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Abstract: The treatment of different types of wastewater by physicochemical or biological (non-
microalgal) methods could often be either inefficient or energy-intensive. Microalgae are ubiquitous
microscopic organisms, which thrive in water bodies that contain the necessary nutrients. Wastewa-
ters are typically contaminated with nitrogen, phosphorus, and other trace elements, which microal-
gae require for their cell growth. In addition, most of the microalgae are photosynthetic in nature,
and these organisms do not require an organic source for their proliferation, although some strains
could utilize organics both in the presence and absence of light. Therefore, microalgal bioremediation
could be integrated with existing treatment methods or adopted as the single biological method
for efficiently treating wastewater. This review paper summarized the mechanisms of pollutants
removal by microalgae, microalgal bioremediation potential of different types of wastewaters, the
potential application of wastewater-grown microalgal biomass, existing challenges, and the future
direction of microalgal application in wastewater treatment.

Keywords: microalgae; bioremediation of wastewater; carbon dioxide sequestration; circular econ-
omy; biomass valorization

1. Introduction

Global economic and societal development has led to increased water demand along
with a water deficit. Reports project that by the year 2030, at current water utilization
practices, globally, there could be a 40% water deficit [1]. Rampant industrialization,
urbanization, and groundwater contamination are some of the major causes of water deficit.
Although different technologies exist for treating wastewater, each technology has its
drawbacks and advantages; therefore, it would be crucial to select one that could serve the
dual purpose of effective purification and resource recovery optimization [2]. Parallel to
water deficit, wastewater discharge is also rising due to increasing industrial, agricultural,
and urban activities. The release of wastewater into the environment leads to the discharge
of nutrients, causing eutrophication in water bodies. Additionally, the circular economy
concept has now been adopted by various governmental institutions to reduce and curb
the pollution caused by wastewater. However, the reuse of wastewater would require a
fit-for-purpose approach that could reduce the energy and production cost associated with
wastewater treatment and enhance the resource recovery from wastewater [3]. The concept
of the circular economy revolves around the reclamation and recycling of resources.

Conventional wastewater treatment plants (WWTPs) are now facing challenges, as
circular economy principles impose stringent pollutant limits that are necessary before
discharge and reuse of wastewater into the environment. Therefore, a fit-for-purpose
approach could be adopted to allow selective water reuse and water savings while reducing
the cost associated with wastewater recycling [3,4]. Other drawbacks of conventional
wastewater treatment processes are high energy consumption, greenhouse gas emissions,
recyclable resource wastage, and excessive solid landfilling. Several technologies such as
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hydrothermal carbonization, anaerobic digestion, and pyrolysis are now being developed
and applied to maximize energy recovery from waste biosolids to phase out from excessive
solid landfilling [1,5]. These drawbacks pose a challenge to developing a sustainable
waste management solution for wastewater treatment and disposal. Therefore, there is a
need for alternative wastewater treatment methods that would be low carbon-emitting
and high on resource recycling and consume less energy and promote biorefinery and
circular economy concepts. One such alternative option could be the use of microalgae
to treat industrial, agricultural, and domestic wastewaters. The potential of microalgal
bioremediation of wastewater was first proposed by Oswald and Golueke as early as
1950 [6]. The microalgae could utilize the abundant sunlight that falls on the surface
of wastewater as their energy requirement for growth and the simultaneous removal of
pollutants. Microalgae could also grow in the arid environment and highly saline water. To
produce 1 kg of microalgal biomass would require 1.83 kg of carbon dioxide—offering the
potential of coupling sequestration of CO2 while treating wastewater [7]. At the end of the
microalgal bioremediation of wastewater, the generated sludge would mostly comprise
microalgae [8]. In the existing activated sludge process, typically the energy requirement
for oxygen supply is 1 kWh/kg biochemical oxygen demand (BOD). Microalgae cultivation
in wastewater does not require oxygen supply; rather, the produced microalgal biomass
could be processed by anaerobic digestion to generate 1 kWh/kg BOD. From microalgal
biomass, other energy recovery options could be gasification and pyrolysis for syngas
and biochar production, fermentation, and hydrothermal liquefaction (HTL) of microalgal
biomass to produce bioethanol, bio-butanol, and biocrude [9,10].

Microalgae are not only limited to the removal of nutrients from wastewater gener-
ated from WWTPs; there are recent studies that report the use of microalgae to remove
pharmaceutical compounds and pesticides from industrial and agricultural generated
wastewaters [11,12]. Therefore, microalgae’s ability to grow, assimilate, and resist toxic
conditions in wastewater make it a versatile organism for treating different types of liquid
effluents originating from various industrial and agricultural practices. Furthermore, with
the integration of the biorefinery concept, the harvested microalgae biomass could be used
to produce carbon-neutral fuels, high-value pigments, fish and animal feed, biofertiliz-
ers, bioplastics, and carbon dioxide mitigation in a cyclic manner, thereby promoting the
concept of circular economy with zero waste into the environment.

Several review articles already exist on microalgal wastewater treatment; however,
these review papers could be categorized based on treatment mechanisms [13–16], spe-
cific wastewater treatment [12,16,17], nutrient uptake [2,17–20], and microalgal biomass
valorization [9,21–23]. However, commercial microalgal treatment of wastewater would
require integrating multiple individual unit operations including microalgal cultivation,
biomass separation, and biomass valorization. Therefore, this review paper explored all
the relevant topics to cover these unit operations: (1) mechanisms involved in microalgal
bioremediation of different types of wastewater, (2) techniques for cultivating microalgae
in wastewater, (3) comparing different biomass dewatering techniques, and (4) various
biorefinery options that are available for the valorization of microalgae biomass to dif-
ferent value-added products. Finally, the major challenges in microalgal bioremediation
of wastewaters were pointed out, and recommendations were made to overcome these
challenges.

2. Microalgal Treatment of Wastewater

2.1. Selection of Strains

Over 3000 strains of microalgae were identified [24]; the characteristics of these algae
strains would vary, and so would be their wastewater treatment potential. However, the
major factors of selecting a suitable strain or a mix-consortia for wastewater treatment
would be (i) characteristics of wastewater, (ii) the desired level of treatment efficiency re-
quired, (iii) the cost and energy requirement of biomass harvesting, and (iv) the application
of the harvested biomass.
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2.2. The Necessity of Pretreatment of Wastewater

Wastewater could contain several compounds at elevated concentrations that inhibit
biological (e.g., microalgal) growth [25]. Similarly, the turbidity and pH of wastewater
could inhibit microalgal growth [26]. Physicochemical pretreatment of wastewater would
improve the conditions for microalgal growth and reduce wastewater’s strength [27,28].
Lin et al. (2017) adopted a three-step strategy for efficient treatment of textile industry
water (TWW): adsorption of toxic compounds by granular activated carbon, followed
by anaerobic digestion to produce electricity and reduce the load of the TWW before
cultivating microalgae in the partially treated TWW [29]. Although ammonium is the
most preferred nitrogen source for microalgal growth, the ammonium tolerance limit for
microalgal strains was reported as high as 1000 µmol NH4-N L−1 [20]. A pretreatment
would be required to reduce the ammonium concentration in wastewater, or wastewater
should be diluted to a tolerable limit where the selected strain could grow efficiently [30].
For several wastewater types (e.g., metal, mining, paper, oil, and grease), electrocoagulation
was used as a pretreatment step, which could effectively remove various chemical additives,
turbidity, pathogens [31–33]. Microalgal biomass cultivation in such pretreated wastewater
could also reduce residual nutrients and turbidity from the treated wastewater [27].

2.3. Mechanism of Treating Wastewater

2.3.1. Nutrient Uptake

The treatment of wastewater having low nitrogen to organic carbon ratio (C/N)
is challenging. In such wastewater, supplementation of organics is often practiced to
improve bacterial nutrient removal efficiency as a source of energy. On the contrary,
microalgae could utilize sunlight, the soluble inorganic carbon dioxide, nitrogen, and other
nutrients to increase their cell numbers while treating wastewater. Depending on the
strain type, microalgal cellular nitrogen content could range from 3–10% [34,35]. A variety
of inorganic (e.g., ammonium, nitrate, nitrite, atmospheric nitrogen) and organic (e.g.,
urea, glycine, etc.) forms of nitrogen could be assimilated by microalgal/cyanobacterial
strains, although the efficiency would again vary among strains and growth conditions.
From a cost perspective, microalgal removal of phosphorus from wastewater could be a
superior choice over chemical precipitation and engineered wetland based phosphorus
removal [36,37]. Microalgae could also selectively consume nitro and amino groups from
different aromatic compounds (e.g., aminonaphthalenes and nitrobenzonates) as nitrogen
source—thereby reducing the toxicity of the original pollutants [38]. Microalgal nutrients’
removal efficiencies from different wastewaters are listed in Table 1.

Table 1. Microalgal nutrient removal efficiencies from different wastewater.

Wastewater

The Concentration of
Contaminants in

Wastewater (mg/L) Strain

Operating
Conditions

Removal Efficiency
(%)

Ref.

TN TP TOC pH vol (L) TN TP TOC

Municipal sewage water
116.1 212 - Chlorella sp. - 25 94 89.1 [39]
130 15 - Spirulina sp. 7.7 0.25 79 93.3 [40]
40.6 5.66 - Chlorella sp. - 0.1 82.4 50.9 [41]

Produced water 52.5 0.21 720.3 Chlorella sp. 7.0 1 92 73 [26]

Agro-industry wastewater
1570 154 - Microalgal consortia - 0.6 49 70 [42]
44 88 495 Scenedesmus obliquus 8.6 0.5 34 65 42 [43]
44 88 495 Algal consortia 8.6 0.5 36 13 46 [43]

Pharmaceutical
wastewater

729.5 54.5 - Chlorella sorokiniana 7.5 0.25 70 89 [44]
44 5 - Microalgal consortia - 9600 74 92 [45]
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Table 1. Cont.

Wastewater

The Concentration of
Contaminants in

Wastewater (mg/L) Strain

Operating
Conditions

Removal Efficiency
(%)

Ref.

TN TP TOC pH vol (L) TN TP TOC

Landfill leachate
1650 5.42 - Chlorella vulgaris 6.6 0.5 69.3 100 [46]
1084 1.78 - Acutodesmus obliqus - - 30 93 [47]
1786 4 - Microalgal consortia - 0.4 90 95 [48]

Aquaculture wastewater
6.81 0.42 - Chlorella vulgaris - 5 86.1 82.7 [49]
41.3 4.96 - Tetraselmis suecica - 40 49.4 99 [50]
9.8 1.56 14 algal-bacterial flocs - 400 58 89 71 [50]

Aqueous phase wastewater
from biomass to energy

generation process

4223 504.7 13,917 Tetraselmis sp. - 1 98.5 98 - [51]
6900 1100 13,800 Picochlorum sp. - 1 95.4 97.2 94.3 [52]
9650 343 - Chlorella vulgaris - 0.15 59.9 94.6 - [53]

Wastewater from mines 56 15.6 176 Micratinium reisseri - 0.2 97 83 62 [54]

2.3.2. Metals Adsorption/Uptake

High concentrations of heavy metals in wastewater could inhibit microalgal photo-
synthesis [18]. Nevertheless, microalgae efficiently concentrate the metal pollutants both
internally and externally and could be adopted for metal removal from wastewaters [55].
Microalgal cells need several metals (i.e., Fe, Mn, Cu, Co, Zn, and Mo) in trace amounts
as their growth requirements. However, microalgae are also capable of concentrating on
various heavy metals (e.g., Cd, Hg, Ni, Zn, Fe, Cu, Pb, Cr, etc.) through different mech-
anisms [55]. Microalgal cell walls are comprised of carbohydrates and polysaccharides
that could have multiple negatively charged (amino, hydroxyl, carboxyl, pyruvate, sulfide,
phosphate, etc.) groups as active sites for adsorbing positively charged metal cations [56].
Such extracellular adsorption of heavy metals occurs very fast till a saturation level is
reached [57]. Heavy metals could also get transported through the cell membrane inside
the cells, thereby reducing their concentrations in wastewater [58]. Several microalgae
could release various polysaccharides, also known as exopolysaccharides (EPS), into the
growth media [59]. Negatively charged groups within EPS molecules are also capable
of absorbing metals [60]. Both living and dead cells of microalgal are capable of metal
removal, although the metal removal efficiencies for living cells are higher compared to
dead cells [61]. The removal efficiencies of several metals (e.g., Cd, Cr, Cu, Pb, Hg, Ni, and
Zn) by selected microalgae are listed in Table 2.

Table 2. Microalgal removal of metals from wastewater.

Metals Strain

Operating Condition
Removal
Efficiency

(%)
Ref.

Initiial Conc.
(mg/L)

pH
Temp.
(◦C)

Time
(Hour)

Cadmium
Scenedesmus sp. 0.5 6.2–6.5 25 24 73 [62]

Chlorella sp. 100 7.4 - 24 33–41 [63]
Chlorella vulgaris 5 6.2–6.5 25 24 66 [62]

Chromium
Chlorella vulgaris 227 0.5–5 24 6 50.7–80.3 [64]
Scenedesmus sp. 10 0.5–5 - 0.5–5 92.89 [65]

Spirulina sp. 10–100 2–6 0.17–5 82.67 [66]

Copper
Spirulina maxima 56.6 7.96 26–28 240 94.9 [67]
Chlorella vulgaris 56.6 7.9 26–28 240 96.3 [67]

Scenedesmus obliquus 60 5.5 30 1080 72.4–91.7 [68]
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Table 2. Cont.

Metals Strain

Operating Condition
Removal
Efficiency

(%)
Ref.

Initiial Conc.
(mg/L)

pH
Temp.
(◦C)

Time
(Hour)

Lead
Chlorella vulgaris 10 6 - - 89.26 [69]

Chlorella sp. 1–50 8.1–8.6 28 288 66.3 [70]
Psuedochlorococcum typicum 10 7 20 24 70 [71]

Mercury
Chlorella vulgaris 0.3–0.8 - 18–21 - 79–86 [72]
Chlorella vulgaris 10–200 1–8 35 0.17–0.35 34.21–93 [73]

Psuedochlorococcum typicum 10 7 20 24 97 [71]

Nickel
Scenedesmus sp. 30 6.0–7.2 - 5 97 [74]
Chlorella vulgaris 10–40 7.4 - 24 33–41 [63]
Chlorella miniate 30 6.0–7.2 - 5 60–73 [74]

Zinc
Chlorella sp. 1–50 8.1–8.6 28 288 60–70 [70]

Synechocystis sp. 30 6.0–7.2 - 5 40 [74]
Scenedesmus sp. 30 6.0–7.2 - 5 98 [74]

2.3.3. Organic Removal

There are mainly three mechanisms (i.e., biodegradation, consumption, biosorption)
that the microalgae could utilize to remove the organics from wastewater. Microalgal cell
walls could have several polymers group that could offer potential sorption sites for organic
pollutants; however, the removal of organics by microalgal sorption was rather low [75,76].
Although most of the microalgae are photosynthetic in nature, a group of microalgae could
utilize various organics in either mixotrophic or heterotrophic mode, and this would allow
mixing organic-rich stream (e.g., wastewater from food processing, glycerol from biodiesel
plant, etc.) into other wastewater for combined treatment and improving the biomass
and lipid yield [54,77]. Apart from bioaccumulation, microalgae, either as monoculture or
consortia, could transform organic pollutants (e.g., phenolics, petroleum hydrocarbons,
pesticides, polyaromatic hydrocarbons, polychlorinated bisphenyls, etc.) to other less toxic
and non-toxic compounds, or even completely mineralized products (i.e., CO2) [78–81].

2.3.4. Symbiotic Relationship

Microalgae could also participate, in a symbiotic relationship with bacteria or fungi, to
degrade organics [82]. As a byproduct of the photosynthesis process, microalgae produce
oxygen, which could be utilized by aerobic bacteria for the mineralization of organics to
carbon dioxide; microalgae would utilize this CO2, and the process would be repeated,
ultimately treating wastewater [13,83]. On the other hand, bacteria produce several useful
compounds such as Vitamin B12, indole-3-acetic acid, siderophores to promote microalgal
growth. At times, bacteria could also regenerate or fix several inorganic nutrients (e.g., iron,
nitrogen) and organics (e.g., D-glucose, Na-acetate) that are not available to microalgae
for utilization [84]. Bacterial release of polysaccharides and proteins could also assist the
bioflocculation of microalgae biomass [85].

2.3.5. Passive Removal of Contaminants at Elevated pH

As early as 1970, it was observed that microalgae flocculated in the waste stabiliza-
tion pond, specifically on warm and sunny days when the CO2 was depleted, and pH
increased [86]. Therefore, microalgae could also passively assist in removing the pollutant
from wastewater. As the microalgae grow, the soluble carbonate would be consumed—
giving rise to the culture pH, in case there would be no additional supply of CO2 other
than atmospheric diffusion. At elevated culture pH, several pollutants could form in-
soluble precipitates (e.g., various metals, phosphorus)—facilitating their removal from
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wastewater [87], while ammonium could get converted to ammonia and escape to the
atmosphere [88].

3. Microalgal Cultivation in Different Wastewaters

Typical microalgal biomass concentration in large scale open cultivation could be
0.5 g/L. Depending on the cellular composition of the microalgae, nitrogen, and phospho-
rus content in the biomass could be in the range of 5.4–8.7% and 0.7–1.1%, respectively [89].
Therefore, microalgae alone could potentially consume or remove 43.5 and 5.5 mg/L of
nitrogen and phosphorus, respectively, from wastewater. Additionally, microalgae could
also adsorb pollutants from wastewater and assist other microorganisms in removing
additional contaminants. Considering wastewater would have all other necessary micro-
elements. In case wastewater contains excessive TN and TP, then such wastewater needs to
be diluted to an appropriate ratio before microalgal bioremediation.

3.1. Municipal Wastewater

Typical nitrogen and phosphorus concentrations in the municipal sewage wastewater
(MSWW) are 21.9–28.8 and 8.2–10.4 mg/L [90]. The concentration of dissolved organics
in the MSWW is usually low for the bacteria for the complete consumption of nitrogen
and phosphorus [91]. Hence, after the activated sludge process (ASP), an advanced treat-
ment process is adopted to remove excess nutrients (N, P). Microalgae could remove the
residual nitrogen and phosphorus from the effluent of ASP [16,92]. However, microalgae
cultivation in the MSWW could efficiently remove nitrogen, phosphorus, BOD, and heavy
metals [93,94]. Microalgae could also remove pathogens from the MSWW [95].

3.2. Industrial Wastewater

For several countries, the textile industry wastewater (TWW) could contribute more
than 10% (as high as 30%) of the total industrial wastewater [96–98]. TWW often contains
dyes, fats, acids, binders, salts, heavy metals (e.g., Cr, Cu, As, Zn, etc.), thickeners, and
reducing agents, in addition to nitrogen and phosphorus compounds [29]. The dyes in
the TWW are recalcitrant organics and pose a challenge in its remediation and simul-
taneously could adversely affect the quality of the receiving water bodies, even at low
concentrations [15]. A number of physicochemical techniques were studied to treat TWW;
however, most of these methods could be costly, energy-intensive, and inefficient [96].
Bioremediation of TWW by different microorganisms (i.e., yeast, bacteria, microalgae)
was explored. Microalgae were able to utilize several dyes (e.g., Eriochrome blueSE and
blackT) as a source of carbon and nitrogen [99]. While microalgae could consume the
organic compounds of TWW, the organic dyes in the TWW could also be adsorbed on to
the microalgal cells, thereby treating the TWW [96].

3.3. Produced Water

Produced waters from oil and gas industries contain toxic petroleum compounds, in
addition to various heavy metals and added chemicals (i.e., hydrocarbons, volatile fatty
acids, carbonyl group, and high molecular weight organic acids) [100]. While the produced
water could be toxic to many microalgal strains, some algal strains (e.g., Chlorella sp.,
Dunaliella sp., Scenedesmus sp., etc.) could tolerate and grow in the produced or pretreated
produced water [26,101,102]. The algae-bacterial consortium could effectively treat the
produced water [26,101,103]. The feasibility of large-scale microalgal biomass production
in several countries, using produced water, was recently explored [17].

3.4. The Aqueous Phase of Biomass to Energy Generation Process

The digestate of the anaerobic process often contains very high concentrations of
TN, TP, and other elements; this digestate could be a source of nutrients for microalgal
cultivation [104,105]. In recent times, hydrothermal liquefaction (HTL) technology is
being studied as a promising technology for converting various biomass into biocrude oil.
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However, as a byproduct of the HTL process, nutrient-rich aqueous phase liquid (APL) is
also generated. Several microalgae strains were found to effectively treat and recycle the
nutrients from the APL after appropriately diluting the APL in the growth medium [51,52].

3.5. Pharmaceuticals Wastewater

Wastewater contaminated with pharmaceuticals and personal care compounds (PPCCs)
poses a serious threat because of their ecotoxicity and health issues. Some of these PPCCs
could not be efficiently removed by the existing activated sludge process [11]. On the con-
trary, microalgae have the ability to remove the PPCCs such as triclosan from wastewater,
although the efficiency of removal would vary among microalgal strains and operating
conditions [106–108]. Microalgal removal of PPCCs from wastewater could occur in three
potential pathways: adsorption, accumulation, and degradation, either intracellular or
extracellular [109]. Microalgae could also be used as indicators/markers to assess the toxic-
ity of some PPCCs derivatives like triclosan in wastewater discharges and natural water
bodies [110]. Microalgal adsorption efficiency for PPCCs are rather low 0–16.7% [111,112].
A few microalgae could uptake and accumulate several PPCCs, such as organic substrates
and separate from the contaminated water [113]. Some of the microalgae showed a limited
ability to degrade several PPCCs; however, in the presence of a suitable organic compound,
the degradation rate and efficiency greatly increased [114]. Although microalgal removal
of a couple of PPCCs (e.g., benzothiazole, diclofenac, OH-Benzothiazole, etc.) were affected
by seasonal variation (temperature), the removal of most common PPCCs (e.g., caffeine,
acetaminophen, ibuprofen, etc.) in wastewater was minimally affected by the variation
in temperature [115,116]. However, as the microalgal cell gets exposure to the PPCCs, its
metabolites composition needs to be characterized. Further, transformation products of
these PPCCs into other products need to be identified and characterized.

3.6. Agro-Industry Wastewater

Wastewater generated from livestock (e.g., swine, piggery, cattle) and poultry indus-
tries are typically rich in nitrogen and phosphorus; microalgae were used to successfully
recover nutrients and produce biomass while treating wastewaters from these indus-
tries [42,43,117,118]. Dairy industries wastewater (DWW) is generally rich in organic
content with high BOD5 and COD values; therefore, mixotrophic microalgal strains (i.e.,
Scenedesmus sp., Tetraselmis sp., etc.) could be very efficient in treating DWW [119]. Microal-
gae were also used to treat wastewater from the carpet mill, brewery effluents [120,121].
Similarly, microalgae were able to treat wastewater generated from food processing indus-
tries [54,122].

3.7. Wastewater Derived from Mining Activity

Wastewaters from mines are typically acidic in nature and could contain potentially
hazardous metals; because of microalgal ability to intra and/or extra cellular accumulation
of various metals, these organisms could potentially be applied to treat mine wastewa-
ter [123], mainly both inside and outside the cell. Tong et al. (2015) studied the continuous
removal of zinc from the leachate of a mine using microalgal biofilm [124]. Li et al. (2015)
studied the combined treatment of municipal sewage water and zinc contaminated water
from an abandoned mine using a microalgal biofilm of Stichococcus bacillaris [124].

3.8. Landfill Leachate

Landfill leachate often contains a high concentration of ammonia that itself could be
toxic to microalgae [125]. Additionally, the leachate’s black color could interfere with the
light penetration and, consequently, microalgal growth and remediation of leachate. An
appropriate dilution or pretreatment would be required for the efficient treatment of the
leachate. Raw leachate could be mixed with seawater or pretreated leachate for microalgal
bioremediation [125–127]. It was demonstrated that a consortium of five microalgae could
efficiently remove COD, NH3-N, and orthophosphate from aerobically treated leachate in
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high rate algal ponds (HRAP) [128]. At times, phosphorus concentration in the leachate
could be low, and it should be supplemented as an appropriate concentration since mi-
croalgae require phosphorus for their growth [127,129].

3.9. Aquaculture Wastewater

For the intensive aquaculture system, the effluent often contains an elevated con-
centration of dissolved nitrogen compounds, mainly in ammonia, generated from the
undigested feed and the feces [130]. While bacterial nitrification of ammonia and other
nitrogenous compounds to gaseous nitrogen is a feasible option, microalgal assimilation
of these nitrogenous compounds could be a sustainable alternative option, as the pro-
duced biomass could be used as superior feed ingredients [49,131,132]. In another study,
microalgal-bacterial floc was applied in a sequencing batch reactor to successfully treat the
aquaculture wastewater [80]; the easy separation of microalgal–bacterial floc by gravity
sedimentation could reduce the overall cost of aquaculture wastewater treatment.

4. The Process of Microalgal Cultivation

4.1. Suspended Growth

The most common microalgae cultivation method in wastewater is a suspended
growth system, either in open or closed systems (photobioreactor or PBR). Among various
PBRs, biocoil, horizontal tubular, and vertical PBRs are commonly studied for wastewater
treatment [133,134]. Microalgae cultivation in the PBR could reduce or minimize unwanted
contamination, evaporation water loss, and loss of injected CO2. High volumetric biomass
productivity could be achieved inside a PBR with low optical depth; as the PBR’s optical
depth increases, the productivity of the biomass decreases [135,136]. In general, the cost of
PBR materials could be too high for treating wastewater. Furthermore, the energy invest-
ment for mixing the culture inside a PBR could be several times higher than the calorific
energy of the produced microalgal biomass [137]. On the contrary, the open cultivation of
microalgae in wastewater could be very promising, despite some challenges (i.e., evapora-
tion water loss, contamination, etc.) [138,139]. Microalgal bioremediation of wastewater
was explored using earthen lagoon, concrete tanks, and raceway ponds [140–142]. High
rate algal pond (HRAP) and corrugated raceway pond (CRP) are two of the open type cul-
tivation systems, which were specifically designed for treating wastewater [126,143]. The
depth of the open cultivation system could vary from 0.15–0.45 m [144]; since microalgae
are very efficient in absorbing the light, the top layer of the culture would absorb most of
the light, keeping the cells below in the dark [145]. The mixing of microalgae culture in
a large-scale open system is often insufficient, and hence microalgal bioremediation in a
deeper pond could be inefficient [146].

4.2. Attached Growth

To overcome the challenges of microalgal biomass harvesting from the suspended
culture, microalgae cells could be immobilized or attached to a support medium where
the attached cells contact wastewater, and the nutrients get absorbed and subsequently
utilized by the microalgae to produce biomass [147]. The immobilized cells could be on a
static surface or mounted on a rotating paddle [148]. After achieving the desired degree of
bioremediation or when the biomass growth on the surface would reach a certain thickness,
the support media could be removed from wastewater, and the biomass could be scraped
out. Further, the remaining fraction of the cells on the biofilm could act as inoculum for
the next batch [149]. A biofilm of Chlorella sp was developed in a microbial fuel cell as a
biocathode to treat TWW and generate electricity [150]. Algal turf scrubber (ATS) is another
configuration of attached microalgal growth system, where benthic microalgae could be
grown on a solid support and wastewater would be circulated over the ATS [151]. Similarly,
a floating conveyer belt of a dimpled metal sheet could be used to form an algal biofilm
on its surface [152]. However, the cost involved in developing the support medium is one
of the major barriers to commercially implementing this technique [95]. Furthermore, the
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attached biofilm could accumulate other non-algal compounds and thereby could reduce
the quality of the biomass [153].

4.3. Batch vs. (Semi) Continuous

Microalgae could be cultivated, either in suspension or as attached, in either batch
or (semi) continuous mode to treat wastewater. Most of the lab-scale microalgal bioreme-
diation experiments were conducted in batch mode. Several studies demonstrated the
superior performance of continuous/semi-continuous cultivation systems as compared to
batch cultivation for wastewater treatment and biomass production [49,124,153]. One of
the potential drawbacks of continuous cultivation is the culture crash after few cycles of mi-
croalgal growth [153]. The use of a photobioreactor for the (semi) continuous cultivation of
microalgae could undermine wastewater treatment’s overall cost and energy effectiveness.

4.4. Monoculture vs. Consortia

While a vast majority of studies used monoculture of microalgal strains for the
treatment of wastewater, a number of studies included a specific consortium of microal-
gae [154–156]. Since wastewaters are typically contaminated with different types of contam-
inants, a mixed culture of microalgal strains could be advantageous as the limitation of a
strain could be overcome by others [14,157]. Indeed, many studies found that polycultures
of microalgae were more efficient in treating wastewater than the treatment efficiency
by monoculture [121,158]. Microalgal consortia also showed increased resistance to cul-
ture crash [159]. Microalgal consortia cultivation could also assist in biomass harvesting,
especially if one or more strains produce EPS or filamentous in nature [160].

5. Harvesting of Microalgae Biomass

Removal of microalgal biomass from the treated wastewater is one of the critical
processes of microalgal bioremediation of wastewater. Therefore, efficient preliminary
harvesting of microalgae would also be crucial if the treated wastewater needs to be used
for other purposes. Although there are multiple techniques available for the separation
of biomass from the bulk of the culture, the adoption of a harvesting technique would
mainly depend on the application of the produced biomass and the energy requirement per
unit of biomass production. In most cases, a two-phase harvesting process is adopted to
obtain a biomass paste of 20% solid content or higher. In the preliminary step, harvesting
techniques like sedimentation, flocculation, filtration, etc., are used to obtain a biomass
slurry (typically 1–4%), which then could be further concentrated (typically above 20%)
using a centrifuge. The harvesting efficiency of microalgae grown in different wastewater
is listed in Table 3. In addition, a comparison of different harvesting techniques is shown
in Table 4.

Table 3. Harvesting efficiencies of microalgae grown in different wastewaters.

Wastewater Type
Type of Cultivation

System
Strain Harvesting Technique

Harvesting
Efficiency (%)

Ref.

Urban wastewater High rate algal ponds Mixed microalgae * Coagulation flocculation 90 [161]
Domestic wastewater Photobioreactor Chlorella sp. Bioflocculation 98.9 [162]
Organic wastewater - Blue-green algae Electrolytic flocculation 90 [163]

Pretreated swine
wastewater Photobioreactor Chlorella sp. Auto-flocculation 39.5 [164]

Domestic wastewater Photobioreactor Scenedesmus Belt-filtration system 46–84 [14]

* Scenedesmus sp., Monoraphidium sp., and Amphora sp.
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Table 4. Energy requirement in microalgae biomass harvesting.

Harvesting Method
Volume
Used
(L)

Strain Name IBC (mg/L)
HE
(%)

CF FBC
(g/L)

Energy
Needed
(MJ/Kg)

Ref

Self-cleaning Centrifugation - Scenedesmus sp.
Mixed microalga

1000
400–700

-
90

120
~100

120
40–70

3.6
9.45 ε

[165]
[166]

Electrocoagulation 1 Chlorella vulgaris 300–600 95 - - 7.2 [167]
Submerged Filtration 25 Chlorella vulgaris 410 98 14.7 ε 6.07 2.3 [168]

Vacuum Filtration (belt filter) - Chlorella proboscideum 1000 95 95 1.62 [165]
Tangential flow filtration 34.5 Tetraselmis suecica 600 - 78 46.8 11.82 [169]

Magnetic separation 200 Botryococcus braunii 1230 ~92 - - 13.17 [170]
Dissolved air flotation 9750 Mixed microalga 400–700 - ~100 40–70 5.87 [166]

Ultrasound assisted harvesting 8.4 Monodus subterraneus 160–200 ~83 ~20 3.2–4 ~200 [171]
Pulse electrolysis 0.4 Nannochloropsis oceanica ~1000 96.4 - - 1.8 [172]

IBC = initial biomass concentration, CF = concentration factor, FBC = Final biomass concentration, HE = harvesting efficiency. ε was
determined by the corelating centrifuge’s electricity consumption, harvesting efficiency, and initial biomass concentration.

5.1. Sedimentation

Some cells of microalgae could not stay afloat in the growth medium due to their
cell size and or pH value of the medium; in either case, the cells sink to the bottom.
Therefore, the sedimentation process could be applied to separate microalgae biomass as
an inexpensive and variable harvesting process for large scale operations. Cells of several
microalgal strains, e.g., Scenedesmus and Chlorella sp., are big enough to remain suspended
in the growth medium in the absence of any mixing. Typically, the microalgal cell surface
has a negative charge, which prevents cells from attaching to each other. As the microalgal
culture density increase, the cells utilize the soluble carbonate, and in the process, the
pH of the growth media also increases, and it could also neutralize the surface charge
of the microalgae. Several inorganic compounds precipitate at elevated pH levels; this
process could also initiate microalgal cells to coprecipitate. Since the gradual pH increase
and natural precipitation could be time-consuming, at times, a base solution (i.e., sodium
hydroxide) is added to expedite the microalgal sedimentation.

5.2. Auto-Flocculation

Several cyanobacterial strains form flocs, which are held together with the help of EPS
that they produce. Several other cyanobacteria are filamentous in nature (e.g., Phormidium
sp., Leptolyngbya sp., Pseudoanabaena sp.), which tangle together to form floc [173,174].
Several factors (i.e., light intensity, temperature, nutrient deprivation, etc.) could influence
the EPS productivity and subsequent destabilizing microalgal cell surface leading to auto-
flocculation [175].

5.3. Bio Flocculation

The co-cultivation of a non-settling microalga with a self-settling microalga could
enhance the combined biomass harvesting efficiency [176]. A couple of fungus strains (e.g.,
Aspergillus sp.) could form gelatinous pellets, where negatively charged microalgal strain
could attach and could together precipitate [177]. The available organics in wastewater
could be used as a substrate by the fungus to grow and form the pellets. Similarly, bio-flocs
formed by microalgae and bacteria could be removed by gravity sedimentation from the
treated wastewater [178].

5.4. Coagulation–Flocculation

Multivalent metal salts (Fe, Al), and cationic polymers (both synthetic and natural)
were shown to be most effective in the harvesting of microalgae from wastewater [179]. The
efficacy of ferric chloride [93,133] and alum [180] was demonstrated for many microalgal
strains. The addition of natural polymers (e.g., tanfloc, chitosan, tannin, starch, gamma
glutamic acid, guar gum, and tamarind kernel polysaccharide), at a lower dosage, could
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also improve the microalgal harvesting efficiency [181]. Recent studies have demonstrated
that iron and aluminum could be recovered from ferric chloride and alum harvested
biomass [182,183]. In addition, the extracted metals, together with a small fraction of new
coagulant, could harvest biomass from the subsequent batch of microalgal culture. As an
alternative, the bacterial strain was grown separately using lignocellulosic materials to
produce specific bio-flocculants (e.g., xylanase, and cellulase), which was found to be very
efficient in harvesting microalgal strain (e.g., Chlorella minitussima) [184].

5.5. Electrocoagulation

In the electrocoagulation process, the coagulants are produced in situ from the anode
as the electrodes (aluminum, steel, etc.) are connected to a DC power source. In addition to
low coagulants requirements, the energy requirement for the electrocoagulation process is
very low (e.g., 0.3 kWh/m3) [163]. The coagulants then form large flocs of microalgal cells,
which get separated either by sedimentation or floatation. During the electrocoagulation
process, oxygen and hydrogen gas microbubbles are generated at the anode and cathode,
respectively. These microbubbles could attach the coagulated algal cells and float to the
top [185]. The efficiency of algal separation was much higher for aluminum electrodes
compared to steel electrodes [186].

5.6. Flotation of Microalgae

In the floatation of microalgae harvesting, often with coagulants’ addition, micro-
scopic bubbles are introduced to the bottom of the floatation tank, where the cells are
attached to the surface of the bubbles and get destabilized; the cells rise to the top and get
concentrated [187,188]. The bubble size plays an important role in the removal efficiency of
algae; the smaller the bubble’s size, the higher the algae removal efficiency [189]. However,
the generation of smaller-size bubbles (e.g., 10–100 µm) would be energy-intensive (e.g.,
7.6 kW h/m3) [190].

5.7. Filtration

Membrane filtration of microalgae culture could potentially achieve 100% cell recovery,
and unlike other modes of harvesting, membrane filtration could be applied to most of the
microalgae strains—resulting in a biomass slurry where the quality of the biomass would
remain intact [191]. For a filamentous strain (e.g., Arthospira sp.), a vibrating screen set up
could be used to separate the biomass [192]. Tangential-flow-filtration (TFF) is another
promising biomass separation technique where the culture is pumped through the TFF
module, where a fraction of the clear water passes through the membrane while all the cells
remain in the reduced volume of the culture, whereby the biomass density in the water
increases. The concentrated culture is passed through the TFF until the desired biomass
density is obtained. Biomass density, cell morphology, and salinity of the culture are some
of the critical parameters that would affect the energy consumption of the membrane
filtration [193]. During the TFF operation, membrane fouling would occur; the frequency
and extent of membrane fouling would depend on the strain type, composition of the
growth media, and mode of TFF operation. Usually, backwashing is used during the
TFF operation, in small duration, for cleaning the membrane and recovering the biomass.
Filtrate coming out of the TFF would have excellent quality for reuse for multiple purposes.
Nevertheless, the energy demand of the filtration system could be very high, typically in
the range of 0.7–2.3 kWh/m3 of culture.

6. Application of the Produced Biomass

Microalgal biomass has the potential to be a sustainable alternative feedstock com-
pared to the feedstock typically generated from the terrestrial plant. Water and nutrients
supply are two factors that would influence microalgal biomass production’s cost and
energy; in this regard, the cultivation of microalgae in wastewater could offer additional
benefits, although this would limit the application of produced algae biomass. Potential ap-
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plications of microalgae biomass grown in different industrial wastewaters were reviewed
recently [7]. A schematic of the microalgal bioremediation of wastewater and the potential
applications of the produced biomass is shown in Figure 1.

2021, , x FOR PEER REVIEW 13 of 27 
 

 

β

 

Figure 1. Microalgal bioremediation of wastewater and the potential applications of the produced biomass.

6.1. Composition of the Microalgae Biomass

The major metabolites of microalgal biomass are protein, lipid, and carbohydrate; the
relative composition of these metabolites could vary among strains and the prevailing
growth conditions (i.e., nutrient composition and concentrations, duration of cultivation,
light intensity, temperature, pH, salinity, etc.) [21,42]. Therefore, the metabolite production
from wastewater-grown microalgae would be influenced mainly by wastewater character-
istics and the strain that could efficiently treat it. The composition of metabolites of several
wastewater-grown microalgae is shown in Table 5. Several microalgae could accumulate
various high-value pigments (phycocyanin, phycoerythrin, β-carotene, lutein, astaxanthin,
etc.) [194–196].
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Table 5. The metabolites of wastewater-grown microalgae.

Microalgae Strains Wastewater
Metabolite Profiles (%)

Ref
Protein Lipid Carbohydrate

Chlorella sp Centrate water 64.2 14.8 10.5 [197]
Spirulina sp. Sago palm factory wastewater 60.34 9.09 17.4 [198]

Scenedesmus sp. Food wastewater - 20.8 22.1 [199]
Micratinium reisseri Mine and municipal wastewater - 20 - [54]

Phormidium sp. Swine wastewater 62 11 16 [117]
Chlamydomonas sp. Textile effluent 51.9 11 19.5 [200]
Desmodesmus sp. Municipal wastewater 39.66 23.51 24.41 [201]
Tetraselmis suecica Aquaculture wastewater 50.2 25.06 10.62 [202]

Nannochlorpsis oculata PW + anaerobic digestion effluent 36 49.8 7.3 [203]
Porphyridium cruentum Uranium ore leachate 28–35 0.5–0.8 17–22 [204]

6.2. The Necessity of Pretreatment

As the microalgae grow in wastewater, they would consume the nutrients and concen-
trate other contaminants in wastewater. Depending on the biomass harvesting technique,
the microalgal biomass could also be contaminated with other unwanted compounds [26],
which could interfere with the intended use of the produced biomass. Therefore, the
removal of the coagulants would be necessary for specific applications. Although there are
limited studies of metal recovery from the coagulated-flocculated biomass, there is a need
to study the recovery of other organic polymers that are used to harvest the microalgae
biomass.

6.3. The Potential Application of the Biomass

6.3.1. Biofertilizer

One potential application of wastewater-grown microalgae biomass (WGMB) is a
soil amendment as either soil additive or biofertilizer [93]. The application of microalgal
biomass in the soil could mainly enhance soil nitrogen and phosphorus content, in addition
to many other plant-required minerals (Ca, K, Fe, Mn, etc.). Microalgae could also adsorb
the heavy metals; however, the concentrations of heavy metals in the biomass, or anaerobic-
digested biomass, were lower than the allowable concentration [205,206]. In small-scale
studies, WGMB was used as a biofertilizer to grow wheat, corn, cucumber, barley, tomato,
etc. [93,206,207]. Microalgal biomass is also considered as a slow-release biofertilizer [208].
Furthermore, the addition of microalgae as biofertilizer could enhance the soil organic
content [209]. Microalgae biomass, depending on the species, could also introduce various
plant stimulating compounds [210]. On the contrary, WGMB could accompany pathogens
and other micropollutants, which could pose concerns for the application of WGMB as a
soil additive [211].

6.3.2. Energy Production and Nutrients Recycling

Anaerobic digestion of WGMB was studied extensively as a means of generating
biogas energy, which could offset the energy requirement at the treatment plant. The
biomethane yield from WGMB would depend on the biomass’s composition; the methane
conversion from carbohydrates and protein compounds was reported to be higher than
the lipid molecules [212]. Hence, microalgal strain with low lipid content would be prefer-
able for treating wastewater if biogas is the intended end product. The lipid extracted
microalgae biomass (LEMB) could also be anaerobically digested to obtain biogas gas (i.e.,
methane); the methane yield was reported in the range of 0.3–0.504 L/g of LEMB [22,105].
The energy return on operational energy invested (EROOI) for the overall process of biogas
production from wastewater grown microalgal biomass could exceed 3 [213,214]. During
the AD process and the conversion of methane to electricity, CO2 would be generated,
which could be integrated with the microalgal cultivation in wastewater. Several studies ex-
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plored the production of biodiesel by growing lipid-rich microalgae in wastewater [96,127].
However, the microalgal biomass needs to be dried for efficient extraction of lipid from it,
where drying the wet microalgae biomass could be very energy-intensive. Therefore, the
anaerobic digestion of whole wet biomass could be cost and energy effective. The potential
biogas yield from microalgal biomass was reported to be as high as 200–600 mL/g organic
content [215]. Pyrolysis is another technique that could be applied to dried microalgae
biomass to produce oil [216]. In the last decade, hydrothermal liquefaction (HTL) emerged
as a potential technique to convert whole biomass into bio-oil [217]. However, unlike
pyrolysis, the HTL technique doesn’t require dry biomass; instead, the water within the
biomass could be used as a reaction media. Some of the biomass elements (i.e., N, P, and
other trace elements) are associated with the liquid stream as a byproduct of biogas and
biocrude oil; this liquid stream could contain toxic organic compounds. Microalgae could
not only treat the waste stream but also recycle the nutrients of this waste stream. Table 6
summarizes the energy recovery from different wastewater-grown biomass to energy
conversion techniques.

Table 6. Energy recovered from wastewater-grown microalgal biomass using different conversion techniques.

Wastewater Microalgae Strain Processing Technique Energy Recovered (%) Ref.

Municipal wastewater Monoraphidium sp.
HTL

57.6 [218]

Municipal wastewater Galdieria sulphuraria 51 [219]

Dairy industry wastewater Chlorella sp.
Anaerobic digestion

47.7 [220]

Domestic wastewater Microalgal consortia 30.4 * [221]

Synthetic wastewater Scenedesmus obliquus
Transesterification

12 [222]

Dairy wastewater Microalgal consortia 72.4 * [223]

PHA reactor effluent Chlorella vulgaris
Pyrolysis

55.1 * [224]

Municipal wastewater Microalgal consortia 45.7 * [225]

Synthetic wastewater Scenedesmus obliquus
Fermentation

62.9 [222]

Municipal wastewater Chlamydomonas reinhardtii 37.5 * [226]

* Calculated using the following equation: Energy recovery (%) =
Bio f uel yield × HHVbio f uel

HHVf eedstock
× 100; biofuel yield was expressed as weight %

of the original biomass, HHV biofuel = higher heating value of the biofuel (MJ/kg), and HHV feedstock = higher heating value of the feedstock
(MJ/kg).

6.3.3. Bulk Chemicals

Apart from alcohol, microalgal carbohydrates could be converted to lactic acid [227,228].
Another emerging application of microalgal biomass is the production of bioplastic [229].
A number of cyanobacterial strains could produce intracellular polyhydroxyalkanoates
(PHA) with properties similar to plastic; therefore, the cultivation of specific cyanobacteria
in wastewater could potentially be a potential feedstock for bioplastic [230]. As a byproduct
of biodiesel production from microalgal lipid, glycerol is produced (10% of lipid weight).
Microalgae and cyanobacteria produce exopolysaccharides (EPS). Microalgae EPS could be
used as a gelling agent, thickener, stabilizer, and as biolubricants and anti-inflammatory
agents [231].

6.3.4. Animal Feed Production

The composition of microalgae biomass would vary among strains and culture con-
ditions. Nevertheless, the nutritional properties of several microalgae biomass could be
on par or exceeding the quality of many feed ingredients. Therefore, the inclusion of
microalgae biomass in feed would enhance the quality of the feed. Further, the cost of
cultivating microalgae in nutrient-rich wastewater would be very low, as there would be
little to no requirement for additional nutrients. For example, during sago production,
organic-rich wastewater is generated; Spirulina sp. biomass produced in the anaerobically
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digested sago wastewater in a high rate algal pond was suitable for animal feed [198]. In
the diluted swine manure wastewater, the feasibility of producing omega-3 fatty acid-rich
microalgae biomass as a source of feed ingredient was explored [232]. Microalgae biomass,
produced in the aquaculture effluent, could be used as an ingredient of fish feed [89,90].

6.3.5. Ingredients for the Cosmetic Industry

A number of microalgae and cyanobacteria (e.g., Chlorella sp., Dunaliella sp., Nan-
nochloropsis sp., Spirulina sp.) produce different secondary metabolites, and the extracts
of these compounds could act as a bio-based alternative feedstock for producing various
cosmetics like anti-oxidants, UV-protectants, antiaging, etc. [233]. Further, the specific
extracts of microalgae (e.g., Chlorella sp., Tetraselmis sp., Dunaliella sp., Emiliana sp., Noc-
tiluca sp., etc.) are used for skin care (e.g., moisturizer, firmness, and brightness enhancer)
and slimming products [234]. The extracts of several microalgal biomass (e.g., Monodus
sp., Thalassiosira sp., Chaeloceros sp., Chlorococcum sp.) could help in the growth of human
hair and hair follicles; hence, these were proposed as ingredients for specific formulations,
which could prevent hair loss [235].

7. Challenges of Microalgal Wastewater Treatment and Future Research Direction

• In large-scale outdoor microalgal cultivation, the average biomass productivity could
range from 15–30 g/m2/day [23,236,237]. Considering microalgal cellular nitro-
gen content around 4–6%, microalgal nitrogen uptake rate could be in the range
of 0.6–1.8 g N/m2/day. Therefore, for a 20 cm deep pond, the nitrogen removal rate
would be 3.0–9 mg N/L/day. On the contrary, the nitrogen removal rate in a typical
activated sludge process is around 30–78 mg N/L/day, several times higher than
the microalgal nitrogen removal rate [238]. Therefore, a larger footprint would be
required for the microalgal bioremediation of wastewater. The other concern of mi-
croalgal bioremediation is the seasonal variability of light intensity and temperature.
Unlike bacteria, microalgae would require sunlight for their cell growth; cloud covers
and shorter daylight during the winter season would limit the rate of microalgal
bioremediation.

• Metabolic engineering pathways for several microorganisms (e.g., yeasts and bac-
teria) are already well established, and these microorganisms could be tailored for
specific purposes. However, more research in microalgal metabolic engineering
would be needed to overcome some of the challenges of microalgal bioremediation of
wastewater.

• Microalgae biomass growth rate, nutrient recycling, and wastewater treatment effi-
ciencies would be limited in the absence of an external CO2 supply [140]. A point
source of CO2 (e.g., flue gas) in the vicinity of the cultivation site would enhance the
overall process.

• Microalgal biomass density for large scale open cultivation systems often does not
exceed 0.5 g/L, which could be mainly attributed to the light saturation at the top layer.
Keeping a deeper culture would result in reduced biomass density. Although higher
flow velocity could improve the mixing and light utilization, the increment in energy
requirement for increased flow velocity follows the cube law of power. Therefore,
the culture depth and flow velocity must be optimized for biomass production in
large-scale cultivation.

• Although a microalga could have very high efficiency in removing specific contami-
nant, its sudden exposure to wastewater containing a very high concentration of that
contaminant (e.g., metals, toxic compounds) could be detrimental to its culture, which
in turn could undermine the effectiveness of the treatment process. Therefore, an
adaptation or climatization process for the strain to the target compound(s) needs to
be developed on site [115].

• At times, wastewater could have a very high concentration of ammonia, which could
be toxic to many microalgal strains. In some wastewaters, nitrogen could be present in
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aromatic compounds as nitro, amino, or other groups. If the pH value of wastewater
is either very low or very high, then it should be adjusted in the appropriate range
for efficient microalgal bioremediation [26]. The concentration of nitrogen and or
phosphorus in wastewater could be low in wastewater, which would yield a low
biomass density; the cost and energy requirement per unit of biomass separation
could be very high—rendering the overall process of microalgal bioremediation non-
viable.

• The ability of a single microorganism to completely degrade an aromatic or a mixture
of xenobiotic pollutants is rarely observed. To achieve a better removal efficiency
for such unwanted contaminants from wastewater, the combination of microalgae
and other suitable microorganisms could be applied [239]. Although polycultures
of microalgae could have better efficiency in treating wastewater compared to the
bioremediation efficiency of monoculture, over the long term, the consistency in
polyculture biomass quality could be a concern. If bio-flocculation is used to harvest
any desired microalga, the bio-flocculating strain could impair the quality of the
overall biomass.

• Depending on the climate condition, the evaporation water loss could be 0.1–2 cm
per day from an open cultivation system [139,240]. The evaporation water loss could
increase the concentrations of pollutants in the culture, which would ultimately affect
the bioremediation efficiency. The treated wastewater from the previous batch could
be used, as necessary, to compensate for the evaporation water loss.

• Despite the immense potential of microalgal bioremediation of wastewater and the
successful demonstration mostly at a relatively small scale (primarily indoor), long-
term, large-scale demonstrations are limited. The effect of annual variations in light
and temperature on the bioremediation efficiency and microalgal biomass quality
needs to be studied.

• If coagulants or cross-flow filtration are used to separate microalgae biomass, it will
increase the overall cost of bioremediation. Attached cell growth could eliminate the
step for biomass harvesting; however, the cost of preparing the immobilization matrix
could be extremely high [37]. Hence, appropriate strain or growth conditions should
be used that facilitate autoflocculation or bioflocculation of the biomass.

• Unlike heterotrophic microorganisms, most of the microalgae would require carbon
dioxide for their growth and biomass production. Although wastewaters typically
contain nitrogen, phosphorus, and some other elements, as required by microalgae,
supplying CO2 to the microalgae culture is very crucial for effective treatment of
wastewater, as the diffusion of atmospheric CO2 into the microalgae culture is usually
very slow and low. Coupling the flue gas, as the source of CO2, into the cultivation
of microalgae in wastewater could enhance the environmental sustainability of the
industry.

• Although the microalgal commercial application is mostly limited to the cultivation of
microalgae in freshwater or seawater as food, feed, and nutraceuticals, there is a need
to develop novel and wider applications of wastewater-grown microalgal biomass. In
the context of a circular bio-economy, the bioremediation of wastewater by microalgae
and the complete valorization of the produced biomass could be very promising.
Earlier research efforts were mostly dedicated to microalgal bioremediation or the
generation of value-added products from wastewater-grown microalgae biomass.
Suitable applications should also be developed for the residual biomass after extracting
or converting a fraction of the biomass.

8. Conclusions

A prolific growth rate, ability to adapt in different wastewaters and uptake nutrients
or remove pollutants from wastewater, coupled with the assimilation of carbon dioxide,
could make microalgal bioremediation of wastewaters very promising. However, regard-
less of the enormous potential of microalgal bioremediation of wastewaters, most of the
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experiments were limited to indoor lab-scale microalgal cultivation studies, with a limited
number of strains, to determine the removal efficiencies of targeted elements or compounds.
Therefore, more detailed studies would be required to select appropriate strain(s) from a
broader range of algal species and understand the treatment efficiency together with long-
term biomass productivity in a large-scale outdoor set up under fluctuating environments
and wastewater characteristics. The role of individual microorganisms in microalgae–
bacterial or microalga–microalgae consortia needs a better understanding of the long-term
outdoor operation. The development of a strain and application-specific energy-saving
biomass harvesting is a prerequisite for microalgal bioremediation of wastewater; in this
regard, a self-settling strain or bioflocculating strain consortia should be developed. Fur-
thermore, the harvested microalgal biomass needs to be valorized, in a multi-product
biorefinery approach, to enhance the economic viability and environmental sustainability
of wastewater bioremediation.
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