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In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in
China. In early 2020, the causative agent was identified as a novel coronavirus (CoV)
sharing some sequence similarity with SARS-CoV that caused the severe acute
respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly
contagious and spread rapidly across the globe causing a pandemic of what became
known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated
that cardiovascular disease (CVD) patients are at higher risk of progression to severe
respiratory manifestations of COVID-19 including acute respiratory distress syndrome.
Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de
novo cardiac and vascular damage in previously healthy individuals. Here, we offer an
overview of the proposed molecular pathways shared by the pathogenesis of CVD and
SARS-CoV infections in order to provide a mechanistic framework for the observed
interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone
system and mitogen activated kinase pathways that potentially links cardiovascular
predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the
possible effect of currently available drugs with known cardiovascular benefit on these
pathways and speculate on their potential utility in mitigating cardiovascular risk and
morbidity in COVID-19 patients.

Keywords: severe COVID-19, cardiovascular burden, signaling pathways, RAAS, MAPK signaling
INTRODUCTION

Coronaviruses (CoVs) are single-stranded, positive-sense RNA viruses (26–32 kb) that belong to the
Coronaviridae family (Su et al., 2016). Common human coronaviruses include HCoV-NL63, -229E,
-OC43, and -HKU1 and are usually associated with mild acute respiratory illnesses or “common
cold.” In December 2019, clusters of pneumonia cases of unknown etiology were reported inWuhan
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City, Hubei Province in China (Huang et al., 2020). Within a few
weeks, scientists determined that these mysterious pneumonia
cases were caused by a novel coronavirus (CoV) that shares
around 79.5% sequence similarity with the SARS-CoV and 96.2%
with bat-CoV RaTG13 (Lu et al., 2020; Zhou P. et al., 2020).
Therefore, the virus was named SARS-CoV-2 and the disease
COVID-19 stands for coronavirus infectious disease 2019. On
March 11, 2020, the World Health Organization announced
COVID-19 as a pandemic and requested all countries to scale up
their emergency response mechanisms (Who, 2020b).

SARS-CoV2 is highly contagious with an average incubation
period of 5–6 days (range 1–14) (Who, 2020a). It can be
transmitted by droplets generated during coughing or sneezing,
close contact, and touching contaminated surfaces (Prevention,
2020). The typical symptoms of COVID-19 are fever, cough,
fatigue, and shortness of breath (Who, 2020a). About 15% of
SARS-CoV2 positive cases become severe-to-critical with the
following complications: pneumonia, acute respiratory distress
syndrome, arrhythmia, septic shock, and/or multiple organ
dysfunction/failure (Who, 2020a; Zheng et al., 2020).

A relationship between COVID-19 and cardiovascular
disease (CVD) is becoming increasingly evident. Indeed,
patients with CVD are at a higher risk of developing severe
COVID-19 complications, and viral infection might, itself,
induce cardiovascular injury. In this review, we provide an
overview of the possible pathways that are common to SARS-
CoV infections and CVD that might underlie this mutually
reinforcing relationship. We also examine the possible
modifying effect of some of the available therapies that could
confer a protective effect or mitigate the severity of the
disease complications.
CARDIOVASCULAR INVOLVEMENT IN
COVID-19: A TWO-WAY ROAD

Increased Severity of COVID-19 in Patients
With CVD
CVD is a risk factor for the progression of severe disease
following lower respiratory tract infection by SARS-CoV or
MERS-CoV (Oudit et al., 2009; Alhogbani, 2016). However,
many factors complicate the accurate identification of
prevalence of CVD in infected patients. Nevertheless,
association between existing CVD and increased risk of
progression to severe COVID-19 complications was suggested
(Liu et al., 2020; Rodriguez-Morales et al., 2020; Zhou F. et al.,
2020). The incidence of these comorbidities was higher in
patients requiring intensive care admission (ICU) than non-
ICU patients. Other studies show that the incidence of CVD in
COVID-19 patients is relatively high (Guan et al., 2020; Yang
et al., 2020). Moreover, the risk of developing acute respiratory
distress or in-hospital death was shown to increase by at least 2-
fold for hypertension and over 20-fold for coronary artery
disease (Wu et al., 2020; Zhou F. et al., 2020). A report on the
incidence of CVDs in the general population in China showed a
23.2% incidence rate for hypertension (Ma et al., 2020). This is
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close to the rates at which these comorbidities appear among
COVID-19 patients. As such, it is likely that CVD patients have
an increased severity of COVID-19 complications rather than an
increased vulnerability to infection. Indeed, this was shown to be
the case in several recent studies (Li et al., 2020; Mehra et al.,
2020). Therefore, it is important to identify if and which
signalling pathways in CVD may augment SARS-CoV-
2 pathogenesis.

SARS-CoV-2-Induced Myocardial Damage
Accumulating case studies document acute cardiac
manifestations in COVID-19 patients, who were previously
healthy (Inciardi et al., 2020). Typically, most studies define
acute myocardial injury by elevated cardiac troponin I levels
(Bansal, 2020; Huang et al., 2020; Zhou F. et al., 2020). High
levels of troponin or creatine kinase were noted in a significant
fraction of patients diagnosed with COVID-19 (Huang et al.,
2020; Wang et al., 2020). Moreover, among patients who were
without previous CVD but died following SARS-CoV-2
infection, 11.8% had high levels of troponin indicating
myocardial injury and cardiac arrest (Wang et al., 2020).
Another study showed that 27.8% of COVID-19 patients had
myocardial injury resulting in cardiac dysfunction and
arrythmias (Guo et al., 2020). This study highlighted the
impact of myocardial injury showing that patients with high
troponin levels and no previous history of CVD had a mortality
rate of 37.5%, whereas even those with underlying CVD and
normal troponin levels demonstrated a better prognosis (13%
mortality). Troponin levels were correlated with increases in C-
reactive proteins suggesting a tight link between myocardial
injury and inflammatory pathogenesis (Guo et al., 2020).
Systemic inflammation is intimately related to reduced
coronary blood flow and decreased oxygen supply to the heart
even in the absence of other risk factors of coronary artery
disease (Recio-Mayoral et al., 2009). Yet, myocardial damage
induced by direct viral entry through binding to angiotensin
converting enzyme-2 (ACE2) on cardiac cells could not be
eliminated either (Oudit et al., 2009). Patients who recovered
from infections by previous SARS-CoVs reported disruption in
blood lipids and blood pressure after 12 years of recovery (Wu
et al., 2017). Given the structural similarity between SARS-CoV
and SARS-CoV-2, a similar profile could be expected.

SARS-CoV-2-Induced Endothelial Damage
and Intravascular Coagulation
Viral infections are known to activate coagulation cascade, a
mechanism thought to be protective as to limit viral spread
(Milbrandt et al., 2009; Antoniak and Mackman, 2014). Yet,
excessive coagulation could eventually lead to disseminated
intravascular coagulation. Contextually, D-dimer and fibrin/
fibrinogen degradation products were both higher in COVID-
19 patients than controls, with the majority of non-survivals
having disseminated intravascular coagulation during their
hospital stay (Guan et al., 2020; Han et al., 2020; Tang et al.,
2020; Zhou F. et al., 2020). The mechanism behind this activated
and accelerated coagulation in COVID-19 patients could be an
June 2020 | Volume 11 | Article 836
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inflammatory-immunological stimulation likely caused by
vascular endothelial damage. Significantly, ACE2 is localized
on endothelial cells (Gallagher et al., 2008), and SARS-CoV-2
has recently been shown to cause endothelial cell infections
across vascular beds in COVID-19 patients (Varga et al.,
2020). On the other hand, endothelial dysfunction and the
activation of the clotting cascade are common occurrences in
CVD (Lowe and Rumley, 2014; Widmer and Lerman, 2014). As
such, a thorough understanding of the signaling pathways
common to the pathogenesis of CVD and SARS-CoV-2
infection is necessary to identify crucial sites of crosstalk
and direct future investigation of potential therapeutic
interventions mitigating both COVID-19 complications in
CVD patients as well as short- and long-term viral-induced
cardiovascular impairment.
MOLECULAR PATHWAYS IMPLICATED IN
THE CROSSTALK BETWEEN CVD AND
SARS-COV-2 PATHOGENESIS

ACE2, the Renin-Angiotensin-Aldosterone
System, and MAPK Pathways
CVD conditions are typically associated with increased RAAS
activity, favoring increased AngII levels (Nehme and Zibara,
2017b). In this regard, AT1 receptor activation facilitates various
intracellular pathways involved in cardiac and vascular
remodeling, endothelial dysfunction, and atherosclerosis
(Muslin, 2008; Nehme and Zibara, 2017a). AngII-mediated
AT1 receptor stimulation activates protein kinases such as
mitogen-activated protein kinases (MAPK) (Muslin, 2008;
Kawai et al., 2017). On the other hand, Ang(1-7), produced by
ACE2-catalyzed cleavage of AngII, is essential in repressing
MAPK cascades (Zhang et al., 2014) and decreasing
inflammation by keeping a well-balanced RAAS activity,
between ACE/AngII pathway and ACE2/Ang(1-7) (Nehme
and Zibara, 2017b). While the cardiovascular outcomes of
ACE2 activity and Ang(1-7) production have been described in
reasonable detail, it remains uncertain as to the nature of the
receptor mediating these effects. Early studies reported that
mitochondrial assembly 1 receptors (MasR) mediated the
AngII/AT1R antagonistic effect of Ang(1-7) including PI3k/Akt
activation of nitric oxide synthase and NO production,
vasodilation, and anti-fibrosis effects (Azushima et al., 2020).
Yet, recent studies showed that Ang(1-7)-mediated AT2R
activation might contribute to the protective effect via
activation of phosphotyrosine phosphatase and suppression of
MAPK activity (Azushima et al., 2020). Moreover, other studies
implicated other Mas-related G protein-coupled receptors as
mediators of Ang(1-7) effects in the cardiovascular system
(Tetzner et al., 2016). Nevertheless, the RAAS and MAPK
pathways interaction has many consequences on CVD
(summarized in Table 1 and Figure 1) and is implicated in
several steps of SARS-CoV-2 pathogenesis. As such, it is
important to highlight potential points of hijack by SARS-
Frontiers in Pharmacology | www.frontiersin.org 3
CoV-2, which are potentially augmented in CVD or could
induce de novo cardiovascular injury. These points are
summarized in Figure 2.

ACE2 and Viral Binding to Host Cells:
Impact on CVD and Myocardial Injury
Current knowledge suggests that the membrane bound spikes of
coronaviruses, known as S glycoproteins, are solely responsible
for enabling host cell attachment and entry (Fehr and Perlman,
2015). SARS-CoV-2 gains host cell entry via ACE2 expressed on
pulmonary alveolar epithelial cells (Letko et al., 2020). Recently,
it has been suggested that two S glycoproteins can bind to a single
ACE2 homodimer (Yan et al., 2020). Binding occurs via direct
interaction of the ACE2 peptidase domain and the ACE2-
binding domain on the S1 subunit of the S protein. ACE2 is
also expressed on the surface of epithelial cells in lungs, heart,
kidneys, and intestine, facilitating viral entry to these tissues and
hence might underlie the multi-organ dysfunction seen with
COVID-19 (Zhang et al., 2020). However, for proper entry into
the cell, the S protein must be primed by host cell proteases at a
second cleavage site on the membrane embedded S2 subunit
(Bosch et al., 2003; Lu et al., 2015; Coutard et al., 2020).
Specifically, cleavage at the S2' cleavage site exposes S2
domains, like the fusion peptide and internal fusion peptide,
and enables them to partition into the membrane and facilitate
entry (Lu et al., 2015). A recent study showed that compared to
the proteases required for viral entry, ACE2 has a lower
expression level in different epithelial cell types indicating that
it is likely to be the rate limiting step in viral entry (Sungnak
et al., 2020).

An early study on human ventricular tissue from heart
failure patients showed an increased expression and activity
of ACE2 (Zisman et al., 2003). Correspondingly, a recent study
showed that heart failure patients with COVID-19 had
increased levels of ACE2 placing them at higher risk of
severity of symptoms (Chen et al., 2020). This might result
from increased viral entry due to a higher ACE2 expression
level. However, it may also be due to pathways triggered by the
virus that can exacerbate CVD symptoms. Interestingly, the
same study indicated that cardiac pericytes demonstrated a
much higher level of ACE2 expression than cardiac myocytes
raising the possibility that the initial cardiac injury might be
microvascular. Previously, it was demonstrated that the
endothelial cell expression of ACE2 provides a possible route
of entry to SARS-CoV once it enters the blood (Ding et al.,
2003). The same may be expected of SARS-CoV-2. Viral entry
and inflammation could upregulate tissue factor expression on
the cell surface, promoting the blood coagulation cascade
(Witkowski et al., 2016). Fibrinoid necrosis and thrombotic
events will therefore follow in microvessels leading to
disseminated intravascular coagulation. Thus, endothelial
injury exacerbates the immuno-inflammatory condition by
inducing coagulation abnormalities (Vallet and Wiel, 2001).
As such, supply of soluble ACE units could, in principle, reduce
the infectious burden and rescue the tissues/organs from the
June 2020 | Volume 11 | Article 836
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detrimental outcome of SARS-CoV-2 infection. Indeed, a
recent study showed that treatment with clinical grade
human recombinant ACE2 reduced viral recovery from
infected cell culture systems (Monteil et al., 2020). The same
study also showed that soluble ACE2 treatment inhibited
SARS-CoV-2 infection in blood vessel and kidney organoids.

On the other hand, binding of SARS-Cov-2 to ACE2 could
eventually deplete ACE2 levels. Indeed, prior studies on the
earlier SARS-CoV strain showed that pulmonary and myocardial
infections were associated with marked reduction of ACE2
expression (Kuba et al., 2005; Oudit et al., 2009). This would
inhibit the protective effects of the ACE2/Ang(1-7) pathway,
offsetting the RAAS balance and causing potential exacerbation
of respiratory symptoms and cardiovascular complications (Sun
et al., 2020). In fact, ACE2 downregulation induced by viral spike
glycoprotein injection led to increased pulmonary failure in vivo
(Kuba et al., 2005). Therefore, ACE2 plays two contradictory
roles in patients with cardiovascular/cardiometabolic
diseases inflicted with COVID-19. On one hand, ACE2 serves
as a gate for SARS-COV-2 infection and on another it
protects against CVD as well as the increased production of
inflammatory cytokines.
Frontiers in Pharmacology | www.frontiersin.org 4
MAPK, Viral Entry, and the Hijacked
Proteases
Non-endosomal SARS-CoV-2 uptake is mostly associated with
the transmembrane serine protease TMPRSS2, in contrast to the
less frequently used endosomal cysteine proteases cathepsin B
and L (CatB/L) (Hoffmann et al., 2020). Interestingly, a unique
furin-like protease recognition sequence at the S1/S2 cleavage
site in SARS-CoV-2 is absent from the other members of the
coronavirus family (Coutard et al., 2020). Furin is a serine
protease and considered a proprotein convertase, which
transforms protein precursors into active forms upon cleavage.
Its function extends to a variety of proteins including growth
hormones, cytokines, and surface glycoproteins of viruses
(Coutard et al., 2020). It was previously established in another
class of viruses that the presence of furin cleavage sites is
associated with more pathogenicity as compared to cleavage by
trypsin proteases (Kido et al., 2012). Incidentally, atherosclerotic
patients demonstrate elevated levels of furin, particularly in foam
cells of plaques (Zhao et al., 2018). Furthermore, this protease is
regulated by ERK pathways under inflammatory conditions
(Ventura et al., 2017). In fact, ERK1 is essential for
maintaining activity of furin and has been implicated as a
TABLE 1 | Interactions and examples of cardiovascular consequences of RAAS imbalance and MAPK pathway activation

Contribution of RAAS imbalance to CVD and interaction with MAPK
pathways:

-↑AngII!↑mechanisms involving growth factor receptors (e.g., PDGF
and TGF-b receptors) !↑ERK activation cardiac and vascular
hypertrophy and fibrosis

(Schellings et al.,
2006; Ehanire et al.,
2015)

-↑AngII activity in CVD!↓cell surface expression of ACE2 in an AT1/p38
MAPK-dependent pathway leading to protein excision and shedding

(Patel et al., 2014;
Xu et al., 2017)

↑AngII/AT1R pathway!↑MAPK signaling!↑signs of CVD -ACE2 deletion!↑NADPH oxidase activity, superoxide generation,
MAPK signaling and inflammatory cytokine production in the aorta of
mice receiving AngII

(Jin et al., 2012)

-↑ACE2/Ang-(1-7)pathway!↓AngII-induced inflammation in cardiac
tissue and in hypothalamic cardiovascular centers, cardiac remodeling,
and hypertension

(Grobe et al., 2007;
Sriramula et al.,
2011)

↑ACE2/Ang(1-7) pathway!↓MAPK signaling!↓
inflammation!amelioration of CVD

-ACE2 overexpression !↓TNF-a, IL-1b, and IL-6 in and ↑anti-
inflammatory cytokine IL-10 in autoimmune myocarditis

(Sukumaran et al.,
2011)

Contribution of MAPK signaling to CVD -Erk1/2. JNK, and p38 MAPK activation !↑cardiomyopathic
remodeling

(Wang, 2007)

-Pressure overload!↑Ras/c-RAF/MKK1/ERK1/2 pathway!cardiac
hypertrophy, ↑cardiomyocyte size, diastolic dysfunction, and myofibril
disarray

(Hunter et al., 1995)

-ERK1/2 !↑ c-Fos !↑ GLUT1 transporter expression in hypertrophic
and ischemic heart

(Babu et al., 2000)
(Santalucia et al.,
2003)
(Shao and Tian,
2015)

-MAPK pathway activation!progressive endothelial dysfunction (Huang et al., 2012)
-Oxidized LDL!↑ MAPK pathway activation!↑GM-
CSF!↑macrophage infiltration of atherosclerotic plaques

(Proctor et al.,
2007; Muslin, 2008)

-↑MAPK pathway activation!↑interleukins and TNFa!↑atherosclerotic
lesion progression

(Bachstetter and
Van Eldik, 2010; De
Souza et al., 2014)

-TNFa!↑ERK1/2 activity!↑MMP9 !↑fibrotic lesion formation (Cheng et al., 2012;
Zhang et al., 2017)

-Viral infection!↑IL-1, TNFa, IL-6!↑p38 MAPK and JNK !↑viral
cardiomyopathy

(Monsuez et al.,
2007; Wang et al.,
2014; Yue-Chun
et al., 2016; Niu
et al., 2017)
June 2020 | Vol
PDGF, platelet-derived growth factor; TGF, transforming growth factor; TNF, tumor necrosis factor; MKK, MAPK kinase; GLUT, glucose transporter; LDL, low-density lipoprotein; MMP,
matrix metalloproteinase.
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FIGURE 1 | The RAAS balance between AngII/AT1-R and ACE2/Ang(1-7)/Ang(1-7)R axes. The former is enhanced in CVD conditions triggering various intracellular
pathways via MAPK signaling, which ultimately leads to cardiac and vascular remodeling, endothelial dysfunction, and atherosclerosis. ACE2, on the other hand,
decreases inflammation by countering the effect of the ACE/AngII/AT1-R axis. ACE2/Ang(1-7)/Ang(1-7)R signaling pathway not only ameliorates cellular proliferation,
hypertrophy, oxidative stress, and vascular fibrosis but also reduces the activation of the downstream MAPK cascades. AT1-R activation triggers p38 MPAK-
dependent ACE2 excision and shedding leading to a reduced cell surface expression. As demonstrated in other coronaviruses, SARS-CoV-2 replication might be
enhanced as a result of increased MAPK activity downstream of AngII in CVD patients.
FIGURE 2 | The MAPK pathway can be induced by several triggers in various cells within the context of CVDs. For example, pressure overload can cause
hypertrophy in cardiomyocytes via the ERK1/2/GLUT pathway. Oxidized LDL triggers macrophage proliferation via ERK1/2/GM-CSF, which contributes to the
development of atherosclerosis. All cells involved in atherosclerosis can release cytokines in an ERK1/2 dependent manner, which ultimately propel plaque and clot
growth. Cytokines can subsequently enhance MMP9 production, which leads to plaque rupture and thrombosis. Meanwhile, coronaviruses have been shown to
involve p38 MAPK, JNK, and MKK1/ERK1/2 pathways for viral pathogenesis. MKK1/ERK1/2 pathway also upregulates the protease furin, which is implicated in
SARS-CoV-2 entry due to the unique furin-like S1/S2 cleavage site. It is worth examining if inhibition of MKK1/ERK1/2 mitigates production of SARS-CoV-2 viral
progeny. On the other hand, SARS-CoV-2 can also amplify production of cytokines, which can worsen existing CVDs.
Frontiers in Pharmacology | www.frontiersin.org June 2020 | Volume 11 | Article 8365
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potential therapeutic target to combat the pro-inflammatory
effects of TGF-b. Because ERK1 activity is heightened in CVD
patients, it is likely that furin activity is also increased. Therefore,
it is important to consider the role of elevated furin expression/
function in the virulence of SARS-CoV-2.

MAPK and Viral Pathogenesis
Not only is the Raf/MEK1/2/ERK1/2 pathway heavily
implicated in CVDs (Table 1), but it is also indispensable for
effective viral replication (Li et al., 2019). Specifically, SARS-
CoV spike and nucleocapsid proteins were reported to trigger
ERK1/2 phosphorylation with subsequent induction of pro-
inflammatory pathways including increased cyclooxygenase-2
expression and IL-8 release (Chang et al., 2004; Mizutani et al.,
2004a; Yan et al., 2006; Liu et al., 2007). Significantly, while
some report no change in SARS-CoV infected cell death after
ERK1/2 inhibition (Mizutani et al., 2004a), inhibition of the
MEK1/2/ERK1/2 pathway has been shown to significantly
impair coronavirus replication in mice (Cai et al., 2007).
Similarly, JNK activity increased in cells exposed to SARS-
CoV spike and nucleocapsid proteins (Mizutani et al., 2004b;
Surjit et al., 2004; Liu et al., 2007). Interestingly, JNK inhibition
precluded the development of persistent SARS-CoV infections
(Mizutani et al., 2005). Furthermore, SARS-CoV infection was
shown to activate p38 MAPK and the downstream signaling
possibly leading to cell death (Mizutani et al., 2004b; Surjit et al.,
2004; Kopecky-Bromberg et al., 2006). Contextually, p38
MAPK inhibition reduced human coronavirus HCoV-229E
viral replication in human lung epithelial cells (Kono et al.,
2008). Moreover, regardless of the cell type or strain of the
virus, MEK1/2 inhibition diminishes the production of viral
progeny (Cai et al., 2007). As previously discussed, many
MAPK pathways are already significantly upregulated in CVD
possibly downstream of the AngII/AT1 pathway activation. The
chronic nature and gradual development timeframe of these
diseases might argue that the crosstalk among increased MAPK
signaling cascades and SARS-CoV-2 pathogenesis leads to
increased infection severity and complications in patients
with established CVD rather than being involved in viral-
triggered cardiovascular involvement. Nevertheless, viral-
induced myocardial injury and endothelial involvement are
thought to include a strong inflammatory component as well
as an offset of the RAAS balance away from ACE2/Ang(1-7)
arm, both of which interacts closely with MAPK pathways
(Table 1).
PHARMACOLOGICAL INTERVENTIONS
MODIFYING PATHWAYS RELEVANT TO
VIRAL INFECTION

Accumulating evidence shows that cardiovascular risk reduction,
especially on the long term, involves modification of RAAS and
MAPK signalling pathways, regardless of the particular
intervention applied. For instance, exercise training reduces
Frontiers in Pharmacology | www.frontiersin.org 6
p38 MAPK and ERK activities decreasing the incidence of
heart failure (Nagata and Hattori, 2011) and ameliorates the
AngII/Ang(1-7) imbalance in hypertensive rats (Ren et al., 2016).
Similarly, dietary restriction reduced ERK activation (Xie et al.,
2007; Castello et al., 2011) and decreased serum ACE activity
(Harp et al., 2002). In this section, we provide an overview of the
activity of some of the available therapeutic agents or classes with
cardiovascular benefit. We focus on drug classes that can
potentially modulate ACE2 and/or MAPK signalling pathways,
hence decreasing cardiovascular risk on long-term use. We will
then speculate on the possible impact of these agents to reduce
risk of progression to severe COVID-19 in CVD patients. As will
be seen with some of these agents, clinical and research interest
in their use for the mitigation of acute complications of SARS-
CoV-2 infections has also emerged.
ACEIs/ARBs
Antihypertensive drugs such as angiotensin converting enzyme
inhibitors (ACEI) and AngII receptor blockers (ARBs) gained
interest in the context of treating patients with COVID-19.
Several studies reported conflicting findings regarding the
effects of ACEI/ARBs on ACE2 levels. Some of which reported
an increase in ACE2 levels that could be explained based on
inhibition of AT1 receptor-mediated ACE2 shedding (Patel et al.,
2014; Xu et al., 2017), whereas others argued for a role for higher
levels of AngII detected after treatment with ARBs, a case of
higher substrate availability leading to an increase in expression
of the linked enzyme (Dickstein et al., 1994; Gavras and Gavras,
1999; Ferrario et al., 2005; Soler et al., 2009; Sukumaran et al.,
2011; Furuhashi et al., 2015; Esler and Esler, 2020). Yet, other
studies have documented no effect of ARBs in this regard
(Campbell et al., 2004; Burchill et al., 2012). While it could be
postulated that treatment with ACEI/ARBs increasing ACE2
levels might increase risk of SARS-COV-2 infection severity,
recent studies showed that continuation of these drugs in
COVID-19 patients was not associated with such risk (Mancia
et al., 2020; Mehra et al., 2020; Reynolds et al., 2020). On the
other hand, ACE2 internalization was shown to be dependent on
heterodimerization with AT1-R and subsequent activation of
AT1-R with AngII (Deshotels et al., 2014). Hence, even if these
drugs increase ACE2 expression, they could confer a protective
effect via suppression of ACE2-mediated viral internalization
(Deshotels et al., 2014) by blocking AT1-R in case of ARBs or
reducing the availability of AngII in case of ACEIs. Moreover,
reduced induction of MAPK pathways triggered downstream of
AT1-R might contribute to a less severe viral pathogenesis. Along
these lines, a study showed that ACE2 knockout exacerbated
severe acute respiratory failure following acid aspiration in mice
that was rescued by ARB or recombinant ACE2 treatment (Imai
et al., 2005). In this context, elevated systemic AngII in CVD
patients could underlie higher risk of infection and further
complications as discussed previously. Nevertheless, the studies
that reported lack of increased risk with ACEI/ARB use were not
designed to detect potential benefit; thus, more focused
prospective studies are required to answer this question. On
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this basis, losartan, an ARB, is now being incorporated in two
clinical studies investigating possible reduction of lung injury in
patients with COVID-19 (clinicaltrials.gov/ct2/show/
NCT04311177, clinicaltrials.gov/ct2/show/NCT04312009).

Statins
Statins are HMG-CoA reductase inhibitors used for treatment of
CVD associated with dyslipidemia. Aside from their
hypocholesterolemic effect, statins have a proven anti-
inflammatory effect. They have been proposed as an adjunctive
therapy in influenza virus infection (Arabi et al., 2020).
Simvastatin improved survival in patients with hyper-
inflammatory acute respiratory distress syndrome (Calfee et al.,
2018). Specifically, atorvastatin attenuated NF-kB signaling
within 24 h of MERS-CoV infection (Yuan, 2015). Similarly,
atorvastatin showed an anti-inflammatory effect that was dose-
and time-dependent effectively attenuating NF-kB ultimately
leading to decreased synthesis of inflammatory cytokines and
chemokines (Chansrichavala et al., 2009). Significantly, statins,
via activating Akt signaling, enhance endothelial junction
integrity and reduce plasma leakage and acute lung injury
(Fedson, 2016). Moreover, rosuvastatin reduced AngII
production, AT1 receptor expression, and Erk activation and
upregulated ACE2 in rats following vascular injury (Li et al.,
2013). Taken together, these observations suggest that CVD
patients undergoing statin treatment might benefit from a
mitigated basal and SARS-CoV-2-induced inflammatory
reaction and hence a reduced risk of progression to severe
COVID-19.

SGLT-2 Inhibitors
Sodium-glucose cotransporter type 2 (SGLT-2) inhibitors
have been approved to reduce major cardiovascular events
in patients with diabetes though direct mechanisms not
necessarily related to their hypoglycemic effects (Kaplan
et al., 2018; Scheen, 2018). SGLT-2 inhibitors were found to
induce a modest increase in plasma levels of aldosterone and
AngII, but still within the low range typical in diabetes, as well
as an increase in ACE2, ACE, and angiotensinogen
(Kawanami et al., 2017). When administered with ACEI or
ARBs, the effect of SGLT-2 inhibitors will shunt the RAAS
activation towards ACE2 (Kawanami et al., 2017), thus
significantly increasing the beneficial effects of Ag(1–7)
leading a vasodilatory, anti-inflammatory, and antioxidative
effect in the heart and kidneys. More research is needed to
evaluate the possible beneficial use of SGLT-2 inhibitors with
ARBs or ACEIs on the cardiovascular and metabolic events in
COVID-19.

Aldosterone Receptor Antagonists
Eplerenone, an aldosterone receptor antagonist, is recommended
for the treatment of hypertension, left ventricular hypertrophy,
and congestive heart failure (Jewell et al., 2006). Patients treated
with eplerenone had lower morbidity and mortality due to CVD,
Frontiers in Pharmacology | www.frontiersin.org 7
a protective effect thought to be independent on blood pressure.
Aldosterone induces cell growth and differentiation
through activation of Erk and downstream signaling including
NF-kB, suggesting a protective effect of eplerenone via
inhibition of Erk (Kobayashi et al., 2006). In addition,
aldosterone receptor blockade improves cardiac function and
remodeling via increasing eNOS expression and Akt-mediated
phosphorylation (Kobayashi et al., 2005). This raises the
possibility for a beneficial effect of eplerenone or other
aldosterone receptor antagonists in reducing risk of severe
COVID-19 infection in CVD patients or to mitigate the
cardiovascular burden of SARS-CoV-2 infection.

Tocilizumab
Interest in the use of tocilizumab, a monoclonal antibody
against IL-6, in COVID-19 patients has emerged especially in
those at risk of exaggerated inflammatory response (Luo et al.,
2020). In the latter study, about two-thirds of the patients with
elevated serum IL-6 levels had co-morbid CVD. Treatment
with tocilizumab, originally approved for treatment of
rheumatoid arthritis, demonstrated several cardiovascular
effects. Tocilizumab led to an increased total cholesterol, low
density lipoprotein, and high-density lipoprotein levels
increasing the risk of dyslipidemia (Singh et al., 2010). Yet
other studies reported a strong reduction in the incidence of
CVD with tocilizumab treatment despite the change in lipid
profile (Rao et al., 2015). It could be argued that high IL-6
levels induce cardiac fibrosis and increase myocardial
infarction and CVDs, a pathway linked to aldosterone
activity (Chou et al., 2018), thus justifying a positive
cardiovascular impact of tocilizumab treatment. As such,
more studies are needed to clarify the possible modulatory
effect exerted by IL-6 antagonism in COVID-19 patients, and
its impact on the intersecting pathways leading to respiratory
and cardiovascular complications.
CONCLUSIONS AND FUTURE
DIRECTIONS

Whereas knowledge of the exact mechanisms underlying the
pathogenesis and the sequelae of SARS-CoV-2 infection is still
emerging, the available evidence could be perceived to form a
framework implicating RAAS andMAPK pathway imbalances in
the observed association between COVID-19 and cardiovascular
dysfunction. On the one hand, predominance of the AngII/AT1

receptor arm of RAAS as well as increased MAPK activity in
CVD could enhance viral pathogenesis and thus predispose the
patients for increased COVID-19 severity. While on the other
hand, viral activity including cell entry, viral replication, and
induction of inflammatory response might also trigger the same
pathway imbalances inducing or exacerbating cardiovascular
damage. Despite the presumed efficacy of some of the available
therapeutic tools in interrupting this vicious cycle, significant
investigation is needed to direct evidence-based clinical use.
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Moreover, a large window of opportunity exists for the
identification and design of selective tools to interfere with
these pathways in COVID-19 patients with CVD risk.
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