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Abstract: The valuable products produced from glycerol transformation have become a research
route that attracted considerable benefits owing to their huge volumes in recent decades (as a result
of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for
transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and
other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in
its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with
an exclusive focus on the various catalysts’ performance in designing reaction operation conditions.
The different products observed and cataloged in this review involved hydrogen, acetol, acrolein,
ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and
dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical
challenges are finally presented.

Keywords: glycerol; biodiesel-biowaste; value-added products; hydrogen energy; lignocellulosic
biomass valorization; fuels; catalysts

1. Introduction

Petroleum fuels became the primary energy source for transport requirements during
the twentieth century. Since the beginning of the twenty-first century, primarily all vehicles
run with diesel, gasoline, or natural gas [1]. Around the world, the population is increasing,
thereby increasing energy requirements simultaneously, and nowadays, the origin of energy
is mostly fossil fuels such as oil, coal, or natural gas [2–4]. Generally, fossil fuel-based
carbon dioxide emissions are unaltered and grant the so-called “greenhouse effect”, which
intensively affects the climate changes [5,6]. Furthermore, with the rise in pollution and
crude oil prices, oil, coal, and gas burn not only to fulfills energy demands, but also
contribute to the global warming crisis. The burning of fossil fuels produces a substantial
amount of carbon dioxide, which traps heat in the atmosphere and contributes to global
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warming [7,8]. Wind, water, biomass, and solar energy are primary alternative energy
sources to stop using fossil fuels.

Biomass is currently achieving a significant focus in terms of providing the world’s
energy needs [9–11]. Due to its eco-friendly nature and low sulfur production, it is estimated
that by 2050, biomass will contribute 50% of the total energy demand. The demand for
energy worldwide is expected to increase up to 48% by 2040 [10]. Thus, bio-derived fossil
fuels are crucial for reducing the carbon footprint [9–11].

Biodiesel is commonly manufactured from animal fat or vegetable oil, and through the
transesterification technique, glycerol is produced as a waste product (Equation (1)) [12].
Biodiesel production is growing continuously due to the growing fossil fuel demand
for transportation and industries. The biodiesel trend enhanced glycerol production as
a byproduct [11]. Glycerol contains higher hydrogen moles compared to ethanol and
methanol [13]. Each 1 ton of biodiesel production from plants produces 110 kg of glycerol.
Worldwide glycerol production was increased five-fold to reach 36 billion liters between
2006–2018 [14]. It is pretty clear that glycerol availability is not in doubt; it is believed
that generally, glycerol production will continue to increase due to an upsurge in biodiesel
production. Glycerol was raised as an exciting biomass feedstock for high-value-added
product conversion due to its modest price and high availability in the market [15]. Hence,
glycerol transformation into other useful products is the essence of overall improvement in
biodiesel production economics [16].

C3H5(OOC)3(Rn)3 + 3R′OH→ 3RnCOOR + C3H5(OH)3 (1)

Glycerides Alcohols Esters Glycerol

Glycerol is crucial for feedstocks in food, pharmaceutical, and other industries and is
produced through microbial or biodiesel. Semkiv et al. explained glycerol production by
microbes (Saccharomyces cerevisiae, Osmotolerant yeasts, Microalgae, and cyanobacteria).
High-added value chemicals produced from glycerol follow different paths such as oxida-
tion, reforming, carbonylation, acetalization, esterification, hydrogenolysis, dehydration,
etc., as shown in Table 1 [16–21]. Glycerol-based additives have been used for blending
agents in gasoline, diesel fuel, and biodiesel [22].

Table 1. Derivatives of glycerol.

Chemical Derivative Chemical Structure Route from Glycerol

Syngas H2 + CO Reforming

1,2 Propanediol
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Martin and Richter presented a review for glycerol oligomerization to diglycerol and
triglycerol, focusing on utilizing acidic and basic heterogeneous catalysts. Pure glycerol was
replaced through its oligomers for numerous uses in the cosmetics and food industries [23].
Razali and Abdullah presented a review for catalyzing glycerol to lactic acid, where mixed
metal oxides and bimetallic catalysts were found to be promising candidates [24]. Most
of the published reviews have summarized the chemo, as well as biochemocatalytic trans-
esterification and economic aspects of various transformation routes discussed [25,26].
A few comprehensive reviews have been published on the catalytic conversion of glyc-
erol via reforming, dehydration, and hydrogenolysis. Since glycerol transformation is
rapidly developing and its critical features are not clear, it is important to gather infor-
mation on recent developments. Consequently, the objective of this review is to provide
an update on the transformation of glycerol derived from biodiesel plants using hetero-
geneous catalysts into different products (chemicals, fuel additives, fuels). The review is
organized well into three sections, dedicated to three major types of reactions (reforming,
dehydration, and hydrogenolysis), with an emphasis on the performance of catalysts in
designing reaction conditions. The different products observed and cataloged in this re-
view involved hydrogen, acetol, acrolein, ethylene glycol, 1,3-propanediol(1,3-PDO), and
1,2-propanediol (1,2-PDO) from reforming, dehydration and hydrogenolysis reactions of
glycerol conversions.

The production of chemical products from the catalytic transformation of glycerol
is shown in Figure 1. Glycerol is produced from the transesterification of biodiesel and
vegetable oils and animal fats, and the fermentation of carbohydrates. Syngas produced
from glycerol yield liquid hydrocarbons, methanol, and other value-added products from
the Fischer–Tropsch process. Syngas through the water–gas shift reaction produces liq-
uid hydrocarbons, which include diesel, liquid naphtha, etc. Furthermore, through the
methanol synthesis process, syngas produces methanol, and further methanol is used for
the transesterification process and to produce chemicals [27].
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Figure 1. Catalytic transformation of glycerol to various different products.

2. Glycerol Reforming

The glycerol transformation carried out through combustion in the past was unsafe,
uneconomic, and technically deficient due to the high temperature employed, unwanted gas
emission, and complex product [27,28]. Reforming techniques have gained acceptance by
industrialists and researchers in view of their efficiencies. Steam, aqueous, and autothermal
reforming processes have been primarily investigated in glycerol reforming. The steam
reforming reaction is one of the most common reactions used in hydrogen synthesis. Low
pressure and very endothermic reactions promote hydrogen selectivity. The aqueous phase
reforming (APR) method is regarded as an inexpensive method for producing H2 due to
its lower temperature and lack of vaporizing water and fuels [29,30]. Glycerol has a wide
product distribution due to its complexity compared to low-chain hydrocarbons or alcohols
and to the numerous reactions associated with the reforming process (Figure 2). However,
this technique creates H2 without vaporizing the feedstock, resulting in significant energy
savings [31]. Supercritical water gasification (SCWG)) is a cost-effective method of turning
biomass (such as food waste, paper industrial waste, sewage sludge, agricultural waste,
and forestry residue) into hydrogen-rich syngas [32]. Chemical looping steam reforming
(CLSR), which uses oxygen carriers (OCs) as a catalyst, has been widely recognized as a
highly effective method for generating hydrogen from catalytic steam reforming [33].

Bio-derived liquids steam reforming produces hydrogen and becomes interested due
to the environment and raises hydrogen demand, specifically in proton-exchange mem-
brane fuel cells (PEMFC) [34]. The low temperature and high-pressure process conditions,
concentrated feed, and acidic catalysts are used for the supercritical water reforming pro-
cess. High temperature and low pressure, diluted feed, and alkali catalyst are used for
gasification [35].
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Figure 2. Potential reaction pathways in glycerol aqueous phase reforming (APR).

The glycerol reforming and endothermic reactions took place. Hence, the heat needed
for the decomposition of glycerol (Equation (2)) is significantly larger than the water–gas
shift (WGS) reaction (Equation (3)), where heat is produced as energy. As operated under
atmospheric pressure, glycerol steam reforming (Equation (4)) becomes desirable with less
fear of protection. Considerably, 1 mol of glycerol converts to produce 7 mol of hydrogen
(Equation (3)). Vast amounts of steam and elevated temperature shift a reaction forward to
equilibrium, and hence much more H2 is generated [36].

C3H8O3 ↔ 4H2 + 3CO Decomposition Reaction (2)

CO + H2O↔ H2 + CO2 Water Gas Shift Reaction (3)

C3H8O3 + 3H2O↔ 7H2 + 3CO2 Steam Reforming Reaction (4)

The mentioned noble metal catalysts, Pt [37,38], Ir [39], Ru [40], and Rh [41,42], have
shown good resistance to coke and catalytic activity. Vaidya and Rodrigues studied Ni, Pt, and
Ru catalysts that promote hydrogen production but cause deactivation by dehydration [43].

2.1. Platinum Catalystsfor Glycerol Reforming

Doukkali et al. investigated Pt and/or Ni supported over γ-alumina catalyst for the
generation of hydrogen by a method of APR through three preparation methods of catalyst:
impregnation method, and sol-gel in acidic and basic medium. Total glycerol transforma-
tion occurred with maximum hydrogen production by sol-gel in basic method over PtNiAl
(T = 250 ◦C, P = 30 bar, and WHSV = 2.6 hr−1). The acidity of the superficial hydroxyl
groups on the -AlOOH surface could be to blame for the lower glycerol conversion into
gaseous products, favoring dehydration processes and resulting in more OHCs in the
liquid phase. In fact, by blocking surface hydroxyl sites on -Al2O3, structural alterations
in hydrothermal settings were explored to create efficient alumina catalysts for APR pro-
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cesses. The drop in H2 production could be explained by Ni particle aggregation and
reoxidation of Ni particles. These behaviors combined with the adsorption of carbonaceous
molecules/organic compounds identified on several of the catalysts could be the primary
causes of their deactivation [37].

Pompeo et al. investigated SiO2 catalyst supported with Pt and Ni through the ion-
exchange method for steam reforming to produce hydrogen. The experiment for the steam
reforming reaction of glycerol has demonstrated that using 1 Pt and 2 Pt catalysts. The
more active and stable catalyst was Pt compared to Ni catalyst. At 350 ◦C, a complete
conversion to gas was achieved with a space-time of 1.66 and 0.88 min, respectively. Due to
the fact that the Ni catalyzed the WGS reaction to remove the CO adsorbed on the surface
and turn it into CO2, the selectivity of gas products was significantly different. Only 3%
CO was obtained using the 5 Ni catalyst at 450 ◦C for 1.66 min. During 40 hr activity test
on stream at 350 ◦C, the 2 Pt catalyst allowed entire conversion to gas without deactivation.
It was also suggested that bimetallic catalyst research is required to obtain a system with
high selectivity for H2 and good stability [38].

2.2. Ruthenium Catalysts for Glycerol Reforming

Ru catalyst supported over core-shell metal-ceramic micro composites, created at
low temperature and 1 atm pressure through microwave-induced hydrothermal oxidation
technique (MW-HTO) of aluminum (Al) metal particles. The highest glycerol turnover ratio
was achieved over Al, and Ru-modified Al2O3 at Al compared with Ru-modified MgAl2O4
and Ru-modified Al2O3 catalysts, suggesting that Al metal particles seem to be more
effective in preparing MgAl2O4 at Al and Al2O3 at Al composite structure. The highest
selectivity of hydrogen was 70% at Ru/MgAl2O4 at Al catalyst at 823 K reaction temper-
ature, 1 atm pressure with 870 mmgcat

−1 h−1 feed flow rate. The Ru/MgAl2O4@Al and
Ru/Al2O3@Al catalysts have 2–3 times the glycerol conversion rates of their Ru/MgAl2O4
and Ru/Al2O3counterparts, owing to enhanced heat transfer via the metal-ceramic com-
posite catalytic architectures [40]. Glycerol steam reforming process over Ru doped Al2O3
catalyst. In total, 89.1% glycerol transformed to produce 0.49 (mol/mol) yield of hydrogen
at T = 500 ◦C, P = 0.1 MPa and 1.98 W/FA0. This research has aided in developing reactor
systems for producing hydrogen from glycerol steam reforming [41].

2.3. Rhodium Catalysts for Glycerol Reforming

Martinez et al. studied hydrogen production from glycerol reforming using fluorite-
type oxides CeZr-CoRh prepared by the sol-gel method. 100% glycerol was transformed to
produce 86% hydrogen yield at 650 ◦C. The activity data showed that the catalysts’ ability
to activate H2O under reaction circumstances was connected to selective H2 generation.
This process guarantees that the by-products are steam reformed to H2. As this capacity
deteriorates, H2 generation decreases, steam reforming capability reduces, and glycerol
decomposition takes over. In this scenario, the creation of condensable compounds, such
as hydroxyacetone, acetaldehyde, and acrolein, was aided by the production of CO, CH4,
and C2H4 [44].

Lee and Doohwan synthesized Core−shell MgAl2O4 metal−ceramic composites at Al
catalyst by hydrothermal method, and Rh (1, 3, and 5 wt.% loading) modified MeAl2O4
catalysts were synthesized by incipient wetness impregnation method. Then, 100% glycerol
transformed to produce Rh/MgAl2O4 at Al catalyst [T = 450 ◦C, and WHSV = 34,000 mL g−1

h−1]. The high surface area and complex surface morphological properties of MeAl2O4@Al
as a catalyst enhance increased Rh cluster dispersion while hindering their thermal sintering
during glycerol steam reforming processes at high temperatures. Rh/MeAl2O4@Al had
a 20–30% greater glycerol conversion turnover rate than Rh/MeAl2O4 (both Rh cluster
sizes are similar), indicating that the facilitated heat and mass transfer through the unique
MeAl2O4@Al microstructures cooperated constructively for the reactions. These are being
explored as future research topics [45]. Baca et al. studied Rh, Ni, and Co metal-doped
over Al2O3–ZrO2–TiO2 (AZT) for syngas production through carbon dioxide reforming
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of glycerol. Then, 1 wt.% Rh doped AZT, 5 wt.% Ni-doped AZT, and 5 wt.% Co-doped
AZT catalysts were synthesized through the incipient impregnation method. The glycerol
transformation was 80% achieved with 24% maximum hydrogen yield on Rh doped AZT
catalyst at 750 ◦C. Glycerol Conversion reduced in the given sequence: 1% Rh doped
AZT > 5% Ni doped AZT > 5% Co-doped AZT. Rh doped AZT catalyst remained stable
due to fewer coke formations and a shortage of sintering. During the 72-h testing, the
decrease in CO2 conversions was less than 13%, indicating the remarkable stability of
Rh/AZT and Ni/AZT [42]. Delparish et al. produced syngas from glycerol by oxidative
steam reforming. The impregnation technique was used to prepare 2 wt.% of Rh doped
Al2O3 catalysts. The glycerol was completely converted at 550 ◦C, and maximum hydrogen
yield was achieved at 700 ◦C. Temperature influenced product distribution by increasing
the amount of combustible species in the product mixture that were oxidized. The effect
became more severe when C/O was lowered from 1.125 to 0.75. The promotion of WGS
in the presence of steam was confirmed by reducing S/C from 5 to 4 and then from 4 to 3,
which resulted in monotonically decreased H2 and CO2 yields and an increase in CO
yield [46]. Danga et al. studied glycerol and ethanol for dry reforming with CaCO3 to
produce syngas. A series of metal components, such as nickel, iron, copper, platinum,
palladium, ruthenium, and rhodium, were used to promote dry reforming. In these series
of metals, nickel became a promising candidate due to its outstanding performance, as
well as its low price. Here, 100% glycerol conversion along with approximate 92% syngas
selectivity achieved on 10 wt.% Ni contained in CaCO3catalyst [T = 550 ◦C, and P = 1 atm.].
The CO2 released from the CaCO3 catalyst eliminated cokes and attained stability. The
direct use of CaCO3 in this process was discovered viable, and the CO2 generated from
CaCO3 decomposition may be used to modify the H2/CO ratio. Ni was the most promising
contender among the active metals, including Ni, Co, Fe, Cu, Rh, Ru, Pt, and Pd, due to
its great performance and low price. Over the 10 Ni–CaCO3 catalyst, 100% conversion of
glycerol and ethanol, 92% summed H2 and CO selectivity, and an H2/CO ratio of 1.2 could
be reached under ideal conditions. Meanwhile, the robustness of this integrated technique
was proved over five dry reforming–regeneration cycles. The findings suggest a novel way
to use CO2 in the form of carbonates [47].

2.4. Nickel Catalysts for Glycerol Reforming

The catalyst based on Ni becomes a choice for the reason that the metallic sites of Ni
work well enough in water gas shift reaction as well as C–H and C–O cleavage. Never-
theless, the tremendous challenge is how to control catalysts’ deactivation triggered by
sintering and deposition of carbon at catalyst active sites under optimum operating condi-
tions [13]. Hence, various protocols [40,48] and supports like Al2O3 [49–51], ZrO2 [52–54],
CeO2 [55,56] were generated.

Yancheshmeh et al. suggested a new and simple method for preparing Ni-modified
Al2O4 spinel catalyst from the steam reforming technique of glycerol for the production of
hydrogen. Solvothermal preparation method was used for catalyst represented as NiAl-G1,
and the coprecipitation preparation method was used for catalyst described as NiAl-G2 as
well as NiAl-C (NiAl2O4 catalyst synthesized via the coprecipitation method was desig-
nated as NiAl-C). The maximum hydrogen yield was 76.38% achieved with 95.42% maxi-
mum glycerol transformation on NiAl-G2 catalyst 630 ◦C, 1 atm, and 19,600 cm3/gcat/h
space velocity reaction conditions. By creating an oxidative environment surrounding
nickel active sites, the creation of a well-dispersed CeAlO3 phase slowed the growth of
filamentous carbon on the nickel surface and aided the gasification of carbon deposits.
During the 16-h SRG process, the catalytic activity was maintained, and the rate of coke
generation was as low as 0.0004 gcokegcatalh−1. These findings support Ce/NiAl_G2’s
potential as a catalyst for the SRG reaction [56]. Ni added to CaO-modified attapulgite
(CaO–ATP) catalyst from reforming of glycerol for hydrogen manufacturing. Using the
impregnation technique, Ni-Al2O3, Ni-ATP, and Ni-CaO-ATP catalysts can be synthesized.
A maximum hydrogen yield of 85.3% was achieved on Ni-CeO-ATP catalyst with 93.71%
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glycerol conversion at T = 600 ◦C and GHSV = 1 h−1 reaction condition. The stability
of catalyst showed that ATP had better resistance for deposition of carbon compared to
alumina and CaO addition further reduced the production of carbon. Due to its unusual
intermediate structure, ATP outperformed Al2O3 as a carrier. When CaO was utilized as
an ATP modifier, it promoted the water gas shift reaction, resulting in increased hydro-
gen yield, hydrogen selectivity, and a reduction in CO production. The stability results
revealed that ATP is more resistant to carbon deposition than Al2O3, and the addition
of CaO lowered carbon formation even more. As a result, a Ni-based catalyst supported
on a CaO-modified attapulgite could be a potential material for efficient glycerin steam
reforming to create H2 [57].

Wu et al. explored the mesoporous Ni-Cu/CeO2 for the production of renewable
hydrogen via APR of glycerol. The C-C breakage of glycerol benefits from Ni, but Cu
can amplify the WGS reaction. Cu metal’s surface is amenable to adsorption Carbonyl
radical following glycerol’s decarbonylation and hydroxyl free radical in the solution,
which facilitates the reaction. Consequently, the addition of Cu element enhanced the
proportion of H2 and CO2 in the overall gas. It was discovered that increasing the catalyst’s
Cu concentration improved hydrogen production (125.08 to 195.57 µmol min−1 gcat

−1).
Additionally, the CO2 in overall gas was absorbed by the addition of CaO and it lowers
the activation energy. Hence, 1Ni2Cu/CeO2 + 0.2gCaO catalyst shows H2 production rate
increased from 168.97 to 301.92 µmol min−1 gcat

−1. Therefore, improved H2 production as
a result of the inclusion of Cu and CaO [29].

Liu et al. studied MgO supported Ni-Co bimetallic catalyst prepared by sol-gel
method followed by calcination. The resulted catalyst examined the APR of glycerol for
hydrogen production. After addition MgO support, H2 production activity improves by
1.5 times compared to pure Ni-Co bimetallic catalyst. Due to the in-situ adsorption and
removal of CO2, the WGS reaction was further stimulated with the addition of CaO, and
the methanation reaction was inhibited, resulting in the catalyst having a high activity of
hydrogen production. The stability test also shown that the gelatinous MgO supports had
an impact on the catalyst’s activity and stability [30].

Veiga et al. studied crude glycerol steam reforming with oxalic acid to synthesize
Ni-doped La-Zr catalysts. Ni-doped La-Zr catalyst was prepared with the coprecipitation
method at different calcination temperatures. Ni-doped La-Zr catalysts calcined at 850 ◦C
achieved 90% hydrogen yield and 99.9% glycerol conversion. The catalyst prepared at
850 ◦C calcination and operated at 650 ◦C reaction showed higher catalytic stability, activ-
ity, and better resistance to carbon formation. The greatest performance seen for Ni-850
catalysts is mostly due to the development of oxygen vacancies caused by nickel substi-
tution into the La-Zr lattice during calcination, favoring the oxidation of carbon deposits
throughout the process [58].

Charisiou et al. investigated Ni supported over Y2O3–ZrO2 catalyst for the glycerol
steam reforming. The catalyst synthesized through the impregnation technique was Ni
modified Zr and Ni modified YZr. The maximum transformation was 90% achieved at
700 ◦C, and the maximum H2 selectivity was 82% achieved at 450 ◦C over Ni modified
YZr catalyst. The research on spent catalyst revealed the less carbon deposition on Ni/Zr
(Ni modified Zr) catalyst as it was more graphitic in nature and higher carbon deposition
on Ni/YZr spent catalyst. The addition of Y2O3 stabilized the ZrO2 tetragonal phase,
resulted in more easily reducible NiO nanoparticles, increased the O2 storage capacity
of the support and the medium strength acid sides of the catalyst, and, despite having
a higher concentration of basic sites, the Ni/YZr presented more stable monodentate
carbonates. Allyl alcohol, acetaldehyde, acetone, acrolein, acetic acid, and acetol were
the primary liquid products detected for both catalysts. Although higher amounts of
carbon were deposited on the Ni/YZr spent catalytic sample (0.70 gcoke/gcatal compared
to 0.51 gcoke/gcatal for the Ni/Zr catalyst), the addition of Y2O3 on to the ZrO2 support
resulted in structures with lower crystallinity (amorphous carbon) that are more easily
oxidized during the reaction. The coke deposits found on spent Ni/Zr catalysts, on the
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other hand, were graphitic structures with little flaws, resulting in the deadly encapsulation
of Ni particles [54].

2.5. Cobalt Catalysts for Glycerol Reforming

Cobalt (Co) played an extensive role in the synthesis of hydrogen as many researchers
represented this glycerol steam reforming. Ghungrud and Vaidya studied the synthe-
sis of hydrogen by sorption–enhanced steam reforming technique (SESGR) on a Co-
promoted hydrotalcites catalyst. 92.8% maximum glycerol conversion and 89.7% hy-
drogen yield were achieved over Co-Ca-HTlc catalyst represented as HM2 at T = 823 K,
GHSV = 5600 mL g−1 h−1. Ca, Co, and Zn promoted hydrotalcite catalysts were manufac-
tured through the precipitation method. HM2 contained Cu showed the best performance
for the dehydrogenation process, and it was known that basic sites promoted the dehy-
drogenation process. At 550 ◦C, Cu-bearing materials showed a long pre-breakthrough
duration (40 min) and high H2 purity (93.1 mol%). They were also better adsorbents,
removing 1.1 mol CO2/kg sorbent at 550 ◦C. Over 20 cycles of adsorption and regeneration,
the cyclic stability of materials was examined. The potential of customized HTlc-materials
for better H2 production from the SESGR process is explored in this work [59].

A feasible reaction pathway for the SESGR process was provided based on the prod-
uct composition (Figure 3). Glycerol undergoes dehydration hydrogenation reactions
upon adsorption, resulting in acetaldehyde. The adsorbed acetaldehyde was then further
hydration-dehydrogenated into acetic acid. Over Co metal, acetic acid undergoes C-C bond
breakage, yielding H2, CO2, CO, and CH4. The basic catalyst promotes rapid dehydro-
genation, which prevents the generation of olefins and carbon deposition. CO and CH4
are converted to H2 and CO2 by WGS reaction and steam reforming processes, with trace
amounts of CO remaining [59].
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Zhou et al. investigated NiCo modified CNTs bimetallic catalysts with an appropriate
distribution of Ni, as well as Co, metal for synthesizing hydrogen through the impregnation
technique in which metal precursors were injected into the cave of CNTs by ultra-radiations.
At 450 ◦C and 1 atm, 100% glycerol transformation was achieved with 91.4% H2 selectivity
over Ni(i)Co(i)/CNTs catalyst. Ni(i)Co(i)/CNTs exhibited the best stability and catalyst
performance. Although the Ni and Co oxides were only partially reduced, the location of
metal species had a significant impact on reducibility. The synergetic effect between Ni
and Co species was found in Ni(i)Co(i)/CNTs and Ni(o)Co(o)/CNTs, where they had the
same distribution on the internal or external wall. Sintering of active sites was markedly
simpler on the external wall of CNTs, causing the catalyst to deactivate quickly and become
less reactive for the water gas shift process. The result of this study revealed that there is a
new and straightforward method for assembling bimetallic catalyst systems. The Ni-based
bimetallic catalysts might be used to reform mono/multi-alcohols such as ethanol, ethylene



Catalysts 2022, 12, 767 10 of 33

glycol, sorbitol, and other organic wastes from second-generation biorefineries, as well as
biogas and other organic wastes [37].

Al-Salihi et al. investigated Co-Ni-MgO-based SBA-15 nano-catalysts for the glycerol
steam reforming for hydrogen manufacturing. The one pot hydrothermal method was used
to create different mesoporous catalysts, such as Co-SBA-15, Ni-SBA-15, Co-MgO-SBA-15,
Ni-MgO-SBA-15, and Co-Ni-SBA-15 and bimetallic 10 wt.% Co-5 wt.% Ni modified SBA-15
catalyst synthesized by the impregnation method. A glycerol conversion rate of 100%
along with 82.8% hydrogen selectivity was achieved over 10 wt.% Co-5 wt.% Ni modified
SBA-15 catalyst at 650 ◦C. At a low temperature (450 ◦C), the one-pot catalysts showed
50% glycerol conversion compared to 70% for the impregnated catalyst, while both yielded
62% H2 selectivity. Cobalt-based SBA-15 catalysts have superior GSR activity and stability
than nickel-based catalysts in monometallic catalysts. The addition of MgO to Co-SBA-15
improved glycerol conversion (up to 99%) and catalyst stability. The addition of MgO
to Ni-SBA-15 reduced the quantity of carbon deposition on the catalysts by as much as
66%, according to TGA-TPO analyses of spent catalysts. It’s worth noting that under our
experimental conditions, all of the catalysts examined at the optimum temperature of
650 ◦C demonstrated a remarkable hydrogen selectivity of 70% [36].

Duo et al. developed chemical looping steam reforming process for glycerol conversion
to hydrogen over Al-MCM-41 and SBA-15 well-order mesoporous OCs containing NiO and
CeO2 nanoparticles [33]. It was discovered that the NiO and CeO2 in the OCs were reduced
by glycerol, and the reduced OCs were in charge of producing hydrogen. It was shown
remarkable stability in 60 redox cycles (180 h), and the carbon conversion and hydrogen
selectivity were both over 60% and 85%, respectively. Oxygen transport was enhanced
by heavily loading mesoporous MCM-41 and SBA-15 with NiO and CeO2, which also
produced outstanding redox CLSR cycles and long-term stability [33].

The summary of some more reported literature related to glycerol reforming over
various catalysts to produce hydrogen is represented in Table 2. Noble metal catalysts, such
as Pd, Ru, Ir, Rh, and Pt, are known for their high catalytic activity, which results in good
performance and coke resistance. Other catalysts, such as Ni, Co, and Cu, on the other
hand, are less expensive and more readily available and have a desirable catalytic activity
for boosting hydrogen production. Their stability, on the other hand, is undesirable since
the coking process frequently deactivates them. As a result, developing a highly active
and stable catalyst requires the employment of metals as catalysts in combination with the
proper selection of support (based on porosity, redox characteristics, and thermal stability,
among other factors). Alumina and silica are the most common catalytic supports in
research, but some catalysts can also be supported on active carbon, nanotubes, mesoporous
carbon, nanoparticles, and other materials. Due to its high specific surface and thermal
stability, alumina is the preferred and most used support for this purpose. However,
carbon deposition tends to render it inactive. The optimal bimetallic catalyst must possess
excellent thermal strength, mechanical resistance, and redox characteristics to produce H2
with high selectivity.

Table 2. Hydrogen production from glycerol reforming using various catalytic systems under optimal
reaction conditions.

S. No. Catalyst Reaction Condition/Reactor X (%) S (%) Y (%) References

1
Co-Ni-MgO-based SBA-15 T = 650 ◦C

100 82.8 82.8 [36](one-pot hydrothermal and
impregnation method) P = 1 atm

(Fixed bed reactor)

2

Pt and/or Ni supported over
γ-alumina T = 250 ◦C

100 - - [37](Sol–gel method) P = 30 bar
WHSV = 2.6 h−1
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Table 2. Cont.

S. No. Catalyst Reaction Condition/Reactor X (%) S (%) Y (%) References

3

Pt and Ni supported SiO2 T = 350 ◦C

100 70 70 [38]
(Ion exchange method) P = 1 atm

Feed flowrate = 0.5 cm3 h−1

(Fixed bed reactor)

4 Ru doped Al2O3

T = 500 ◦C,

89.1 - - [41]
P = 0.1 MPa

Cat. Wt. = 0.1 g
W/FA0 = 1.98

5 CeZr-CoRh

T = 650 ◦C,

100 86 86 [44]
P = 0.1 MPa

Cat. Wt. = 55 mg
WHSV = 8.4 gglygcat

−1

6 Rh modified MeAl2O4 at Al
T = 723 K

100 - - [45]
WHSV = 34,000 mL g−1 h−1

7
Rh/Al2O3 T = 823 K

100 - - [46]
(Impregnation technique) WHSV = 4.8 × 103 N mL/gcat

min

8 Ni/CaCO3
T = 550 ◦C

100 92 92 [47]P = 1 atm

9

Rh/γ—Al2O3@CeO2, MgO,
La2O3

T = 600 ◦C

90 78 78 [49]
(Co-precipitation method) P = 1 atm

GHSV = 5000
N mL g−1 hr−1

(Fixed bed reactor)

10
Ni supported over Y2O3–ZrO2 T = 700 ◦C 90 91 82 [54](Impregnation technique)

11
Ni T = 630 ◦C

95.42 80 76.4 [56]modified Al2O4
P = 1 atm press., WHSV = 19,600

cm3/gcat/h
(Coprecipitation method)

12

Ni added to CaO—modified
attapulgite T = 600 ◦C

93.7 91 85.3 [57](Impregnation method) Cat. Wt. = 0.5 g
GHSV = 1 h−1

13
Co promotedhydrotalcite T = 550 ◦C

92.8 96.7 89.7 [59]
(Precipitation method) GHSV = 5600 mL g−1 h−1

14

NiCo modified CNTs
bimetallic catalysts T = 450 ◦C

100 91.4 91.4 [60](Impregnation method) P = 1 atm
(Fixed bed reactor)

15 Pt/Al2O3

T = 200–240 ◦C
84 16.8 14.1 [61]P = 16–33.5 bar

(Batch reactor)

16 Pt/Al2O3

T = 240 ◦C
34 36.8 12.5 [62]P = 42 bar

(Batch reactor)

17
Pt/SiO2 T = 300–400 ◦C

96.8 90 89.7 [63](Sol—gel method) P = 1 atm
(Microchannel reactor)
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Table 2. Cont.

S. No. Catalyst Reaction Condition/Reactor X (%) S (%) Y (%) References

18

Pt/γ—Al2O3, SiO2 &
silica—alumina T = 225 ◦C

11.9 73 8.9 [64](Impregnation method) P = 29 bar
WHSV = 4.2 h−1

(Fixed bed reactor)

19
Pt/ZrO2 T = 350 ◦C

100 69 6.9 [65](Impregnation method) P = 29 bar
(Fixed bed reactor)

20

Pt/Al2O3, Puralox, Catapal B T = 250 ◦C

57 - 85 [66]
(Impregnation method) Cat. Wt. = 300 mg

Feed flowrate = 0.5 mL/min
(Fixed bed reactor)

21

Pt—Re/C T = 225 ◦C

89.4 26.1 23 [67]
(Impregnation method) P = 420 psi

WHSV = 5 hr−1

(Fixed bed reactor)

22

10 Ni/Al2O3/5 CeO2 T = 550–800 ◦C

100 88.6 86 [68]
(Impregnation method) P = 1 atm

WHSV = 10 hr−1

(Fixed bed reactor)

23

Ru-Mg-Al hydrotalcite- mixed
oxides T = 400–700 ◦C

45 90 40.5 [69](Impregnation method) P = 1 atm
GHSV = 69,000 h−1

(Fixed bed reactor)

24

Ru/Al2O3 T = 400–600 ◦C

100 80 80 [70]
(Wet co–impregnation

method) P = 1 atm

Cat. Wt. = 200 g
W/F = 1.05 mg min mL−1

(Fixed bed reactor)

25
Ru/C T = 773 K

94.6 99.8 94.5 [71](Impregnation method) P = 1 atm
(Fixed bed reactor)

26
Mg(Al)O/Ru T = 450–650 ◦C

97 96 90 [72](Impregnation method) P = 1 atm
(Fixed bed reactor)

27
C/Pt and Pt/Ru T = 225 ◦C

24 - - [73](Impregnation method) P = 1 bar
(Fixed bed reactor)

28
Rh/ZrO2, Rh/CeO2 T = 650–750 ◦C

79 30.6 24.2 [74](Impregnation method) Cat. Wt. = 20 mg
(Fixed bed reactor)

29

Rh/Al2O3 T = 250 ◦C

82 85.2 69.9 [75]
(Impregnation method) P = 50 bar

Cat. Wt. = 250 mg
WHSV = 2.45 h−1

(Fixed bed reactor)

30
Pt and Pt-Rh/α-Al2O3 T = 503 K

67 1.67 1.12 [76](Impregnation method) Cat. Wt. = 300 mg
(Batch reactor)
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Table 2. Cont.

S. No. Catalyst Reaction Condition/Reactor X (%) S (%) Y (%) References

31
Rh and Ni/γ—Al2O3 T = 723 to 1073 K

69 50 34.5 [77](Impregnation method) P = 1 atm
GHSV = 5000 to 30,000

mLglyh−1 mLcat
−1

32

Ni-La-Ti oxide T = 500–650 ◦C

99.7 90.3 90 [78]
(Coprecipitation method) P = 1 bar

Cat. Wt. = 0.1 gm
WHSV = 3 h−1

(Fixed bed reactor)

33
NiAl2O4 T = 600 ◦C

99 98.9 98 [79](Impregnation method) Feed flowrate = 2.5 mL/h
(Fixed bed reactor)

34 La-promoted Ni/Al2O3

T = 923–850 ◦C

96 98.9 95 [80]
P = 1 atm

WHSV = 3.6 × 104 mL−1 h−1

(Fixed bed reactor)

35

La1-xCaxNiO3perovskite-
oxides T = 550 ◦C

100 80 80 [81]
(Impregnation method) P = 1 atm

Cat. Wt. = 200 mg
WHSV = 2.5 hr−1

(Fixed bed reactor)

36

Ni and Ni—Co/alumina T = 300–700 ◦C

- - 83 [82]
(Impregnation method) P = 1 atm

WHSV = 10 hr−1

(Fixed bed reactor)

37

Ni/α—Al2O3 and
α—Al2O3modified by ZrO2

and CeO2

T = 600 ◦C

90 95.6 86 [83](Impregnation method) P = 1 atm
Feed flow rate = 0.022 cm3

min−1

(Fixed bed reactor)

38 LaNiO3 and LaCoO3

T = 700 ◦C
100 98 98 [84]P = 1 atm

(Fixed bed reactor)

39

0.25 CoAl, 0.625 CoAl T = 260 ◦C

98 29 10 [85]
Co3O4 P = 5 MPa

WHSV = 24.5 h−1

(Fixed bed reactor)

40
Co-Ce/Hap T = 750 ◦C

99 79 7.2 [86](Impregnation method) P = 1 atm
(Fixed bed reactor)

41
Co/SBA-15 with Zr, Ce and La T = 500–600 ◦C

100 72 72 [87](Impregnation method) P = 1 atm
WHSV = 7.7 h−1

42
Lax-Cey-CoO3 T = 700 ◦C

100 68 68 [88](Co—precipitation method) P = 1 atm
(Fixed bed reactor)

43

Co/Al2O3 T = 723–923 K

65 80 52 [89]
(Impregnation method) P = 1 atm

GHSV = 5 × 104 mL gcat
−1 h−1

(Fixed bed reactor)
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Table 2. Cont.

S. No. Catalyst Reaction Condition/Reactor X (%) S (%) Y (%) References

44

Ceria/Ir, Co and Ni T = 250–600 ◦C

100 85 85 [90]
(deposition—precipitation

method) P = 1 atm

GHSV = 11,000 mL gcat
−1 h−1

(Fixed bed reactor)

X = Conversion, S = Selectivity, Y = Yield.

3. Glycerol Dehydration

Acrolein was obtained by anhydrous glycerol decomposition in the existence of solid
catalysts such as alkali–metal acid sulfates and phosphorus pentoxide in the 19th cen-
tury [91,92]. Hence, the suggested route is illustrated in Figure 4. Acrolein is transformed
directly into targeted high-value-added derivative products because of its toxic effects.
Acrolein is an intermediate in producing acrylic acid and acrylic polymers in the industry.
The consumption of acrolein is also for the production of DL-methionine, and 3-methylthio-
propionaldehyde is produced as an intermediate here [93]. Early studies concentrated on
homogeneous catalysts in the aqueous phase under near- or supercritical conditions. How-
ever, the vapor phase over heterogeneous catalysts are chosen due to the predicted high cost
of the reaction vessel and separation concerns [10]. However, until the end of the twentieth
century, when cheaper glycerol from the biodiesel synthesis process became accessible,
these early works in both the gaseous and liquid phases remained unexplored [93].
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The high selectivity was achieved due to the control of 1st dehydration reaction.
Tsukuda et al. proposed this mechanism, where 3-hydroxypropionaldehyde formation
was favorable over the acetol formation, which is considered a byproduct of the pri-
mary reaction step; further, this mechanism (Figure 5) suggested two hydrogenation
steps: first from acrolein and second from acetol to achieve allylic alcohol and 1,2-PDO,
simultaneously [94,95]. So many solid acid catalysts have been used for dehydration of
glycerol for acrolein production through zirconia, heteropoly acid, niobia, and alumina
catalysts [96–98].
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3.1. Zeolite Catalystsfor Glycerol Dehydration

Lin et al. investigated ß zeolites (HNa–ß–κ) for the production of acrolein through
glycerol dehydration. In total, 65% glycerol transformed to produce 23.3% acrolein yield at
HNa–ß–0 catalysts at 200 ◦C. It was speculated that smaller pores increased selectivity but
reduced activity for acrolein production. An increase in temperature favored the selectivity
of acrolein. After being employed in the reaction test (see infra) and recalcination at 450 ◦C
in the air for 4 h, the XRD patterns of these zeolitic catalysts were substantially identical.
These results showed that the ion-exchange technique, subsequent calcination, and reaction
tests did not result in any visible changes in the zeolitic crystal structure. As the Na/Al
ratio increased, the apparent surface area of the HNa-ß–κ zeolites decreased. At the same
time, the pore width reduced as the Na+/Al ratio increased, which could explain why Na+

is larger than H+ when residing in the zeolitic channel. According to the pore diameter
data, these pore widths correspond to the 12-membered ring in the b-zeolites and the
10-membered ring in the H-MFI zeolite. Na+/H+ ratio increment also enhanced acrolein
selectivity and decreased glycerol conversion. The highest acrolein yield was achieved due
to the replacement of acidic sites with non-active Na+ sites [99].

Ren et al. investigated MnHPO4 and meso-zeolite (H-ZSM-5) catalyst prepared by the
ion-exchange technique and concluded that the less strong acid amount was more beneficial
for the production of acrolein and also coke suppressed in glycerol dehydration. A 100%
transformation of glycerol was achieved for all reactions and 84.7% highest acrolein yield
over meso-zeolite(HZSM-5) supported on MnHPO4 catalysts [100]. Meso and microporous
zeolite by one-step synthesis technology for acrolein formation from glycerol dehydration.
HZSM-25 catalyst achieved 99% glycerol transformation and 80% acrolein selectivity at
450 ◦C, 1 atm, and 38.47 h−1 WHSV. The high acidity and fast diffusion of species in
synthesized ZSM-5 supported acrolein production from dehydration of glycerol. Diffraction
peaks of five types of transition metal hydrogen phosphates supported on meso-HZSM-5
were also shown to exhibit this behavior [101]. Qureshi et al. investigated nano H-ZSM-
5 highly crystalline catalyst for glycerol dehydration through hydrothermal technique.
A 98% glycerol transformation occurred to produce 87% acrolein selectivity at HZSM-5
(Si/Al = 75) at 320 ◦C, 1 atm, and 4 h−1 WHSV. According to these findings, the catalysts
with a Si/Al ratio of 75–100 had a higher crystallinity than the other samples. The SEM
pictures revealed the catalyst’s surface morphology, particle size, and crystal aggregation.
The exterior surface of all H-ZSM-5 catalysts produced was uniform and had a highly
orientated shape. The catalysts exhibit consecutive crystal lattices and a smooth surface,
according to TEM pictures of H-ZSM-5 with a Si/Al ratio of 75 [102].

Yun et al. investigated marigold-like silicon dioxide (silica) functionalized through
groups of sulfonic acid (MF–FS) and zeolite (HZSM-5) catalysts for the production of
acrolein from glycerol dehydration. The maximum acrolein yield was 73%, with 100%
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glycerol transformation achieved over MF-CS catalyst at 250 ◦C. Bronsted acid sites in
MF-FS catalyst promoted stability as well as selectivity for acrolein production [103]. Chai
et al. studied acrolein production through dehydration on various solid acid-base catalysts
synthesized by the impregnation method. A 100% glycerol transformation was achieved
with 65% acrolein selectivity over 15 wt.% WO3/ZrO2 catalyst at 315 ◦C, 1 atm, and 80 h−1

GHSV. For acrolein production, Bronsted acidic sites were superior to Lewis acidic sites [94].
Xie et al. investigated microwave absorbing catalysts for acrolein production from glycerol
dehydration. Most notably, the catalyst stability by microwave heating technique was much
better than the heating process by electric. WO3/ZrO2 at SiC coated microwave absorbing
catalyst was synthesized. The complete glycerol transformation (100%) was achieved with
70% acrolein selectivity by 250 ◦C microwave heating [104].

Shan et al. investigated fabricated nanosheet MFI zeolite catalyst for glycerol dehydra-
tion for acrolein production [105]. A 99.7% transformation of glycerol was achieved with
81.8% acroleinat 320 ◦C and 1 atm. Compared to conventional ZSM-5 zeolite (CMZ-X), MFI
zeolites nanosheets were more active as well as stable for glycerol dehydration reaction
in the gas phase. The nanosheet MFI zeolites (NMZ-X) decreased the rate of coke deposi-
tion which resulted higher stability as well as activity. The zeolites in CMZ-X produced
with tetrapropylammonium hydroxide as the structural guiding agent were shown as
uniform 400 nm particles with cylindroid intergrowth. The NMZ-X Si/Al molar ratio has a
significant impact on the morphologies of nanosheet MFI zeolites. NMZ-100 appears to
be a three-dimensional multi-lamellar stacking of MFI nanosheets with intergrowth. The
NMZ-100 particles had a diameter of roughly 1.5 µm and were made up of 30–40 nm thick
lamillar stacking. Meanwhile, NMZ-50 demonstrated similar MFI nanosheet lamellar stak-
ing, but the particle size (500 nm) and lamellar stacking thickness (approximately 10 nm)
were substantially less. NMZ-30, on the other hand, looks like cotton balls and could not
tell the MFI nanosheets from the SEM image. NMZ-30 was well-crystallized and exhibited
nanosheet MFI zeolite properties, as indicated by the XRD patterns. It was discovered
that Al content had a crucial impact on the development of NMZ-X by comparing TEM
pictures of nanosheet MFI zeolites with varied Si/Al molar ratios. Due to the abundance of
unstable Si–O–Al units, it was difficult to generate large area MFI nanosheets with a low
Si/Al molar ratio [105].

3.2. Titania Catalysts for Glycerol Dehydration

Titanium oxide (Titania) has three crystalline phases: brookite, anatase, and rutile.
Amid all, the anatase phase has vital applications [106–109]. Babaei et al. investigated
TiO2 catalysts for acrolein production for glycerol dehydration. It was mentioned that
the central hydroxyl group adsorption on the surface had the best geometry and energy
(30.91 kcal/mol) for dehydration reaction to acrolein. The glycerol dehydration to acrolein
is followed by removing water molecules. The TiO2 surface exhibited more activity in
proton transfer reaction with 89.1 kcal/mol E (activation energy) comparing the above two
routes for acrolein formation [109]. Ulgen et al. synthesized WO3/TiO2 catalyst through the
impregnation method for acrolein formation from glycerol dehydration. Maximum acrolein
selectivity of 80% and the complete conversion of glycerol was achieved over WO3/TiO2
catalyst at 280 ◦C. In most cases, a larger BET surface area was associated with better
glycerol conversion. Titania-supported tungsten oxide systems were ideal catalysts for the
dehydration reaction of glycerol due to their longer service time, decreased deactivation
speed, and much lower pricing [110].

3.3. Silica Catalysts for Glycerol Dehydration

Wang et al. focused on low-temperature (210–230 ◦C) glycerol dehydration to acrolein
through temperature-programmed surface reaction (TPSR). A series of acid catalysts (lewis
acid catalysts, supported heteropolyacids and superacids, molecular sieves, and metal
oxides) synthesized by the impregnation method has been screened for glycerol dehy-
dration at low temperature (210 ◦C) through TPSR. SiW/SiO2, as well as SO4

2−/TiO2
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achieved high acrolein selectivity (85% and 86%) simultaneously. The maximum glycerol
transformation was achieved at 94.4% at 230 ◦C [111]. Rosas et al. investigated some most
active catalysts, namely, NH4 and La modified β zeolites, Pd and La modified Y zeolites,
hierarchical zeolite (ZSM-5), WO3 modified ZrO2, WO3 modified TiO2, ZrOx and WOx
modified NbOx, WO3-SiO2 modified ZrO2, NbOx-WOxmodified Al2O3, H3PO4 modified
MCM-41, SAPO-40, and NbPSi for glycerol dehydration reaction in the gas phase. A
100% conversion was obtained at 300–325 ◦C. In this, the gas-phase catalytic process was
more suitable than the liquid-phase due to high acrolein yields (>70%) [112]. Silica and
phosphate supported copper catalyst for glycerol dehydration to produce acetol. Silica and
phosphate supported copper catalyst produced through sodium silicate neutralization with
the orthophosphoric acid and added copper nitrate. After this, 58.3% acetol selectivity and
100% glycerol transformation were achieved 40 CuSP catalyst at 220 ◦C, and atmospheric
pressure. Lewis acidic sites were responsible for the increase in selectivity of acetol [113].
Basu et al. investigated silica-supported copper chromite catalyst synthesized through a
sol-gel technique for dehydration of glycerol for acetol production. The transformation of
glycerol reached 100% with 70% maximum selectivity of acetol for 40 wt.% Copper chromite
loading on silica at 220 ◦C and atmospheric pressure. The spent and oxidized catalyst
presented lower selectivity and conversion compared with reduced form catalyst due to
cupric ion in reduced form catalyst, which worked as Lewis acid sites in dehydration [114].

3.4. Alumina Catalysts for Glycerol Dehydration

Mesoporous alumina was prepared with different precipitants through a continu-
ous precipitation method for gas-phase glycerol dehydration for acrolein production by
Lima et al. A 99% glycerol transformation occurred at alumina catalyst prepared at 7 pH
with NaOH precipitant at 500 ◦C. Results revealed high carbon formation and higher olefins
production, which showed the production of carbon is related to these by-production forma-
tions. The sample synthesized with KOH had the largest specific surface area (432 m2 g−1)
among the influences of the precipitating agent, whereas the sample created with Na2CO3
had the lowest specific surface area (432 m2 g−1) (48 m2 g−1). The specific surface area of
the produced material was similarly affected by the pH of the precipitation. Due to the
type of precipitate generated, samples prepared at pH 5 (389 m2 g−1 of Na2CO3 precipitant
and 359 m2 g−1 of NaOH) have a greater specific surface area than those prepared at pH 7.
When precipitation was carried out at pH 7, the resulting residue was weakly crystalline,
creating pseudo-boehmite. At pH 5, an amorphous precipitate was formed, yielding a
microcrystalline boehmite with a higher specific area [115].

Kim et al. investigated silica and alumina catalyst for glycerol dehydration reaction
in gas-phase for production of acrolein. The conversion of glycerol was 50% along with
16% acrolein selectivity achieved over Si0.6Al0.4Ox catalyst at 315 ◦C and 62 h−1 WHSV.
It was concluded that the yield of acrolein depended on the brønsted acid sites. As Si
mole fraction was increased up to 0.8, the intensity of the Al2O3 XRD peak increased and
subsequently declined as Si mole fraction was increased. Due to the tetrahedral interaction
between Al and SiO, the degree of crystallinity is determined by the Al concentration
contained in SiO2. The specific surface areas of the silica–alumina increased dramatically
when Al (or Si) species were added, compared to SiO2 and -Al2O3. The catalyst pore
volume followed a volcano-like pattern in relation to the mole fraction of Al, while the
average pore diameter shrank as the mole fraction of Al increased. The catalysts’ pore size
distributions revealed a noticeable variation in pore diameter with regard to the Al content.
For silica–aluminas with Al mole% of less than 0.2, a relatively broad pore size distribution
was discovered [116].

A summary of some more reported literature on glycerol dehydration over various
catalysts to produce acrolein is represented in Table 3 [92,99–136].
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Table 3. Acrolein production from glycerol dehydration using various catalytic systems under
optimal reaction conditions.

S. No. Catalyst Reaction Conditions/Reactor X (%) S (%) Y (%) References

1

HPA, H-SiW, H-PW and
H-PMo/γ-Al2O3

T = 275 ◦C

99 42.1 41.7 [92](Impregnation method) P = 1 atm
feed flowrate = 1.68 mL/h

(Fixed bed reactor)

2 ß zeolites (HNa–ß–κ)

T = 200 ◦C

65 35.8 23.3 [99]
Cat. Wt. = 1 g

Feed flowrate = 12 mL/h
(Fixed bed reactor)

3
MnHPO4 and meso-Zeolite T = 300 ◦C

100 84.7 84.7 [100](Ion exchange method) Cat. Wt. = 0.5 g
Feed flowrate = 0.023 mL/h

4

Zeolite T = 723 K

99 80.8 80 [101]
(one-step synthesis) P = 1 atm

Cat. Wt. = 80 mg
Fee flowrate = 0.05 mL/h

5

HZSM-5 T = 320 ◦C

98 88.8 87 [102]
(Hydrothermal Technique) P = 1 atm

WHSV = 4 h−1

(Fixed bed reactor)

6
WO3/TiO2 T = 280 ◦C

100 80 80 [110](Impregnation method) P = 1 atm

7 Pd/LaY Zeolite

T = 573 K

93 94.2 87.6 [112]
P = 1 atm

GHSV = 5933 h−1

(Fixed bed reactor)

8
Silica supported copper

chromite T = 220 ◦C 100 70 70 [114]
(Sol gel method)

9 Zeolite
T = 290–650 ◦C

100 62.1 62.1 [117]WHSV = 282–388 hr−1

(Fluidised bed reactor)

10

Sulfated zeolite T = 290–390 ◦C

49 42 20.58 [118]
(Precipitation method) P = 1 atm

GHSV = 18,000–360 hr−1

(Continuous flow reactor)

11

Na-ZSM-5 and T = 315 ◦C

75.8 63.8 48.36 [119]
H-ZSM-5 P = 1 atm

Feed flow rate = 23.4 m mol/h
(Fixed bed reactor)

12

ZSM-23, HY, Mor, H and
SBA-15, CVD, Hß T = 250 ◦C

95 18.5 17.58 [120](Impregnation method) P = 70 bar
(Autoclave with stirrer)

13

WO3/TiO2 T = 200–400 ◦C

88 87.5 77 [121]
(Sol–gel and solvothermal

method) P = 1 atm

WHSV = 22.9 gEtol. g/cat/h
(Fixed bed reactor)
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Table 3. Cont.

S. No. Catalyst Reaction Conditions/Reactor X (%) S (%) Y (%) References

14 WO3/TiO2

T = 280 ◦C
95 73 69.4 [122]P = 1 atm

(Fixed bed reactor)

15
WOx/TiO2 T = 400 ◦C

100 80 80 [123]Sand NbOx/TiO2 P = 25 and 33 MPa
(Fixed bed reactor)

16
HPW/TiO2 (Impregnation

method)

T = 280 ◦C

100 74 74 [124]
P = 1 atm

GHSV = 4400 h−1

(Fixed bed reactor)

17
Al2O3-, SiO2-, and TiO2- T = 305 ◦C

100 66.2 66.2 [125]/Nb- and W-oxide P = 1 atm
(Impregnation method) (Fixed bed reactor)

18

H6P2W18O62/MCM-41-SUP T = 320 ◦C

94 72 67.7 [126]
(Supercritical Impregnation

method) P = 1 atm

Cat. Wt. = 0.5 g
WHSV = 0.6 h−1

(Fixed bed reactor)

19

Al doped SBA-15 T = 325 ◦C

100 31 31 [127]
(post synthesis method) P = 1 atm

Feed flowrate = 0.1 mL/hr
(Fixed bed reactor)

20 WO3/Zr Doped Mesoporous
SBA-15

T = 325 ◦C
97 42.3 41 [128]P = 1 atm

(Fixed bed reactor)

21

Silica-Supported
Phosphotungstic Acid T = 280 ◦C

99 30 27 [129](sol–gel method) P = 1 atm
(Fixed bed reactor)

22
Tungsten oxides dispersed on

Al2O3, ZrO2, and SiO2

T = 315 ◦C

98 70 68.6 [130]
P = 10 kPa

GHSV = 400 h−1

(Fixed bed reactor)

23
Bulk, nanorod and

MOF-derived γ-Al2O3,

T = 240–340 ◦C
80 74 59.2 [131]WHSV = 2.4 h−1

(Fixed bed reactor)

24

Pt/γ-Al2O3 T = 375 ◦C

90 65 58.5 [132]
(Impregnation method) P = 1 atm

feed flowrate = 12 mL/h
(Continuous flow reactor)

25 ZrO2 & Ceria/Alumina
T = 300 ◦C

100 85 85 [133]GHSV = 12,000 h−1

(Micro reactor)

4. Glycerol Hydrogenolysis

The catalytic hydrogenolysis reaction is completed in two steps: hydrogenation and
dehydration. Such a type of reaction system depends mainly on one catalyst particle
size along with its structure [134,135]. Fan et al. concluded that the glycerol conversion
would be more promising when using an enzymatic approach for glycerol to 1,3-PDO [136].
Sun et al. studied glycerol hydrogenolysis to produce C3 products such as 1,2-PDO and



Catalysts 2022, 12, 767 20 of 33

1,3-PDO [137]. The reaction route for glycerol hydrogenation producing ethylene glycol,
methanol, ethanol, and methane [61]:

C3H8O2 + H2O↔ C2H6O2 + CH3OH (5)

C2H6O2 + H2 ↔ CH3CH2OH + H2O (6)

CH3OH + H2 ↔ CH4 + H2O (7)

The reaction route for glycerol hydrogenation into propylene glycols (1,2-propanediol
(1,2-PDO), and 1,3-propanediol (1,3-PDO)) were shown as (Figure 6) [138]. So many
heterogeneous catalysts were utilized for hydrogenolysis reaction in which noble metals
(Au, Rh, Pd, Pt, and Ru) based catalysts were utilized or non–noble metals (Ni, Co, and Cu)
based catalysts were used [139–153].
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4.1. Nickel Catalysts for Glycerol Hydrogenolysis

Bulk Ni phosphide catalyst prepared through hydrothermal method for glycerol
hydrogenolysis for production of 1,2-PDO. 95% 1,2-PDO selectivity along with 5.4% glycerol
conversion was achieved over Ni3P catalyst at 190 ◦C and 5.5 MPa. It was concluded that
low conversion was achieved over the catalysts which were treated at low temperature
(190 ◦C). Hexagonal morphology was shown by bulk nickle phosphide catalyst. After
annealing, the sample synthesized at a pH of 9 predominantly showed metallic nickel
diffraction peaks, but the sample produced at a higher pH value (pH 12) was found to be
pure amorphous metallic nickel as determined by XRD. When the pH was reduced to 7,
the comparatively strong diffraction peaks of Ni3P were seen. All diffraction peaks of the
annealed sample may be assigned to the Ni3P phase when the pH value is 5. The influence
of annealing temperature is also demonstrated. More substantial diffraction peaks and
larger particle sizes resulted in a higher annealing temperature (600 ◦C), resulting in a
lower dispersion degree, which is usually undesirable for catalysts. It is discovered that
Ni3P has a hexagonal prism shape, and its length-to-diameter ratio is 2 to 1 [141].

Zhang et al. studied macro-mesoporous carbon (MMCs) encapsulated in Ni nanopar-
ticles catalysts synthesized by dual–templating technique for glycerol hydrogenolysis to
1,2-PDO. On hierarchical catalysts, the glycerol conversion of 95.5% was achieved along
with 77.1% selectivity of 1,2-PDO over Ni/MMC-6 catalyst at 210 ◦C and 4 MPa. Ni
supported on multiporous carbon was highly active, stable, and selective catalysts for
hydrogenolysis of glycerol to PDO. These catalysts’ performance was attributed to their
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large surface area and pore volume proposed to reduce mass transfer limitation in the
system. The total surface area and pore volume of the Ni/MMC-X materials were found to
be much greater than those of the Ni/C micro and Ni/CNT (Ni modified carbon nanotubes)
materials [154].

Chimentão et al. investigated zinc–supported Cu and Ni catalysts for glycerol hy-
drogenolysis. 100% transformation of glycerol was achieved over Ni/ZnAl catalyst. 55%
and 49% selectivity of hydroxyacetone and 29% and 26% yield of hydroxy acetone were
achieved over Cu/ZnAl and Cu/ZnO catalyst simultaneously at 300 ◦C. Ni promoted
catalysts that formed methane, and Cu promoted catalysts that acetol formation. The
thermodynamically stable phase of zinc oxide at ambient conditions is zincite, which
crystallizes in the hexagonal wurtzite structural type. It was mentioned that the acidity
of ZnAl and ZnO promoted activity. Adsorption and acidity played a vital role in the
transformation of glycerol [155]. The catalyst has both acidic as well as basic sites. The
basic sites’ influence must also be considered. The mechanism of glycerol dehydration for
acetol formation over basic sites was proposed [95]. The reaction mechanism proposed
over basic sites began with the dehydrogenation step rather than the dehydration step [156]
(Figure 7).
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In this, 2,3-dihydroxypropanal, through dehydration and hydrogenation produced
acetol and/or through the retro-aldol reaction of formaldehydeand2-hydroxyethanal (hy-
droxyacetaldehyde) to produce ethylene glycol through hydrogenation [93,95,156]. The
glycerol hydrogenolysis mechanism is suggested in two steps for propylene glycol (1,2-
PDO, 1,3-PDO) production: dehydration and hydrogenation. The mechanism of glycerol
hydrogenolysis involves dehydration first and then hydrogenation. The different dehydra-
tion intermediates of glycerol correspond to propylene glycol through hydrogenation. The
tautomeric equilibrium is indicated as a double-arrow between the dehydration intermedi-
ates (Figure 8) [157,158].
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4.2. Copper Catalysts for Glycerol Hydrogenolysis

Bimetallic Ru–Cu nanoparticles supported over the series of TiO2 catalysts prepared
from the impregnation method for hydrogenolysis of glycerol for 1,2-PDO production was
studied [142]. 53.9% glycerol conversion and 93.2% 1,2-PDO selectivity were achieved of
2.5Ru-2.5Cu/TiO2 catalyst at 200 ◦C and 2.5 MPa. The best performance was shown by
2.5Ru-2.5Cu/TiO2 catalyst and concluded that the addition of Ru-Cu-based catalyst en-
hanced 1,2-PDO selectivity. Copper-supported activated carbon through the impregnation
method for glycerol production of 1,2-PDO [159]. The maximum glycerol transformation
of 23%, along with 20% 1,2-PDO selectivity, was achieved over copper (Cu) supported on
activated carbon treated at 750 ◦C (Cu/CGran(750)) at 220 ◦C and 5 MPa. The interaction of
Cu species with carbon support was minimized at high temperatures, leading to large Cu
particles. Novel bi-functional Cu–Mg/SiO2 catalyst through chemisorptions–hydrolysis
technique for production of 1,2-PDO from hydrogenolysis of glycerol and 89.5% trans-
formation of glycerol, as well as 92.1% selectivity of 1,2-PDO achieved over Cu0.1-Mg0.2,
supported SiO catalyst at 210 ◦C and 4 bar [160]. The result revealed that Cu species were
enough active sites for maximum activity, the addition of copper reduced the Lewis acid
sites and enhanced the Bronsted acid sites. Shan et al. investigated Cu/SBA-15 catalyst
through a simply grinding technique and impregnation method for 1,2-PDO production
from hydrogenolysis of glycerol. A 90.3% transformation of glycerol along with 97.3%
1,2-PDO selectivity was achieved at 10% Cu/SBA-15 prepared through grinding method at
230 ◦C and 4 MPa. Cu/SBA-15 catalysts with large surface areas showed excellent stability
as well as activity in the hydrogenolysis reaction of glycerol [161].

4.3. Platinum Catalysts for Glycerol Hydrogenolysis

Feng et al. studied tungsten (W) and aluminum (Al) doped into SBA-15 through
one-step technology in the acidic medium for glycerol hydrogenolysis for 1,3-PDO pro-
duction. Diffraction peaks were detected clearly after the metal ions were incorporated
into the SBA-15 framework, suggesting that the SBA-15 mesoporous structure was well
conserved after the direct synthesis [162]. The glycerol transformation was 66%, and 50%
1,3-PDO selectivity was achieved over Pt supported (W+Al) modified SBA-15 catalyst at
160 ◦C and 6 MPa. Niu et al. investigated WOx-supported Pt catalysts prepared through
hydrothermally and impregnation method for hydrogenolysis of glycerol to 1,3-PDO [163].
Pt doped over HWO3 catalyst produced 63.4% glycerol transformation and 43.1% 1,3-
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PDO selectivity at 5 MPa and 160 ◦C. The enhancement in performance showed the Pt
nanoparticle dispersion, the high acidic nature, and the interaction of HWO3. The tungsten
modification effect on phosphate-supported zirconia Pt catalyst for hydrogenolysis to
produce 1-propanol [164].

Wang et al. achieved glycerol conversion 100% and 81% 1–Propanol yield was achieved
at Pt/7WOx–ZrP catalyst at 270 ◦C and 2 MPa. It was concluded that the modification of
ZrPWOx increased the catalyst’s total acidity, which was beneficial for glycerol conversion
and also enhanced Pt nanoparticles dispersion. The addition of WOx mainly improved
Lewis acid sites, while Brønsted acid sites remained the same. Various supported, as
well as unsupported, Pt–W-based catalysts to produce 1,3-PDO from the hydrogenolysis
of glycerol. Among all, Pt-WOx doped Al2O3 provided the best activity and selectivity
and showed strong dispersion of Pt over WOx which promoted strong Bronsted acidic
sites [165].

4.4. Iron Catalysts for Glycerol Hydrogenolysis

Heterogeneous iron-containing nanocrystals for the hydrogenolysis of glycerol and
mentioned that the incorporation of Fe metal positively affected selectivity and activity of
catalysts for glycerol hydrogenolysis towards 1,2-PDO [153]. The recent achievements in
Fe–based heterogeneous catalysts in the hydrogenolysis and hydrogenation process are
outlined in this review. Lopez et al. studied hydrotalcite-supported transition metals (Fe,
Zn, Ni, and Cu) prepared by the coprecipitation technique for hydrogenolysis of glycerol
for 1,3-PDO production and 89.7% glycerol transformation along with 82.6% yield and 92%
selectivity of 1,2-PDO was achieved over 15 wt.% Cu supported on hydrotalcite (HDTs-Cu)
catalyst at 3.4 MPa and 200 ◦C. The highest activity and 1,2-PDO selectivity were achieved
over copper-modified catalysts even with 62% purity of crude glycerol employed.

By comparing these peaks, it was discovered that when the metals iron, nickel, copper,
and zinc were replaced in the environment with laminar octahedral brucite coordination,
the intensity of the characteristic peak (003) increased, indicating an increase in structural
integrity by assuming trilaminar rhombohedral layer stacking. When the surface properties
of several HDT-type catalytic materials were characterized, an area drop was seen when
the cation ionic radius (ionic radius, Fe, Ni, Cu, and Zn) increased. However, HDT-Ni
was an exception because its area value was lower than those achieved with materials
containing Cu and Zn. Ni has a shorter ionic radius than Cu and Zn; therefore, it was
hypothesized that the catalyst incorporating Ni would have a larger surface area. This can
likely be linked to the material’s synthesis or maturation [166].

4.5. Cerium Catalysts for Glycerol Hydrogenolysis

Cerium (Ce) promoted Cu/Mg catalyst through coprecipitation method for produc-
tion 1,2-PDOthrough hydrogenolysis of glycerol. The activity of catalysts for glycerol hy-
drogenolysis was achieved in order: Cu/Mg < Cu/Ce1/Mg < Cu/Ce5/Mg < Cu/Ce3/Mg.
The markable point was that CeO2 and Cu/Mg with atomic ratio = 3/5 catalyst might be
used several times for hydrogenolysis reaction of glycerol without reducing activity. It is
worth noting that the Cu/Ce1/Mg and Cu/Ce3/Mg samples revealed varied XRD peaks
corresponding to CuO phases, but the metallic Cu phase showed no XRD peaks. When
compared to pure CeO2, the CeO2 diffraction peaks of Ce-promoted Cu/Mg materials
were moved to the higher angle side. This odd observation could be due to the interaction
between CeO2 and Cu/Mg samples [139].

4.6. Silver Catalysts for Glycerol Hydrogenolysis

A series of silver-modified catalysts for hydrogenolysis of glycerol produced 1,2-PDO;
78.8% conversion and54.2% selectivity of 1,2-PDO over Raney-Ni34Ag catalyst at 210 ◦C
and 4 MPa. Ag modified catalyst presented better activity and enhanced C3 product
selectivity contrasted with unmodified Raney nickel (R-Ni) catalyst. At low and high
magnification, SEM pictures of the R-Ni-based catalysts revealed a prominent porosity
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zone, indicating that fresh R-Ni is a high-surface-area catalyst made up of reduced Ni
particles. R-Ni had a BET surface area of 21.1 m2gcat−1 after drying and passivation, which
increased to 42.4 m2 gcat−1 when a modest amount of Ag was added to R-Ni and reduced
significantly when more Ag was added [140].

Summary of some more reported literature related to glycerol reforming over hetero-
geneous catalysts to produce propylene glycol (1,2-PDO, 1,3-PDO), and ethylene glycol is
represented in Tables 4 and 5.

Table 4. Glycerol hydrogenolysis over various catalytic systems for 1,2-PDO production.

S. No. Catalysts Reaction Conditions/Reactor X (%) S (%) Y (%) References

1 Nickel phosphide
T = 463 K

5.4 95.3 5.15 [141]P = 5.5 MPa
(Autoclave reactor)

2
2.5Ru-2.5Cu/TiO2 T = 473 K

53.9 93.2 50.2 [142](Impregnation method) P = 2.5 MPa
Cat. Wt. = 0.6 g

3
Cu0.1-Mg0.2 supported SiO2 T = 210 ◦C

89.5 92.1 81.2 [160](Chemisorption–hydrolysis
method) P = 45 bar

(Autoclave reactor)

4
10% Cu/SBA-15 (Grinding
and Impregnation method)

T = 503 K
90.3 97.3 87.9 [161]P = 4 MPa

5
hydrotalcite supported Fe, Zn,

Ni, and Cu T = 200 ◦C
92 89.8 82.6 [166]

(Coprecipitation method) P = 3.4 MPa

6
Ni–Cu/Al2O3 T = 723 K

33.5 85.9 28.8 [167](Sol–gel method) P = 1 bar
(Autoclave reactor)

7 Raney Ni
T = 230 ◦C

80 54 43.2 [168]P = 40 bar
(Autoclave reactor)

8
Cu over Al2O3, ZnO and

Cr2O3

T = 190 ◦C
100 96.2 96.2 [169]P = 1 atm

(Fixed bed reactor)

9

Cu over boehmite T = 473 K

77.5 92.5 71.2 [170]
(Chemical reduction method) P = 4 MPa

Cat. Wt. = 0.8 g
(Autoclave reactor)

10

B2O3 on Cu/SiO2 T = 200 ◦C

98.5 96.7 95.2 [171]
(Precipitation–gel method) P = 5 MPa

WHSV = 0.075 h−1

(Fixed bed reactor)

11

Pt, Pd and Ni/Fe3O4 T = 493 K

81 79 70 [172]
(Impregnation method) P = 25–50 bar

Cat. Wt. = 0.5 g
(Fixed bed reactor)

12

Alumina supported bimetallic
Pt–Fe T = 513 K

86.2 58.2 50.2 [173](Impregnation method) P = 20 bar
Cat. Wt. = 0.5 g
(Batch reactor)
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Table 4. Cont.

S. No. Catalysts Reaction Conditions/Reactor X (%) S (%) Y (%) References

13 Fe2O3 at CuMgAl T = 190 ◦C
77.8 99 77 [174]P = 2 MPa

14

Ce promoted Ni/SBA-15 T = 473 K

50 28 14 [175]
(Incipient method) P = 2.4 MPa

Cat. Wt. = 0.6 g
(Autoclave Parr reactor)

15

Ni/Ce–Mg T = 215–245 ◦C

80.47 74.4 59.9 [176]
(Precipitation and

impregnation method) P = 4.1–6.9 MPa

Cat. Wt. = 5.0 g
(Batch reactor)

16

Ni–Co bimetallic supported on
γ-Al2O3

T = 220 ◦C

63.5 60.4 38.4 [177](Impregnation method) P = 6 MPa
Cat. Wt. = 2.0 g

(Autoclave reactor)

17

Ni–Ag/γ-Al2O3 T = 180–260 ◦C

80 58 46.4 [178]
(co-impregnation method) P = 1 atm

WHSV = 2.01 h−1

(Fixed bed reactor)

18
Ag/Al2O3 T = 400–500 ◦C

46 96 44.2 [179](Impregnation method) P = 2.1 MPa
(Batch reactor)

19

Ag-OMS-2 T = 200 ◦C

70 90 63 [180]
(Precipitation method) P = 50 atm

Cat. Wt. = 28.0 g
(Fixed bed reactor)

X = Conversion, S = Selectivity, Y = Yield.

Table 5. Glycerol hydrogenolysis over various catalytic systems for producing 1,3-PDO, propylene
glycol, and ethylene glycol.

S. No. Product Catalysts Reaction Conditions/Reactor X (%) S (%) Y (%) References

1 1,3-PDO Pt–sulphated zirconia T = 170 ◦C
66.5 83.6 55.6 [181]P = 7.3 MPa

2 1,3-PDO
Pt–WO3 on Al-based supports

and Ir–ReOx/SiO2
T = 403 K

84.5 26 30 [83]
(Impregnation method) P = 4 MPa

3 1,3-PDO
Pt/WO3/ZrO2 T = 110–140 ◦C

70.2 45.6 32 [182](Impregnation method) P = 2–5 MPa
(Fixed bed reactor)

4
Ethylene

glycol

Pd–Ni bimetallic T = 493 K
89 22 19.58 [183](Co-precipitation method) P = 6 MPa

(Autoclave reactor)

5
Proplylene

glycol

Cu–Ni T = 250 ◦C

90 77.8 70 [184]
(Impregnation method) P = 40 bar

WHSV = 2.5 h−1

(Fixed bed reactor)

6
Propylene

glycol

Cu/HMS, (Ru–Cu)/SiO2, T = 240 ◦C
100 91 91 [185](Impregnation method) P = 8 MPa

(Fixed bed reactor)
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Table 5. Cont.

S. No. Product Catalysts Reaction Conditions/Reactor X (%) S (%) Y (%) References

7
Propylene

glycol
Al, Ba and Zn promoter in

copper chromite

T = 493 K

34 90 30.6 [186]
P = 5 MPa

Cat. Wt. = 1 g
(Fixed bed reactor)

X = Conversion, S = Selectivity, Y = Yield.

5. Conclusions

The knowledge of various catalysts, such as nickel, platinum, ruthenium, copper,
cadmium, zeolite, titanium, alumina, iron, cerium, silver, and rhodium, steam reforming
process, dehydration process, and hydrogenolysis process of glycerol was reviewed and
cataloged. Numerous researchers have described various ways of converting glycerol
into value-added products, such as hydrogen, acetol, acrolein, ethylene glycol, propylene
glycol (1,2-propanediol, 1,3-propanediol), etc., via several reactions under different reaction
conditions. These chemical compounds have a clear monetary value and can help the
biodiesel industry.

Many research efforts are ongoing to overcome challenges and explore new frontiers
to search for new products. Those challenges involve the selection of catalyst for some
products and reaction conditions, severe difficulty in separating the catalyst from desired
products, and low yields of the products with long catalytic reaction runs. Today, re-
searchers and engineers are exploring new technologies, highly novel and tolerant catalysts,
improving reactor systems and activation methods, and coordinating the chemical and
biological catalysts to improve the weaknesses involved with each catalyst. The modern
improvement in technology and economical use of crude glycerol for value-added prod-
uct formulation clearly demonstrate that crude glycerol may play a critical part in the
bio-refining industry’s fulfillment.
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