumors.

the head region, where the phantom is used inside the head
model to validate the overall system’s performance.

For instance, one blank tissue-mimicking head model con-
figurationwithout tumor and the corresponding reconstructed
image is illustrated in Figure 3(a). In addition, two different
configurations with the single and double tumor in the same
head phantommodel are shown in Figure 3(b-e), respectively.
In Figure 3(b-e), the right-side images are reconstructed
images of the corresponding phantom model configurations.
The horizontal (x-axis) and vertical (y-axis) axis scaling of
each image in this article is considered as −0.10 meter (m)
to + 0.10 meter (m). The coordinate {0.00,0.00} represents
the centre position of the head model. The tissue layers of the
phantom and a tumor are fabricated by the following recipe
presented in [40]. The different fabricated size of the tumor is
measured as the diameter D= 10mm, 12mm, 14mm, 15mm,
18mm, 20mm, 22mm and 25 mm. For imaging purposes,
a single tumor in a different location is used in twenty-five
samples and double tumors in different locations are used in
another twenty-five samples. Consequently, a total of fifty
samples of reconstructed images are collected afterwards to
create an original image data set. Furthermore, the created
data set is applied to train the deep learning object detection
model. Later, the YOLOv3 object detection model is utilized
to detect the tumor location from the generated reconstructed
images. The model is implemented by applying the Python
programming language with a TensorFlow API.

III. THEORETICAL BACKGROUND
A. YOLOv3 ALGORITHM ANALYSIS
YOLO (You only look once) is one of the state-of-
the-art real-time object detection algorithms developed
by Joseph Redmon et al. [41]. Currently, YOLO ver-
sion 3 (YOLOv3)[42] is a super-fast latest object detec-
tion algorithm which is evolved from the YOLO [41] and
YOLOv2 [43]. YOLOv3 comprises a single deep convolu-
tional neural network (DCNN) that split the input image into
a grid of cells, and every cell directly predicts a bounding
box (BB) and object classification. The typical framework
of YOLO is depicted in Figure 4. The main principle of the
algorithm is to split the input image into an M × M grid
and make predictions in every grid cell. Moreover, if the

FIGURE 4. YOLOv3 model with the object detection method.
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centre location of an object is found in a grid cell, that grid
is liable for identifying that object. Every grid cell predicts B
bounding boxes with the confidence scores for those boxes.
In addition, these confidence scores reflect whether an object
presents in the grid cell or not, and it reflects the box is
that it predicts accurately. In general, the confidence score
is calculated by the following equation:

Confidence = Pr (Object)× IoU (GrountTruth, PredBox)

(1)

where Pr (Object) ∈ {0, 1}, IoU represents the intersection
over the union between the GroundTruth (GT) and predicted
box (PredBox). However, the confidence score should be {1},
if no object exists in that cell, otherwise the confidence
score (C) is equal to the intersection over union {IoU}
between the GT and PredBox. Also, every cell predicts C
conditional class probabilities for the detecting object. Thus,
total (5 + C) values are expected by every cell those are:
{x, y,wi, hi, confidence} and C conditional class probabili-
ties. In this case, {x, y} denote the centre position coordinates
of the box, and {wi, hi} denote the width and height of the
box, respectively. YOLOv3 solved different types of issues in
YOLOv2, including batch normalization problems, skip con-
nection issues and localization precision issues. In addition,
YOLOv3 predicts objects in three different scales, which are
accurately given by the downsampling (DS) the input image
sizes by 32, 16, and 8, respectively. Thus, it might be remedy-
ing the object size variation issues. However, the prediction
is encoded in YOLOv3 as follows:

M ×M × (B× 5+ C) (2)

where M × M is the grid cell of the input image, B is
the number of bounding boxes in a cell, ‘‘5’’ is for the
attributes of 4 bounding boxes and one object confidence, and
C denotes the number of classes. Since a target object can
belong to several classes, so, one 1 × 1 convolutional layer
and a logistic regression activation function are used instead
of the SoftMax layer. The confidence score of every class is
projected through logistic regression, and the target object is
detected by a threshold value. However, the error between the
predicted value and real value is usually computed by three
loss functions such as: classification loss, localization loss,
and confidence loss. The final cross-entropy loss function
with the combination of three loss functions as follows [44]:

Loss = λcoord
S2∑
i=0

B∑
j=0

Iobjij

×

[(
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j
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j
i
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(3)

where Iobjij represents that, when the jth bounding box of the
ith grid cell is responsible for predicting the target object, and
the value is equal to 1; otherwise, it is 0. The S2 represents
the number of grid cells, and B represents the number of
bounding boxes in every grid cell. The offsets of the centre
locations are represented by the σ (tx), and σ (ty). The compo-
nent C represents the confidence score and p represents the
probability of the target object class.

B. NON-MAXIMUM SUPPRESSION METHOD
The target objects in an image might be of various
sizes and shapes, and to capture every of these perfectly.
In YOLOv3 model creates multiple bounding boxes in an
image for detecting target objects, as shown in Figure 4 (b),
but for each target in the image, we must have a single
bounding box, as shown in Figure 4(c). The Non-Maximum
Suppression (NMS) method is a popular method that selects
a single bounding box out of multiple overlapping bound-
ing boxes for detecting the target objects in an image. It is
used to eliminate redundant detections and discover the best
match for final detection. The NMS algorithm is shown in
Algorithm 1.

Algorithm 1 The Pseudocode of the Non-Maximum Sup-
pression (NMS) Method
Input : B = {b1, b2, ....., bN } , CS = {c1, c2, ......, cN } ,Th

B is the initial detection boxes;
CS contains the corresponding detection confidence
scores;
Th is the NMS threshold;

Output: List of final detection boxes D;
1. D← {}
2. while B 6= ∅ do
3. m = argmaxCS
4. D← D ∪ bm;B← B− bm;CS ← CS − cm
5. for bi ∈ Bdo
6. if IoU (bm, bi) ≥ Th then
7. B← B− bi;CS ← CS − ci
8. end if
9. end for
10. end while

IV. MATERIALS AND METHOD
A. PROCEDURE OF TRAINING, VALIDATION AND TESTING
This section analyzes the procedures of making the image
data set for training, validation, and testing. Two types of
image data sets are considered, which consist of reconstructed
images with single and double tumors. Fifty samples of
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FIGURE 5. Collected sample reconstructed images with single and double
tumors.

reconstructed images with single and double tumors are col-
lected from the EM imaging system. The resolution of the
reconstructed images is 416× 416× 3 pixels.
Figure 5 depicts some of the sample reconstructed

images with single and double tumors. It is noted that a
YOLOv3 requires a large number of image data sets for
the model to be trained effectively to detect the targeted
object in the image. This assists in enhancing the performance
of the model by simplifying reducing the overfitting. Thus,
in this study, the image augmentation techniques are used on
collected fifty samples to generate a large number of images
as a final image data set for training purposes. The technique
creates a rich, diverse set of images from the small sample
image data set for image classification and object detection.
There are eight augmentation techniques used by the python
programming language for generating the final image data set
such as: (i) rotation, (ii) scaling, (iii) cropping, (iv) zooming,
(v) width shifting, (vi) height shifting, (vii) horizontal flip-
ping, and (viii) vertical flipping. In the rotation case, angles
for the augmentation technique are−10 to 10 degrees,−50 to
50 degrees, −70 to 70 degrees, −90 to 90 degrees, −130 to
130 degrees, and −180 to 180 degrees, respectively. As a
result, target objects are shifted at different locations in the
images. The random factor is in the range of 1.15 to 1.25 for
the scaling and cropping of the images. Thus, the target
object is also shifted at different locations. Moreover, 5%
to 30% zooming are considered to demonstrate objects size
(i.e., small size for lower percentage and large size for higher
percentage) in the images. In addition, the width and height
shifting range is between 10% to 30% to change the target
object setting at different positions in the images. Besides,
the images are vertically and horizontally flipped with a
probability factor of 0.3 to 0.5 to shift the target object
location at different places in the images. Programmatically,
taking one sample from the original fifty (50) samples and
then applied the above augmentation techniques to generate
nineteen (19) images at a time. Consequently, 19 × 50 =
950 images are obtained for 50 samples. However, the final
image data set consists of 1000 images with the original
50 samples, which are divided into three sets, including
training set, validation set, and testing set. From that, 80%
of the images are used as a training set, 10% images are
used as a validation set, and the remaining 10% images are

FIGURE 6. Randomly selected images from the augmented final image
data set for training.

used as a testing set. Figure 6 depicts the randomly selected
images from the augmented final image data set after the
augmentation procedure. Since the YOLOv3 is a pre-trained
model onMSCOCO (Microsoft CommonObjects in Context)
data set with 80 predefined classes, it uses darknet-53 con-
volutional neural network as a backbone of the model. The
final image data set of the target object (i.e., tumor) as a
class is not included in the predefined data set of YOLOv3.
Therefore, in this study, the proposed final image data set is
used as a class to the YOLOv3 model for training, validation,
and testing purposes. Thus, an annotation file needs to be
created for every image in the final image data set. The
annotating process (i.e., YOLO labelling format) generates
a text file with the same name for every image that contains
the object class number, coordinates, height, and width. The
annotation file for YOLO looks like the following format
as a text file:

< object − class >< x >< y >< width >< height >

Here, < object-class > denotes the class number, < x >
and < y > denote the center x and y coordinates, and
<width> and< height> denote the width and height of the
target object in the images. Thus, an annotation tool is needed
to label objects manually in the image by creating an annota-
tion file. To create the annotation file, a graphical image anno-
tation tool LabelImg is used on the custom augmented image
data sets for labelling target objects (i.e., tumor location). The
tool uniformly labels each target object (i.e., tumor) from the
images in the training, validation, and testing set. Finally, all
these files, including image files and text files, are considered
the main image data sets, which are then used to train the
network. For instance, the contents of the annotation file with

VOLUME 9, 2021 82653



A. Hossain et al.: YOLOv3 Deep Neural Network Model to Detect Brain Tumor in Portable Electromagnetic Imaging System

FIGURE 7. Example of contents of the annotation text file as YOLO
format: (a) For single tumor object in an image (b) For double tumor
objects in an image.

single and double tumor objects are shown in Figure 7. The
file has mainly three indications of each target object (i.e.,
tumor) such as a tumor class number or id, tumor object’s
bounding box centre coordinate, tumor object’s area. Here,
tumor classmeans that every image of the custom dataset (i.e.,
Final image dataset for training) has only one class, which is
the only tumor. Because in YOLOv3 dataset has predefined
80 classes (i.e., person, bicycle, car, motorcycle, airplane, bus,
train, truck, boat, traffic light, fire hydrant, stop sign, parking
meter, bench, bird, cat, dog, horse, . . . . . . ., toothbrush) [42].
Since the tumor class does not exist in the predefined class of
YOLOv3, so in this work, predefined 80 classes are ignored
and used only a single tumor class-based custom dataset.
Thus, the tumor class is mentioned in the annotation files,
where the first column value ‘‘0’’ represents only a single
tumor class number or id. The annotation file format of single
tumor and double tumors object labelling information are
presented in Figure 7(a) and Figure 7(b), respectively.

B. TUMOR YOLOv3
The YOLOv3 algorithm is an enhancement of the previous
version of YOLOv2 and YOLOv1 algorithms. It has the
benefits of accurate positioning, high detection accurateness,
and high speed. Besides, it can achieve the detection of small
target objects and decent robustness to environmental scenes.
The YOLOv3 network architecture is shown in Figure 8. The
input image dimension of the architecture is 416× 416× 3,
where height is 416 pixels, width is 416 pixels, and 3 rep-
resents the color (i.e., Red, Green, Blue) channel numbers
of an image. This algorithm is based on Darknet-53 network
architecture, which acts as a backbone of the YOLOv3. The
Darknet-53 architecture in YOLOv3 uses a numerous number
of 1× 1 and 3× 3 convolutional layers, so that connect local
features interactions as well as its roles. It is a feature extrac-
tion network with 53 convolutional layers. Two convolutional
kernels of 1 × 1 and 3 × 3 are used, where every layer’s
batch normalization (BN) layer is used for normalization
purposes. In this architecture, the pooling layer is removed,
and the Leaky ReLU activation function is used to enlarge

the convolutional kernel’s step size by diminishing the size
of the feature map. Due to the deeper network characteristics
of the Darknet-53, it has the enhanced feature extraction
ability that detects small objects in the images. There are
two sampling layers (Up Sampling) and three convolutional
sets in the detection phase. A convolutional set consists of
three 1×1 convolutional kernels and two 3×3 convolutional
kernels. The sampling layer generates the small-size images
through the interpolation of small-size properties maps and
relative techniques. When connections are established among
some layers to link the low-level characteristics with the
high-level characteristics, the satisfactory-grained informa-
tion of the high-level abstract features is improved. As a
result, enhanced high-level abstract features might be used
aimed at class prediction and bounding box (BB) regression.
The YOLOv3 architecture prediction procedure is described
below:
Step 1: At the beginning, the images of size 416 × 416

are applied as input to the Darknet-53 framework. After the
execution of many convolutions, a 13× 13 sized feature map
is obtained. After that, seven times by 1 × 1, and 3 × 3
convolutional kernels are executed to obtain the first scale
(scale 1) as well as regression BB prediction.
Step 2: In this stage, the 13 × 13 sized feature map is

processed by a convolution set (i.e., contains three 1× 1 and
two 3× 3 convolutional kernels), and then the convolutional
process is executed by using a 1 × 1 convolutional kernel.
Thereafter, by two times the sampling (upsampling), a 26×26
sized feature map is gained. After that, the new 26×26 sized
feature map is performed seven times by 1 × 1 and 3 × 3
convolutional kernels to attain the 2nd scale (scale 2) and
regression BB prediction.
Step 3: In this phase, the 26 × 26 sized feature map is

processed by a convolution set (i.e., contains three 1× 1 and
two 3× 3 convolutional kernels), and then the convolutional
process is executed by using a 1 × 1 convolutional kernel.
After that, by two times the sampling (upsampling), a 52×52
sized featuremap is obtained. After that, the new 52×52 sized
feature map is performed seven times by 1 × 1 and 3 × 3
convolutional kernels to achieve the third scale (scale 3) and
regression BB prediction.
Step 4: In the final step, the feature maps of different

sizes (i.e., 13 × 13, 26 × 26, 52 × 52) are optimized for
detecting the small target objects with regression BBs. Hence,
at every position, every feature map predicts 03(three) regres-
sion BBs, so there are 3 × (13 × 13, 26 × 26, 52 × 52) =
10647 regression bounding boxes. However, predicted output
with bounding boxes is displayed as a final target object
detection result.

V. RESULTS AND DISCUSSIONS
A. EXPERIMENTAL PLATFORM, IMAGE DATA SET &
NETWORK TRAINING
The YOLOv3 deep neural network model is implemented on
the Windows10 OS with 128 GB RAM and 64-bit Intel(R)
Xeon(R) W-2104 at the rate of 3.30 GHz CPU. The NVIDIA
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FIGURE 8. The YOLOv3 network architecture diagram for brain tumor detection.

GeForce GTX 1080Ti GPU is used to accelerate the training
of the network. Under the Anaconda distribution platform,
a jupyter notebook is used, and the program is written by
the Python 3.7 version with TensorflowAPI (2.3.0 Version).
The final image data set is used as inputs into the model.

The data set consists of 1000 sample images, where 80%
of them are used for training, 10% are used for validation,
and the rest of 10% is used for testing purposes. In the
training stage, we used the final image data set with their
classification annotation files to the YOLOv3 model, and
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the weight of Darknet-53 was restored as a classification
network. The model is trained for 200 epochs with an initial
learning rate of 0.001, then divided by ten (10) after 60 and
120 epochs. The adjustment of the learning rate increases
the training accuracy and decreases the validation loss.
The optimizer is momentum, and it is set to 0.9. The batch
size and weight decay are set to 16 and 0.0005, respectively.
After 20000 iterations, the model shows a better result for the
provided images. As a result, the obtained loss and accuracy
are 0.0921 and 0.9562, respectively.

For evaluating the effectiveness of the tumor detec-
tion, the data set from the proposed reconstructed images
is utilized. Three evaluation parameters: Precision (P),
Recall (R), and F1 score are applied to examine the trained
YOLOv3 algorithm by following the equations.

P =
NTP

NTP + NFP
(4)

R =
NTP

NTP + NFN
(5)

F1 =
2× R× P
R+ P

(6)

Here, P represents the precision rate of the tumor, NTP
represents the number of correctly detected tumors, NFP rep-
resents the number of samples with tumor detection errors, R
represents the recall rate of the tumor, and NFN represents the
number of tumor samples from the missed detection.

The NMS threshold (Th) value is fixed to 0.48. So, when
the intersection (IoU) ratio between the predicted BB and
the accurate location of the tumor object is greater than
0.48, the tumor could be detected appropriately. The eval-
uation of different parameters is performed by the differ-
ent training data set on tumor detection, which is presented
in Table 1. It is concluded that the performance evaluation of
the YOLOv3 detection model improves with the increment of
the training data set size.

TABLE 1. The detection performance parameters with different training
data sets.

B. EXPERIMENTAL DATA ANALYSIS
This section discusses the impact of the training data set on
the training and validation accuracy with their loss. After
completing the model’s training with different training data
set, including 200, 400,600, and 800 images, it is validated by
the validation data set. The training and validation accuracy
graph with respect to epochs is depicted in Figure 9. It can
be observed that when the model is trained by 200 images,
its validation accuracy shows very low values. Besides, when
the model is trained by 400 images, its validation accuracy
is increased, but it slightly decreases in different epochs.

FIGURE 9. Training Vs validation accuracy: (a) For 200 images data set
(b) 400 images data set (c) 600 images data set (d) 800 images data set.

In addition, when the model trained by the 600 images, its
validation accuracy was higher than the validation accuracy
of 400 images, whereas when the model is trained by the
800 images, its validation accuracy was 100% from the
epochs 40-200. In addition, the training and validation loss
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FIGURE 10. Training Vs validation loss: (a) For 200 images data set
(b) 400 images data set (c) 600 images data set (d) 800 images data set.

graph with respect to epochs is depicted in Figure 10. It can
be observed that when the model is trained by 200 images,

FIGURE 11. Tumor detection in different scenarios from the system: (a)
Single tumor detection (b) Double tumors detection.

its validation loss was very high, whereas when the model
is trained by 400 images, its validation loss is decreased,
but training loss and validation loss are slightly increased in
different epochs. In addition, when the model is trained by
600 images, its training and validation loss are lower than
the validation loss of 400 images, whereas when the model
trained by 800 images, its training and validation loss is very
low. Therefore, it can be concluded that the model is more
trained by 800 images data set and capable to detect the pre-
dicted target objects. The overall observations are presented
in Table 2.

C. TUMOR DETECTION IN DIFFERENT SCENARIO
In this section, we discuss the tumor detection results in
different scenarios by the trained YOLOv3 model. Different
scenarios include (i) images with a single tumor object in
the different locations (ii) images with double tumor objects
in the different locations as a test set (i.e., 10% images
from the final image data set) for detecting the target tumor
location in the images. The experimental results are depicted
in Figure 11. It can be observed from the detection results
in Figure 11, a single tumor with different sizes was success-
fully detected in their accurate locations, which are shown in
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TABLE 2. Overall observations of training and validation loss with
different training data sets.

Figure 11(a). Besides, the double tumors were successfully
detected in their precise locations, which are also illustrated
in Figure 11(b). In this work, we considered tumor size as
the diameter D = 10mm,12mm,14mm,15mm,18mm, 20mm,
22mm, 25 mm, but the algorithm could detect any size of
the tumor in the images. Finally, it is concluded that the
Tumor YOLOv3 model showed potential tumor detection
outcomes due to better detection accuracy, F1 score, high
training accuracy, and very low validation loss.

VI. CONCLUSION
AYOLOv3 deep neural network model to detect and localize
the brain tumor is presented. The portable EM head imaging
system is applied to analyze and reconstruct the images.
Nine antenna array setup and tissue-mimicking phantom are
utilized to collect the scattering parameters, which are later
post-processed using the modified delay-multiply-and sum
algorithm for image reconstruction. The single generated
image contains 416 × 416 pixels. Fifty sample images are
collected from the different scenarios of the developed EM
head imaging system, which are later augmented to create a
final image data set. The data set consists of 1000 images,
including fifty samples, where 80% of them are used for
training, and the rest of 20% are used for validation and
testing purposes. A large number of 1 × 1 and 3 × 3 con-
volutional layers are used in YOLOv3 architecture, where
the Leaky ReLU activation function is used to enlarge the
convolutional kernel’s step size by diminishing the size of
the feature map. The outcome of the presented architecture
shows high training and validation accuracy with low training
and validation loss. Moreover, the testing phase determines
the overall portable EM imaging system’s capability and
potential of YOLOv3 architecture in detecting and localizing
the brain tumor with high accuracy.
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