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Abstract

The study of functional brain connectivity alterations induced by neurological disorders and
their analysis from resting state functional Magnetic Resonance Imaging (rfMRI) is generally
considered to be a challenging task. The main challenge lies in determining and interpreting
the large-scale connectivity of brain regions when studying neurological disorders such as
epilepsy. We tackle this challenging task by studying the cortical region connectivity using a
novel approach for clustering the rfMRI time series signals and by identifying discriminant
functional connections using a novel difference statistic measure. The proposed approach
is then used in conjunction with the difference statistic to conduct automatic classification
experiments for epileptic and healthy subjects using the rfMRI data. Our results show that
the proposed difference statistic measure has the potential to extract promising discriminant
neuroimaging markers. The extracted neuroimaging markers yield 93.08% classification
accuracy on unseen data as compared to 80.20% accuracy on the same dataset by a
recent state-of-the-art algorithm. The results demonstrate that for epilepsy the proposed
approach confirms known functional connectivity alterations between cortical regions,
reveals some new connectivity alterations, suggests potential neuroimaging markers, and
predicts epilepsy with high accuracy from rfMRI scans.

Introduction

Human brain can be envisaged as a complex functional network with brain cortical regions as
nodes and functional connectivity between these regions as edges between the nodes. Each
brain region is continuously sharing information with other regions thus resulting in a large-
scale functional network [1]. Spontaneous low frequency fluctuations in resting-state func-
tional Magnetic Resonance Imaging (rfMRI) data, collected while the subject is at rest, have
recently been used to map functional connectivity non-invasively [2]. Recent studies on the
analysis of rfMRI data have focused on large-scale brain connectivity [1, 3-5]. It has been
shown [5-8] that brain disorders can cause disruption of the connectivity patterns amongst
brain regions. Accurate identification of functional brain connectivity differences between
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patients and healthy subjects is crucial for understanding the functional effects of neurological
disorders. The rfMRI has emerged as a powerful tool that has been employed in a number of
studies to analyze functional connectivity alterations in the brain network for neurological dis-
orders such as schizophrenia [9], epilepsy [8], Alzheimer’s disease [10, 11], and attention defi-
cit hyperactivity disorder [5, 12].

In this work, we study the brain functional connectivity alterations caused by epilepsy using
the resting-state f{MRI data. Epilepsy is typically considered to be caused by abnormal neural
activity in the cortex. This abnormal activity usually manifests itself through sudden excessive
electrical discharge in neurons which can result in recurrent seizures. An epileptic seizure may
bring changes in sensory perception, motor control, behavior, and/or autonomic function. Epi-
lepsy affects about 50 million people in the world [13], 85% of whom live in developing coun-
tries, making it one of the most common neurological disorders. Recent research on rfMRI for
epilepsy has focused on particular brain networks or regions of interest for a specific form of
epilepsy. For instance, Zhang et al. [14] reported a decrease in the functional connectivity
within dorsal attention network in mesial temporal lobe epilepsy (mTLE) patients. Their
results indicated that top-down attention might be impaired in mTLE patients. Haneef et al.
[15] demonstrated that the default mode network (DMN) might be altered in temporal lobe
epilepsy (TLE). The DMN is involved in conscious and resting state cognition. Ji et al. [16]
studied the functional alterations in mTLE subjects. As expected, they found connectivity
changes in the mesial temporal lobe. Further, they identified specific epileptogenic zone (EZ)
regions and showed that EZ demonstrated abnormal functional interaction with widespread
brain regions throughout the brain. They concluded that the epileptic activity depends not
solely on EZ, but it has relation with the activity emerging in macroscopic brain networks. In Ji
etal. [17], the authors used rfMRI and diffusion tensor image scans to study inter-hemispheric
functional and anatomical connectivity. They identified that the bilateral anterior cingulate
cortex is critical to study the pathophysiology of patients with generalized tonic-clonic seizures
in epilepsy. Chen et al. [18] studied alteration of mood regulation network in TLE patients
with treatment-naive depressive symptoms. Self-rating depression scale [19] was employed to
evaluate depression symptoms of patients and hyperactivity in TLE patients was found in the
prefrontal-limbic, striatal areas and anterior cingulate in patients with depressive symptoms
(PDS). TLE patients of PDS group showed regional brain activity alterations and disruption of
the mood regulation network at the onset of seizures.

The studies cited above provide valuable information about disease-related changes within
particular brain networks. However, the potential of rfMRI for studying neurological disorders
can be greatly enhanced when the information available in the data is utilized more fully by
combining various discriminative neuroimaging markers in the form of connections in a
machine learning framework. One way of achieving that would be to segment the brain into
functional regions using a brain atlas and utilize inter-regional functional connectivity mea-
sures as features for classification. However, such an approach will suffer from the “curse of
dimensionality” due to a large number of features, and a strategy to reduce the number of
features and choosing the most relevant features (i.e. neuroimaging markers) needs to be incor-
porated in such a framework. Based upon these considerations, Zhang et al. [8] recently pre-
sented an algorithm for discrimination of epileptic and normal subjects from the rfMRI data.
They employed k-means clustering for estimating functional brain connectivity. However,
their work has following limitations: (a) the number of clusters must be specified a priori, mak-
ing it less than ideal in domains like rfMRI where the precise number of clusters is unknown,
and (b) the results of clustering are sensitive to initial arbitrary selection of centroids. To avoid
the effect of dependence on initialization of centroids, Zhang et al. repeated the k-means
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algorithm with 500 random initializations and averaged the results to obtain a community
matrix. The total number of clusters was somewhat arbitrarily chosen to be 30.

Our approach for connectivity analysis is based on a variant of affinity propagation (AP)
clustering which does not require prior information about the number of clusters and does not
involve arbitrary initial selection of centroids. AP clustering, proposed recently by Frey and
Dueck [20], has been shown to perform well in multiple domains like clustering images of
faces, gene expression and others [20]. Recent studies have effectively employed AP clustering
in fMRI to study functional brain connectivity [21, 22]. Various studies have shown that AP
clustering algorithm achieved low error rate as compared to k-means [21, 23].

In this paper, we explore the functional connectivity anomalies induced by epilepsy without
limiting the scope to a particular brain network or to a specific type of epilepsy. For this pur-
pose, we follow a three-stage approach. In the first stage, the functional connectivity between
brain cortical regions is estimated by employing a variant of the AP clustering algorithm. In
the second stage, we employ a novel difference statistic to enable the identification of discrimi-
nant connections between various cortical regions. In the third and final stage, we train a sup-
port vector machine (SVM) classifier to predict normal and epileptic subjects from their rfMRI
scans. The main contributions of our work are as follows: (i) a method for intelligent initializa-
tion of the preference parameter of AP clustering to cluster functionally related brain regions
into same groups, (ii) a novel difference statistic measure to enable identification of discrimina-
tive functional connections, and (iii) study functional connectivity alterations due to epilepsy
in terms of brain lobes and the known resting state networks.

Material and Methods
Data

The rfMRI data used in our study is the same as in Zhang et al. [8] published earlier in PLOS
ONE, which was acquired under approval by the local medical ethics committee (Jinling Hos-
pital, Nanjing University School of Medicine, China) and a written informed consent was
obtained from all patients. The data acquisition and pre-processing details are described here
for the sake of completeness. The data contained 180 right-handed subjects including 80
healthy controls (age 24.89 + 8.63) and 100 epileptic patients (age 23.85 + 5.66). The epileptic
subjects have different kinds of epilepsy (e.g., focal epilepsy, generalized epilepsy, temporal
lobe epilepsy). There were 18 epileptic patients with generalized seizure and 70 with focal sei-
zures. Antiepileptic drugs (AEDs) were used by 82 patients and 18 were not using any AEDs.
Before scanning, all the subjects were asked to relax, close their eyes without falling into sleep,
hold still and think nothing in particular. The rfMRI data was collected on 3 Tesla Siemens Trio
Tim scanner machine with an eight channel phase array head coil. Echo-planar imaging (EPI)
sequence was used to acquire rfMRI data, with following parameters: TR/TE = 2000ms/30ms,
FA = 90°, matrix = 64 x 64, FOV = 24 x 24cm?, slice thickness = 4mm, slice gap = 0.4mm and
slices acquired = 30. Moreover, the routine anatomical MRI data was also acquired to study
structural details. T1-weighted image scans were obtained, with following parameters: TR/
TE = 350ms/2.46ms, FA = 90°, matrix = 320 x 256, FOV = 24 x 24cm?, slice thickness = 4mm,
slice gap = 0.4mm, and acquired slices = 30. Coronal T2-FLAIR-weighted image scans were also
obtained, with following parameters: TR/TE = 7000 ms/87 ms, FA = 150°, matrix = 256 x 256,
FOV =24 x 19.5cm?, slice thickness = 4mm, slice gap = 0mm and acquired slices = 28.
Data-preprocessing was performed using Data Processing Assistant for resting-State fMRI
(DPARSF) software [24] which is based on Statistical Parametric Mapping (SPM) [25] and
resting-state fMRI data analysis toolkit (REST) [26]. The pre-processing included slice timing
adjustment and re-alignment for head motion correction. Spatial normalization was performed
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by using standard Montreal neurological institute (MNI) template provided by SPM2 (resam-
pling voxel size: 3 x 3 x 3mm®). Subsequent to smoothing (with FWHM = 8mm), the BOLD
signal was filtered in order to reduce low-frequency drift and high-frequency noise with band-
pass = 0.01 ~0.08Hz. Furthermore, the following variables were regressed out: (i) 6 parameters
for head motion, (ii) global mean signal, (iii) white signal, and (iv) CSF signal. The automated
anatomical labeling (AAL) template of Tzourio-Mazoyer et al. [27] was used to segment regis-
tered fMRI time series into 116 regions, 90 for cortex and 26 for cerebellum. The list of 90 cortical
regions is given in S1 Table. Though the AAL parcellation is anatomical in nature, the regions
thus identified are mapped to brain function. The AAL parcellation is commonly used in func-
tional neuroimaging studies (e.g. [28, 29]). For each region, fMRI time series of all voxels lying in
that region were averaged to obtain representative fMRI time series or BOLD signal of that
region. Therefore, for each subject, there are 116 BOLD signals where x;(t) represents BOLD
signal of the i"™ brain region. For this study, we focus at 90 brain regions belonging to cortex.

The head movement of the subject can influence the functional connectivity measurements.
Thus, all the subjects were asked to control head movement such that there was only very small
head movement (translation < Imm and rotation < 1° for all subjects except two patients,
while their rotations were less than 1.5°) which have been regressed out in preprocessing. Fur-
thermore, two-sample ¢-test was performed for 6 parameters of head motion (3 parameters
each for rotation and translation), for both the healthy and epileptic subjects, which showed no
significant difference between the two groups.

Determining Functional Connectivity

Functional connectivity between brain regions is typically calculated via temporal correlation
between each pair of brain regions. To obtain a functional connectivity network having sparse con-
nections, we propose a novel approach based on clustering of brain regions using the AP clustering
algorithm. For the sake of completeness, below we give a brief description of the AP clustering.

AP clustering is a message passing algorithm where, unlike many clustering algorithms, there
is no need for initial random selection of centroid and no need to specify the number of clusters.
In this method, each data point is considered as a candidate for exemplar (centroid) and each data
point is also considered initially as a candidate point belonging to all the clusters. In our context,
the data point i can be considered as the BOLD time series x; = {x;(f)} corresponding to the ith
cortical region. During the iterative process of the algorithm, the messages are exchanged between
the data points until robust exemplars (centroids) and clusters emerge. There are two kinds of
messages which are exchanged between the data points: responsibility and availability. The
responsibility message r(7, ) sent from the data point i to a candidate exemplar point j indicates
how strongly i favors j to be chosen as its exemplar as given by (1). The availability message a(i, j)
sent from the candidate exemplar point j to a point i indicates the extent to which j is available to
become the cluster center (i.e. exemplar) for i as in (2). The availability message a(i, j) is initialized
with 0 and updated as described below. These responsibility and availability messages are itera-
tively passed and updated between data points to determine cluster exemplars and clusters:

Responsibility message update:

(i) = S(i.) = max{a(if) +S(./)} (1

Availability message update:

a(i7j) = min{07 T’(j,j) + Z max{O, T(i/,j)}} (2)

i, 1A
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where S(i, j) is the similarity measure between data points i and j computed as below:
< x.x >
V<KX > < XX >

8(i.j) =1 (3)

and < x;.x; > denotes the dot product of data points x; and x;. An initial preference value p is
assigned to each data point representing its probability of being a candidate exemplar (i.e. clus-
ter centroid). The preference value p plays an important role in determining the cluster forma-
tions and the extraction of exemplars. Therefore, we propose a simple and intuitive method to
initialize it. The preference value p(i) assigned to a data point i of being an exemplar is com-
puted as:

p(i) = p(max(8(i,:))) (4)

where max, denotes choosing the n largest values from the vector S(i, :) which denotes the ith
row vector of the similarity matrix S, and y(.) denotes the mean. The value of p(i) computed
using (4) denotes the average of similarity values of n most similar data points to i. Therefore,
the value p(i) is an indicator of the likelihood of the data point i to become the exemplar in the
subsequent clustering process.

For a specific value of n, a connectivity matrix C is constructed such that C((i, j) of brain
regions i and j is calculated as:

o 1, if i and j are grouped in same cluster
Cl (17]) = . (5)
0, otherwise
where /=1,2, ..., Lis an index of the connectivity matrix generated by using a specific value of

n, and L denotes the total number of connectivity matrices generated by using various different
values of n. By varying » in (4), the preference value p(i) can be changed which can conse-
quently affect the number of clusters produced. Therefore, experiments were conducted by
varying # to test the consistency of functional connectivity among pairs of brain regions. In
this way, we generate multiple connectivity matrices by varying # in (4) from 5 to 30 in steps of
5.1t is worth noting that # denotes the number of most similar regions. The smaller the value
of n, the higher the number of preference values p(i) that are relatively large, thus resulting in
larger number of clusters (e.g., between 20 and 33 clusters for the 180 subjects in this study
when # is 5). With a large value of # (e.g. 30), fewer preference values p(i) will be relatively
large thus resulting in smaller number of clusters (between 10 and 21 clusters in our case). The
plot of Fig 1 shows the number of clusters found in this way against the number of n closest
regions used in computing the preference value p(i).

Through these multiple runs of clustering, L number of connectivity matrices C were
obtained. From these connectivity matrices, we construct a community matrix K such that
each K(4, j) is calculated as:

K(ij) = 1D G(0) (©

where L = 6 and C; is the I'™ connectivity matrix. The value K(i, j) provides an estimate of the
probability of ith and jth brain regions belonging to the same functional community network.
The proposed approach can be considered as multi-level clustering where the number of clus-
ters varies as the value of # changes in (4). A high value of K(j, j) shows that brain regions i and
j were consistently clustered together in this multi-level clustering scheme, and therefore are
more likely to be connected to each other.
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Fig 1. Relationship between the number of clusters found by AP clustering to the number of closest neighbors n in (4) used for computing the
preference value p(i). (a) normal subject (80 in total), (b) epileptic patients (100 in total).

doi:10.1371/journal.pone.0134944.9001

The community matrix K represents functional brain network in a sparse manner which
may not be possible with the typical correlation matrix. We can observe from Fig 2 that the
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Epileptic subject

Brain
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correlation
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Brain
region
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Fig 2. Brain region functional network: visualization of the correlation matrix [8] and community matrix obtained using (5). The difference between
healthy and epileptic subjects is not prominent in the correlation matrix while it is prominent in community matrix (highlighted by boxes). This figure is suitable
for visualization in color display.

doi:10.1371/journal.pone.0134944.9g002

connectivity differences between normal and epileptic subjects may be difficult to identify from
dense data in the correlation matrix while the differences may be identified relatively easily
from the sparse data in the community matrix.

The resultant community matrix K is a symmetric matrix containing functional connectiv-
ity information between every pair of brain regions i and j. Thus, community matrix Kis an N
x N matrix, where N = 90 in our case corresponding to 90 cortical regions. This community
matrix K contains N x (N — 1)/2 distinct connections i.e. 4005 distinct connections in our case.
The total number of distinct connections from the community matrix K seems be too high.
These connections may include both discriminatory and non-discriminatory connections
which may not necessarily help in our understanding of the underlying network connectivity.
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In this work, we aim to extract discriminative neuroimaging markers to address this so-called
curse of dimensionality problem. We identify a smaller number of connections having high dis-
criminatory power using the methods proposed in the next section.

Identification of Discriminant Connections

We first construct a difference matrix D from the community matrices of epileptic and normal
subjects such that the difference statistic D(j, j) reflects the discriminatory power of the undi-
rected edge between the ith and jth brain regions. Each entry D(j, j) is calculated as:

D(i,j) = |n(K"(i,j)) = n(K* (i, )] (7)

where u(K (i, j)) denotes the mean of all normal community matrices K~ at index (7, j) and y
(K*(i, j)) denotes the mean of all patient community matrices K" at index (i, j). The difference
matrix D reflects the discriminatory power of each connection-the larger the D(j, j) value, the
higher the discriminatory ability. In this way, the difference matrix D represents the differences
in functional connectivity between healthy and epileptic groups. The difference matrix D serves
as a way to extract important neuroimaging markers for epileptic subjects based on the differ-
ences in their functional connectivity. In the next step, we exploit this potential by identifying
discriminant connections.

We propose two methods for the identification of most discriminant connections which
could be potentially used as neuroimaging markers. In both the methods, an iterative proce-
dure selects the suitable discriminant connections. For each method, 100 iterations are run
such that, for each iteration, the data is randomly divided by 50% — 50% split into training data
and unseen test data. In each iteration, following steps are performed: (i) the top h connections
with largest difference statistic value D(j, j) are selected from the training data, (ii) the SVM
classifier is trained on the training data, and (iii) the performance of these selected connections
is evaluated by validating the trained classifier on the test data. To test the dependency on the A
selected connections, the value of 4 was varied from 350 to 600 in intervals of 50 (see the
Results section for more details). The two proposed methods are described below:

1. High-accuracy neuroimaging marker identification: Let ¢; denote the set of top h connections
during the ith iteration. In this method, we select the set dcy;gy, of discriminant connections
which yielded the highest classification accuracy across all the 100 iterations as given by:

dchigh = argmax[ACC(Ci)ie{l,z,...,mo}] (8)

where Acc(c;) returns classification accuracy obtained with connections ;.

2. Consistent neuroimaging marker identification: Let ¢; denote the set of top h connections

. (1 s . 100 . .
during the ith iteration. Let ¢ = Ul_:l ¢; denote the set of all distinct connections across all

100 iterations. Let w denote the set consisting of values for frequency of occurrence across
all the 100 iterations for each connection in c. Let ¢ denote the set of distinct connections in
¢ but this time ordered according to their corresponding frequency values in w sorted in a
descending order. Then, the subset dc,pusisten: Of B discriminant connections is selected by
picking the first h connections in ¢ as follows:

= ¢[1,2,... ,H] (9)

Cconsistent

The neuroimaging markers identified using one of the either two methods described above
are provided to the next step of classification.
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Table 1. Classification accuracy with high-accuracy neuroimaging marker identification method.

Number of connections

300
350
400
450
500
550
600

Prediction accuracy Specificity (mean) Sensitivity (mean)
74.5% 68.9% 79.1%
80.2% 75.1% 84.3%
80.8% 74.5% 85.8%
81.3% 75.6% 85.9%
79.8% 73.9% 84.4%
79.0% 76.7% 80.8%
78.4% 71.7% 83.7%

For this experiment, 50% dataset is used as training and rest 50% as testing over 100 trials. It can be seen that best accuracy is attained with 450

connections.

doi:10.1371/journal.pone.0134944.t1001

Classification

The third and final step of the proposed connectivity analysis is the classification on the basis
of discriminant connections. For this purpose, the support vector machine (SVM) [30] classi-
fier with a linear kernel is employed for classification of normal and patient groups. The data
was divided into two subsets: 50% for training and the remaining 50% for testing. We used the
training data to train the SVM classifier. The unseen testing data was then presented to the
SVM classifier. The performance of the classifier was assessed using the well-known measures
of classification accuracy, specificity, and sensitivity.

Results
Experiments with High-accuracy Neuroimaging Marker Identification

We experimented by varying the number of h discriminant connections from 350 to 600, in
order to observe the dependency of the classifier’s prediction ability upon selected connections.
For each case, the experiment was repeated 100 times by randomly distributing the data into
training and testing subsets to avoid any bias in experimental setup. The results presented in
Table 1 show the average classification accuracy over 100 random cross-validation trials. The
results indicate that the accuracy is not considerably affected by the variations in the number of
selected connections. With 450 selected connections, average accuracy of 81.33% was achieved.
These results demonstrate that the proposed method is able to identify sensitive neuroimaging
markers which have the capability to accurately discriminate between normal and epileptic
subjects.

Comparison with Zhang et al. [8]

To evaluate the proposed method, we implemented the recently proposed work of Zhang et al.
[8] which employs k-means clustering for community matrix construction, sparse regression
for identification of discriminant connections, and SVM classification. Our results show that
our proposed method outperforms the algorithm proposed in Zhang et al. [8] for the purpose
of neuroimaging marker identification. With the proposed method, we achieved classification
accuracy of 80.79% using 400 connections, while Zhang et al. [8] reported 77.60% accuracy
using same number of connections. Note that both the studies are using the same rfMRI data,
with identical split for training and testing subsets.

Further, we successively replaced the clustering method and discriminant connection iden-
tification method in [8] with our proposed AP based multi-level clustering and difference
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82% -

80%

78%

76%

74%

72%

70%

68%
K-means + Sparse
Regression

80.8%

K-means + DS AP + Sparse AP +DS
Regression

Fig 3. Comparison of Zhang et al. [8] neuroimaging marker identification and clustering with our proposed methods. Abbreviations: DS—difference
statistic neuroimaging marker identification method; AP—affinity propagation clustering method. The incremental comparison shows the promise of DS and

AP clustering.

doi:10.1371/journal.pone.0134944.9003

statistic, respectively, while retaining the same classifier. For a fair comparison, the number of
discriminant connections was kept fixed at 400 for both methods while all other experimental
parameters were kept unchanged. The classification accuracy results obtained in this way are
presented in Fig 3. The results demonstrate that the combination of our proposed AP cluster-
ing and difference statistic measure provides the best classification accuracy compared with
other combinations. Additional results for other discriminant biomarker selection and classifi-
cation methods are presented in S2 Table.

Experiments with Consistent Neuroimaging Marker Identification

We experimented with varying the number of selected connections from 50 to 1,000 in steps of
50, in order to observe the dependency of classifier upon the number of selected connections.
For each number of connections, the classification experiment was repeated 100 times by ran-
domly distributing the data into training and testing subsets (50-50 split) to avoid any bias.
The results presented in Table 2 show the average classification accuracy over the 100 trials for
350 to 600 connections. The complete results for 50 to 1,000 selected connections are reported
in S3 Table. The results show that the classification accuracy is lower for 50 to 250 range which
may point to insufficient discrimination ability of these fewer connections. The peak in classifi-
cation accuracy is achieved with 450 selected connections. Afterwards, there is a slight decrease
in classification accuracy but a stable trend is observed. With 450 selected connections, average
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accuracy of 93.1% is achieved with 95.4% sensitivity and 90.2% specificity. These results dem-
onstrate that the proposed method is able to correctly identify sensitive neuroimaging marker
which has the capability to discriminate between normal and epileptic subjects with decent
accuracy. These results show that the proposed method outperforms the state-of-the-art in
normal vs epileptic discrimination based on rfMRI data. We note that the proposed method is
trained to classify normal and epileptic subjects at individual level, but it is not trained to dis-
criminate between the various sub-types of epilepsy.

Discussion

In this section, we discuss the discriminant connections and the functional connectivity analy-
sis with respect to brain lobes and the resting state networks.

Discriminant Functional Connections

To better understand the neurological significance of selected connections, we studied 30 most
discriminant functional connections, as listed in Table 3, which are determined on the basis of
the largest absolute value in the connectivity difference matrix D. Among these 30 connections,
7 connections from bilaterally homologous regions have altered connectivity pattern: (i) tra-
verse temporal gyri, (ii) cuneus, (iii) fusiform gyri, (iv) inferior occipital, (v) precentral gyri, (vi)
middle occipital, and (vii) supramarginal gyri. Out of these 7 connections, 5 connections have
decreased connectivity while 2 connections have increased connectivity in epileptic patients
compared to normal subjects. These connectivity alterations may affect the auditory processing
(traverse temporal gyri), visual processing (cuneus, inferior occipital, middle occipital),
voluntary motor function (precentral gyri), language perception (supramarginal gyri), and rec-
ognition (fusiform gyri). In total, 17 inter-hemispheric connections are altered while only 6
connections within left hemi-sphere and 7 connections within right hemi-sphere are altered.
Out of the 17 inter-hemispheric connections, 5 connections have increased connectivity while
12 connections have decreased connectivity. This indicates greater alteration due to epilepsy in
inter-hemispheric connections and bilaterally homologous connections compared with healthy
controls. In Ji et al. [17], the authors also identified connectivity alterations in bilaterally
homologous cuneus and supramarginal gyri regions.

Functional Connectivity Alteration in Brain Lobes

An important aim of this work is to study the functional alteration, either increased or de-
creased, in brain functional connectivity. Here, we discuss our findings in terms of systematic

Table 2. Classification accuracy with consistent neuroimaging marker identification method.

Number of connections Prediction accuracy Specificity (mean) Sensitivity (mean)
300 89.5% + 2.6 85.8% 92.5%
350 91.4% +2.8 88.6% 93.6%
400 92.3% + 2.4 88.8% 95.1%
450 93.1% £ 2.5 90.2% 95.4%
500 91.2% +2.4 88.6% 93.3%
550 91.5% +2.7 88.1% 94.3%
600 89.8% +2.7 86.1% 92.8%

For this experiment, 50% dataset is used for training and rest 50% for testing over 100 trials. It can be seen that the best accuracy is achieved with 450
connections.

doi:10.1371/journal.pone.0134944.t002
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Table 3. The 30 most discriminant connections identified—the connections are sorted with respect to the corresponding absolute value in the con-
nectivity difference matrix D.

S#

29%
30

Region

superior temporal pole-R
transverse temporal gyri-R
inferior temporal gyrus-R
cuneus-R

lingual gyrus-L

superior frontal gyrus, medial orbital part-R

gyrus rectus-R

orbital part of inferior frontal gyrus-L
amygdala-R

superior temporal pole-R
parahippocampal gyrus-R
superior temporal gyrus-R

globus pallidus-L

middle temporal gyrus-R

middle occipital-R

supramarginal gyrus-R

middle occipital-L

fusiform gyrus-R

inferior occipital-R

amygdala-L

gyrus rectus-L

orbital part of inferior frontal gyrus-L
superior temporal pole-L
supramarginal gyrus-L

middle frontal gyrus, orbital part-L
area triangularis-R

insula-R

inferior occipital-L

precentral gyrus-R

middle temporal pole-R

Region

posterior cingulate gyrus-L
transverse temporal gyri-L

middle frontal gyrus, orbital part-R
cuneus-L

calcarine sulcus-R

superior frontal gyrus, orbital part-R
olfactory cortex-R

area triangularis-L

hippocampus-R

rolandic operculum-R
hippocampus-L

rolandic operculum-L

caudate nucleus-L

superior frontal gyrus, medial part-R
middle occipital-L

supramarginal gyrus-L

middle frontal gyrus, lateral part-R
fusiform gyrus-L

inferior occipital-L

superior frontal gyrus, orbital part-L
olfactory cortex-R

superior frontal gyrus, dorsolateral-L
superior temporal gyrus-L

posterior cingulate gyrus-L
precentral gyrus-R

opercular part of inferior frontal gyrus-L

rolandic operculum-L

calcarine sulcus-R

precentral gyrus-L

middle frontal gyrus, lateral part-R

D value

0.197
—-0.188
0.183
-0.182
-0.176
0.162
-0.162
0.161
-0.159
-0.158
—-0.158
—-0.151
-0.149
-0.147
0.146
0.144
—-0.144
-0.142
-0.141
0.140
-0.139
0.138
-0.138
0.138
0.137
-0.137
—-0.136
0.135
-0.134
0.133

The positive sign of the D value represents increased connectivity in epilepsy patients while the negative sign represents decreased connectivity in
epilepsy patients. Among these 30 connections, 17 are inter-hemispheric (i.e. between left and right hemi-spheres) which are highlighted in italic font. Out

of these 17 connections, total 7 connections are between bilaterally homologous brain regions which are highlighted by * in the serial column.

Abbreviations: L-left hemi-sphere, R—right hemi-sphere.

doi:10.1371/journal.pone.0134944.t1003

groups of brain regions from rfMRI BOLD signals of 90 cortical regions suggested by Salvador
et al. [31] based upon hierarchical cluster analysis. The work of Salvador et al. found lobe
groups that consist of: (i) medial temporal lobe, (ii) subcortical lobe, and the four standard neo-
cortical lobes which are (iii) occipital lobe, (iv) frontal lobe, (v) temporal lobe, and (vi) parietal
(pre) motor lobe. Though these lobes have anatomical association, it may be noted that these
lobes were determined by Salvador et al. [31] through functional analysis from rfMRI scans of
healthy controls. Since the highest classification accuracy of 93.08% is achieved using the top
450 connections, the connectivity alteration analysis is conducted on the basis of considering
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them as the discriminant connections, and analyzing the connections by mapping each brain
cortical region [27] to a particular lobe [31]. We study the increased, decreased, or total altered
inter-group and intra-group connectivity of lobes due to epilepsy, with respect to these selected
connections, as shown in Fig 4.

We can infer the following findings from these results:

Parietal-(pre) motor is most affected in terms of both inter-group and intra-group functional
connectivity. In both kinds of connectivity analyses, the parietal-(pre) motor lobe is found to
have reduced connectivity for epileptic subjects as compared to normal subjects. The parietal
(pre) motor lobe is actively involved in movement intention and motor awareness [32], thus

indicating that movement may be affected in epileptic subjects.

Inter-lobe connectivity: the functional connectivity of all lobes to all the other lobes is
decreased in epileptic subjects. This indicates a lack of synchronization across the brain

regions.

Intra-lobe alterations: the occipital and frontal lobes have increased intra-group connectivity
while other lobes face decreased intra-group connectivity. The increased connectivity in the
occipital and frontal lobes indicates an over-activity of the visual and cognition functions for
the epileptic subjects. Earlier work by Liao et al. [29] found altered connectivity within
medial temporal, frontal and parietal lobes.

Functional Connectivity Alteration in Resting State Networks (RSNs)

Lastly, we analyze the functional connectivity alteration, either increased or decreased, in the
brain resting state networks (RSNs) suggested by Mantini et al. [33]. The six RSN are listed as:
DMN-default mode network; DAN-dorsal attention network; VN-visual network; AN: audi-
tory network; SMN: somato motor network; SRN: self-referential network. Similar to the lobe
analysis in the above section, the RSN's analysis is also conducted using the 450 discriminant
connections which yielded the classification accuracy of 93.08%. We studied the functional
connectivity alteration, either increased or decreased, caused by epilepsy in terms of these six
RSN . The functional connectivity alterations are categorized with respect to inter-RSN and
intra-RSN, as shown in Fig 5.

The connectivity alteration results clearly show that the DMN is affected the most with
respect to inter-RSN and intra-RSN in terms of both increased and decreased connectivity.
This pattern of serious alteration is also followed by DAN which is the second highest
affected RSN, both in inter-RSN and intra-RSN analysis with respect to increased and
decreased connectivity. Our results confirm the earlier results reported in the previous stud-
ies [14, 15, 29, 34] that epilepsy affects DMN and DAN. This indicates that epilepsy may
impair the brain internal processing and attention systems of an individual. We believe that
this impairment in DMN and DAN is contributed by functional defects exhibited by patients
suffering from epilepsy.

Limitations

The proposed work considered the generalized and focal sub-types of epilepsy as one common
group to learn the classification model and to perform the subsequent connectivity analysis.
For a fair comparison with Zhang et al. [8], we followed the similar protocol of grouping the
sub-types together. Moreover, unlike Zhang et al., the proposed method does not extract any
biomarker which measures the asymmetry across brain hemi-spheres which is a characteristic
that can be present in generalized vs focal epilepsy studies. Thus, the proposed method is

PLOS ONE | DOI:10.1371/journal.pone.0134944  August 7, 2015 13/19
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Fig 4. Summary of brain lobes functional alterations: (a) inter-group and (b) intra-group. For this analysis, the brain is considered to be made up of six

lobes as suggested by Salvador et al. [31].

doi:10.1371/journal.pone.0134944.g004

independent of this bias. However, due to the underlying differences in pathophysiology and
the nature of hemi-sphere specific characteristics, there is indeed interest to consider the sub-
types as different groups which may be considered in a future study. This will need the scan
acquisition of a sufficient number of subjects available in each group.

In terms of classification, the proposed method is able to predict with decent accuracy from
rfMRI scan whether a given individual scan is from a normal or an epileptic subject. However,
the classifier in our method is not trained to further predict the severity of epilepsy or the spe-
cific sub-type of epilepsy for an individual. We believe that such a method can be developed
with the availability of a larger amount of training data for each sub-type and the availability of
ground truth about the severity level.

In this work, the automated anatomical labeling (AAL) template of Tzourio-Mazoyer
et al. [27] was used to select a representative group of the Volume of Interest (VOI) regions
rather than conducting the voxel-wise analysis which would be computationally exhaustive
and difficult to interpret. Further, the AAL template has been used extensively over the last
decade for functional analysis since the cortical regions from AAL template can be mapped
to functional networks (e.g. resting state networks [33]). An alternative region selection
scheme can be based upon functional parcellation, for example the recently proposed parcel-
lation of Gordon et al. [35]. In our view, each parcellation scheme has its own pros and cons.
For example, the functional parcellation scheme of Gordon et al. is entirely functional spe-
cific and may not identify any anatomical related functional problems caused by a mental
condition [35]. In this respect, the functional activity can be considered to be the temporal
characteristics exhibited by the BOLD signal. The analysis of this functional activity is still
possible despite the AAL template, since the AAL template is used primarily for the selection
of VOI regions.

Conclusions

In this paper, we studied the problem of connectivity analysis of epilepsy patients from rfMRI
scans. For this purpose, a novel method was proposed for estimation of functional connectivity
between brain regions. The proposed clustering method allowed the estimation of brain com-
munity matrix. Our results demonstrate that this community matrix contains crucial informa-
tion which can be essentially employed to discriminate epileptic subjects from normal subjects.
This community matrix further enabled the extraction of discriminant connections using a
novel difference statistic measure. These discriminant connections were then utilized to train
an automated SVM classification method which can accurately predict whether a given rfMRI
scan belongs to epilepsy or normal class. The proposed method achieved a promising classifica-
tion accuracy of 93.08%, in comparison to 80.20% accuracy reported by Zhang et al. [8]. The
connectivity analysis on brain resting state networks (RSNs) confirms that epilepsy impairs the
performance of default mode network (DMN) and dorsal attention network (DAN). In terms
of lobe connectivity, the parietal (pre) motor lobe demonstrates decreased connectivity for epi-
lepsy patients which may hint towards impaired movement intent and motion awareness in
epilepsy subjects. The approach proposed in this paper is not only able to identify the altered
connections, but also utilizes them to achieve relatively high classification accuracy. The pro-
posed algorithm can be applied to study other neurological disorders like schizophrenia and
Alzheimer’s disease.
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Fig 5. Summary of brain resting-state networks (RSNs) functional alterations: (a) inter-RSN and (b) intra-RSN. For this analysis, the brain is
considered to be made up of six RSNs as suggested by Mantini et al. [33]. Abbreviations: DMN—default mode network; DAN—dorsal attention network; VN—
visual network; AN: auditory network; SMN: somato motor network; SRN: self-referential network.

doi:10.1371/journal.pone.0134944.9005
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