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Abstract

Pulmonary fibrosis (PF) is a feared component in over 200 interstitial pulmonary diseases, which are characterized by increased alveolar
wall thickness, excessive scarring, and aberrant extracellular matrix restructuring that, ultimately, affect lung compliance and capacity. As
a result of its broad range of biological activities, including antioxidant, anti-inflammatory, antiapoptotic, and many others, resveratrol has
been shown to be an effective treatment for respiratory system diseases, including interstitial lung disease, infectious diseases, and lung
cancer. This work reviews the known molecular therapeutic targets of resveratrol and its potential mechanisms of action in attenuating
PF in respiratory diseases, including cancer, COVID-19, interstitial lung diseases (ILDs) of known etiologies, idiopathic interstitial
pneumonia, and ILDs associated with systemic disorders, such as rheumatoid arthritis, systemic sclerosis, Schrödinger’s syndrome,
systemic lupus erythematosus, and pulmonary hypertension. The current issues and controversies related to the possible use of resveratrol
as a pharmaceutical drug or supplement are also discussed.
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1. Introduction
Due to the associated perception of safety, natural

compounds instead of synthetic ones are emerging as more
desirable therapeutic tools [1–5]. In fact, over the past
two decades, natural supplements have massively con-
quered the market, while scientific research associated with
natural compounds has also extensively increased [6–11].
Nonetheless, despite the multitude of studies conducted on
plant extracts and individual components, the final thera-
peutic constituent, whether a single molecule or the synergy
of several constituents, remains to be clarified.

Among the current natural compounds being ana-
lyzed, resveratrol is a naturally occurring polyphenolic phy-
toalexin, which is present in multiple plants and aliments
that possesses anti-inflammatory, antioxidant, vasculopro-
tective, neuroprotective, and anticancer activities [12–15].
Due to its extensive range of biological effects, resvera-
trol has become a widely studied molecule in the treatment
of many pathologies, including respiratory system diseases
[4,14,16–18].

Pulmonary fibrosis (PF) is the end stage of many dif-
fuse respiratory diseases characterized by excessive ex-
tracellular matrix deposition, destruction of pulmonary
parenchymal architecture, and loss of lung function, which
in most cases leads to the patient’s death [19]. Intersti-
tial lung disease (ILD) refers to a diverse group of disor-
ders that are characterized by varying degrees of inflam-
mation and/or fibrosis in the lung parenchyma and inter-
stitium [20], which includes idiopathic pulmonary fibro-
sis (IPF) [21]. PF can also be a shared component in
connective tissue diseases (CTD), which are a heteroge-
neous group of inflammatory autoimmune disorders that af-
fect different tissues and organs, including systemic lupus
erythematosus (SLE), rheumatoid arthritis (RA), Sjogren’s
syndrome (SS), polymyositis (PM)/dermatomyositis (DM),
systemic sclerosis (SSc), and mixed connective tissue dis-
ease (MCTD), which are commonly associated with ILDs
[22]. Conversely, the development of PF can also occur
secondary to viral pneumonia, especially during COVID-
19 infection, and also in lung cancer [23]. Indeed, lung
tumors in IPF patients develop preferentially in the periph-
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eral adjacent zones rather than in the fibrotic areas, thereby
showing different histologic distributions and immunohis-
tochemical characteristics compared to non-IPF-associated
lung tumors [24,25].

Furthermore, there is an ever-increasing body of ev-
idence emphasizing the protective role of resveratrol in
respiratory system diseases [18]. Additionally, the vast
amount of current literature indicates that the therapeutic
effects of resveratrol against PF-related pathologies are pre-
dominantly linked to its ability to induce sirtuin-1 (SIRT1)
expression during oxidative stress, and inflammatory and
apoptotic events, which ultimately suggests that it possesses
a critical role in attenuating lung fibrosis development [26–
30]. Our work provides an update on the current litera-
ture and focuses on both PF and the classical resveratrol-
exerted effects, such as antioxidant, antifibrotic, and anti-
cancer [18], alongside systematically and comprehensively
reviewing and analyzing the common molecular mecha-
nisms that inter-relate PF to both ILD and CTD as poten-
tial resveratrol targets. Here, we schematically describe
the classical and specific therapeutic molecular targets of
resveratrol that are potentially suggested to attenuate PF as
a common component in both ILDs, as primary disorders,
and in CTD related to ILD, as secondary disorders. Then,
we highlight the molecular mechanisms in ILDs therapeu-
tically targeted by resveratrol, and mechanisms believed to
be dependently targeted in ILDs-related to CTD, to provide
a new comprehensive panorama that will enhance the way
for how resveratrol dosage and administration are visual-
ized and understood in future clinical studies. In this con-
text, we also provide an overview of the aspects regarding
the current controversies on the use of resveratrol as a phar-
maceutical drug or supplement.
2. Presentation of Resveratrol

Resveratrol is a natural stilbene monomer, which is
chemically known as 3,5,4′-trihydroxystilbene, and exists
as a yellow-tinged-white powder with the molecular for-
mula of C14H12O3. Resveratrol is structurally composed of
two phenol rings: one with two OH groups at C-3 and C-5,
and the other with one OH at C-4′; both rings are linked by
a styrene double bond, which allows resveratrol to exist in
both the cis and trans geometrical isomeric forms (Fig. 1).

The first report on resveratrol was published by Dr.
Michio Takaoka, who studied a poisonous medicinal herb
named Veratrum grandiflorum and led to the isolation and
identification of this bioactive compound [31]. Plants pro-
duce resveratrol in response to external stimuli, such as me-
chanical harm, ultraviolet radiations, drastic environmental
changes, microbial infection, and fungicides [32]. Resvera-
trol synthesis starts with a non-oxidative deamination reac-
tion of two aromatic amino acids, named L-phenylalanine
and L-tyrosine, which leads to the generation of cinnamic
acid and 4-coumaric acid, respectively. The hydroxylation
reaction catalyzed by cinnamate-4-hydroxylase converts
the obtained cinnamic acid into 4-coumaric acid. Next, the

transformation of 4-coumaric acid into 4-coumaroyl-CoA
by the enzyme 4-coumaroyl CoA ligase generates an ac-
tive intermediate, which is used by plants in normal growth
conditions. Conversely, in stress conditions, the enzyme
stilbene synthase (STS) works to condense a portion of the
4-coumaroyl-CoA to 3 molecules of malonyl-CoA through
repeated decarboxylating reactions, to ultimately produce
one molecule of resveratrol [33–37]. Resveratrol is abun-
dantly present in many foods and food products, such as
grapes, peanuts, plums, blueberries, olive oil, and hops
[38,39] (Table 1).

3. Classical Mechanisms of Action for
Resveratrol in Lung Injury and Pulmonary
Fibrosis
3.1 Antioxidants Potential

Since oxidative stress and inflammation cause DNA
damage and alveolar cell injuries, they play a crucial role in
the pathogenesis and progression of lung diseases. More-
over, additional lifelong illnesses, such as cancer, metabolic
diseases, and neurological and cardiovascular complica-
tions are also associated with oxidative stress [12]. It is
also widely recognized, for example, that crosstalk between
oxidative stress and inflammation in lung tissue can cause
lung fibrosis and associated pulmonary diseases [21,77–
83]. Resveratrol has been demonstrated to have free radical
scavenging ability [84], antioxidant properties [85], and an-
tioxidant enzyme expression modulatory activity [84], all
of which can eventually attenuate oxidative stress-related
diseases [86]. Indeed, resveratrol can exert its antioxidant
ability by directly scavenging free radicals, including su-
peroxide radical (O2

−), hydroxyl radical (OH−), hydrogen
peroxide (H2O2), nitric oxide (NO), and nitrogen dioxide
(NO2) [87–91]. This activity is due to its chemical struc-
ture, characterized by the presence of a conjugated dou-
ble bond system [92] and hydroxyl groups in positions 3′,
4′, and 5′ on the ring [93,94]. Experiments exploring the
scavenging activity of resveratrol on free radicals showed
a strong efficiency with a dose of 30 µg/mL that was able
to scavenge up to 19.5% and 71.8% of the H2O2 and O2

−

species, respectively [95].
Resveratrol has also been shown to indirectly scav-

enge free radicals through its modulatory effect on the ex-
pression and activity of antioxidant enzyme genes, such as
superoxide dismutase (SOD), catalase (CAT), glutathione
(GSH), and glutathione peroxidase (GPX ) [96]. More-
over, other endogenous antioxidant enzymes appear to be
involved in the resveratrol free radical scavenging mech-
anisms, including NADPH oxidase (O2

−), xanthine oxi-
dase (O2

− and H2O2), mitochondrial respiratory chain en-
zyme (O2

−), and endothelial nitric oxide synthase (eNOS)
[93,97]. Resveratrol can also protect against oxidative
stress-elicited damage by inhibiting lipid peroxidation, an
effect attributed to its high lipophilicity and hydrophilicity
[98–101].
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Fig. 1. Structures of trans- and cis- resveratrol.

Table 1. Resveratrol content in various food sources.
Source Scientific name Parts Content (µg/g) References

Grapes Vitis amurensis Leaves, stems, and roots 1.5–7.3 [40–42]
V. betulifolia Stems [43,44]

V. chunganensis Whole plant [45]
V. coignetiae Berries, stems, and leaves [46,47]
V. davidii Stems [48]
V. labrusca Berries, leaves, and stems [49–53]
V. pentagona Stems [48,54]
V. riparia Leaves [54]

V. riparia x, V. Roots [54]
berlandieri

V. rotundifolia Berries [50,54–58]
V. thunbergii Stems [59]
V. vinifera Berries, cell suspension cultures, stems, and leaves [35,60–63]

Grape juice 0.12–0.26 [64]
Peanuts Arachis hypogaea L. Peanut kernels: raw and roasted 0.10–2.99 [65]

Skins [66]
Roots [67]

Blueberries Vaccinium corymbosum L. Fruit 86–170 [68,69]
Cranberries V. macrocarpon Fruit 90 [59]
Bilberries V. myrtillus L. Fruit 77 [70]
Pistachios Pistacia vera Kernel 6–69.7 [71]
Cocoa Theobroma cacao L. Powder 19–34 [64]

Dark chocolate 3.8–6.5 [72]
Milk chocolate 0.8–2.6 [64]

Plums Prunus domestica (Arandana) Skin and pulp 0.3–2.8 [73]
P. domestica (Laetitia) Skin and pulp 1.2–6.2

P. domestica (Red beauty) Skin and pulp 0.3–0.9
P. salicina (Damask) Skin and pulp 0.1–0.9

P. salicina (Golden Japan) Skin and pulp 1.3–1.6
P. salicina (Metley) Skin and pulp 0.2–0.4

Dates Phoenix dactylifera L. Fruit 3.0 [74]
Tomato Solanum lycopersicum L. Fruit 0–2.1
Itadori Reynoutria japonica Roots [75]

Tea [76]
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Interestingly, other signaling pathways were also
found to be implicated in resveratrol-mediated oxidative
stress attenuation. In a murine model, resveratrol at-
tenuates LPS-induced epithelial–mesenchymal transition
(EMT) and PF by suppressing oxidative stress and tumor
growth factor β1 (TGF-β1) signaling [102]. Oxidative
stress also forms the basis for other respiratory disorders,
such as IPF, asthma, and chronic obstructive pulmonary
disease (COPD) [21,103,104]. In this regard, by reducing
necrosis factor-κB (NF-κB) activity and increasing heme
oxygenase-1 (HO-1) expression, resveratrol can also in-
duce protective effects against smoke-induced lung oxida-
tive injury in mice [86]. Recent data obtained in lung ep-
ithelial cells indicated that resveratrol was able to reduce
Pseudomonas aeruginosa- and Streptococcus pneumoniae-
induced oxidative stress by upregulating glutathione perox-
idase and decreasing reactive oxygen species (ROS) forma-
tion, intercellular adhesion molecules-1 (ICAM-1) levels,
and human β-defensin-2 protein expression [85,105].

3.2 Anti-Inflammatory Potential

Inflammation is a localized protective response to tis-
sue damage and/or microbial invasion, which serves to iso-
late and destroy the harmful agent and prepare the injured
tissue for eventual repair and healing [106]. Chronic in-
flammation leads to tissue fibrosis [106]. The fibrosis of
parenchymal organs (i.e., lung or other organs) is caused
by prolonged injury, inflammatory diseases, deregulation
of the normal wound healing processes, and extensive depo-
sition of extracellular matrix (ECM) proteins [21,81,107].
In this context, it has been demonstrated that resveratrol ac-
tivates several anti-inflammatory responses. In acute lung
injuries, a fibrotic life-threatening condition, studies on an-
imals demonstrated that resveratrol exerts a protective ef-
fect by inhibiting the myd88-dependent toll-like receptor
4 (TLR4) signaling pathway [108]. In lung tissue, such
an effect is mediated by SIRT1 activation, decreased in-
flammatory cytokines, such as IL-1β, and macrophage in-
flammatory protein-1 alpha (MIP-1α), prevention of ni-
tric oxide (NO) release, inhibition of the inducible NO-
synthase (iNOS) expression, and suppression of NF-κB
nuclear translocation [108]. In human airway epithelial
cells, resveratrol exhibited anti-inflammatory activity more
effectively, although it was less potent than glucocorti-
coids. Indeed, resveratrol was shown to inhibit iNOS and
cyclooxygenase-2 (COX-2) gene transcription, along with
IL-8 and granulocyte–macrophage colony-stimulating fac-
tor (GM-CSF) expression [109]. Fagone et al. (2011)
[110] also demonstrated that resveratrol had an inhibitory
effect on the TGF-β-induced deposition of α-smooth mus-
cle actin (α–SMA) fibers, which is the hallmark of myofi-
broblast differentiation. The molecular mechanisms under-
lining such a phenomenon seem to be related to the TGF-
β-mediated inhibition of both extracellular signal-regulated
kinases 1/2 (ERK1/2) and Akt phosphorylation along with

the restored expression of the tumor suppressor phosphatase
and tensin homolog (PTEN) [110]. Interestingly, polydatin,
a polyphenolic phytoalexin similar to resveratrol, has been
reported to prevent bleomycin-induced PF by inhibiting the
TGF‑β/Smad/ERK pathway [111]. Using a mouse model,
Zhao et al. (2016) [112] demonstrated that resveratrol pro-
tected the lungs from paraquat-induced acute injury by in-
hibiting NF-κB p65 translocation and cytokine production.

It is widely recognized that chronic inflammatory con-
ditions are associated with cancer, especially in people of
older ages [113]. A recent study performed in A549 lung
cancer cells showed that the NLR family pyrin domain-
containing protein 3 (NLRP3) inflammasome was impli-
cated in tumor-related inflammation and its progression
[114]. Moreover, a significant marker of NLRP3 inflam-
masome activity is NF-κB pathway activation [115]. Like-
wise, increased TNF-α levels activate the NF-κB pathway,
which upregulates IL-1β and IL-18 and causes NLRP3 acti-
vation [115]. Resveratrol has been shown to repress NLRP3
activation by suppressing the NF-κB pathway, thus, atten-
uating the multiplication of human A549 and H1299 cell
lines and their metastatic potential [115].

Andrews et al. (2016) [116] showed that resvera-
trol was able to alleviate non-typeable Haemophilus in-
fluenzae (NTHi)-induced airway inflammation by upregu-
lating a negative modulator of inflammation, the myeloid
differentiation factor 88 (MyD88). Such an effect ap-
pears to be driven by a resveratrol-mediated, cAMP-PKA-
dependent, inhibition of NTHi-induced ERK1/2 phospho-
rylation and an increase in mitogen-activated protein kinase
phosphatase-1 (MKP-1) expression [116].

3.3 Anticancer Potential

Although the definitive molecular mechanisms are
yet to be fully understood, compelling data indicated that
resveratrol may be effective in inhibiting the occurrence
and development of lung cancer [117]. Nonetheless, a wide
range of data indicated that resveratrol anticancer prop-
erties were mediated through mechanisms such as apop-
tosis induction, autophagy regulation, cell cycle inhibi-
tion, angiogenesis suppression, and anti-oxidation [118].
In one study, resveratrol was reported to decrease cell vi-
ability, inhibit cell proliferation, and induce cell senes-
cence and apoptosis by disrupting the intracellular antiox-
idant defense, increasing ROS production, and destroy-
ing lung cancer cell redox homeostasis [119]. Resvera-
trol has the ability to bind to the pro-oncogenic nuclear re-
ceptor 4A1 (NR4A1, Nur77), thereby hindering NR4A1-
dependent transactivation in lung cancer cells. This implies
that resveratrol can act as an NR4A1 antagonist and elicit
effects similar to NR4A1 knockdown. Hence, resveratrol
might be a promising therapeutic approach for lung can-
cer patients with high NR4A1 expression, which is con-
sidered a negative prognostic factor for certain types of
solid tumor-derived cancers [120]. Interestingly, resver-

4

https://www.imrpress.com


atrol can induce apoptosis and inhibit the viability of the
small-cell lung cancer (SCLC) cell line H446. Indeed,
this cancer currently lacks effective treatments, meaning
that resveratrol can affect cell survival through a redox-
dependent, PI3K/Akt/c-Myc-mediated signaling mecha-
nism [121]. Moreover, resveratrol complexation with
sulfobutylether-β-cyclodextrin (CD-RES) and its loading
onto polymeric nanoparticles (NPs) enhance resveratrol an-
ticancer activity against non-small cell lung carcinoma cells
(NSCLC), thereby improving its therapeutic efficacy, com-
pared to the sole resveratrol [122]. Such an effect is medi-
ated by an enhanced cellular uptake, cytotoxicity, and apop-
tosis; thus, indicating CD-RES NPs as a potential resvera-
trol delivery system for NSCLC treatment [122]. A study
investigating the mechanism related to cell death induced
by resveratrol-loaded gelatin nanoparticles (RSV-GNPs) in
NSCLC concluded that RSV-GNPs induced apoptosis, in-
creased lipid peroxidative marker levels, and decreased an-
tioxidant enzyme activities. RSV-GNPs also enhanced an-
ticancer efficacy, which was associated with the altered ex-
pression of p53, p21, caspase-3, B cell leukemia/lymphoma
2 protein (BCL-2), BCL-2 associated protein X (Bax), and
NF-κB, thereby indicating the involvement of a redox-
mediated mechanism in NSCLC death [123]. Resveratrol
was also reported to have antiproliferative and antioxidant
properties in H460 lung cancer cells, with data indicat-
ing its ability to induce apoptosis through various mecha-
nisms, including H2O2 production, Bid (a proapoptotic pro-
tein in the BCL-2 family), poly-ADP-ribose- polymerase
-1 (PARP) and caspase-8 activation, and vascular endothe-
lial growth factor (VEGF) downregulation [124]. The
study also shows that inhibiting phosphorylated epithelial
growth factor receptor (pEGFR) or pAkt enhances resver-
atrol’s negative effect on cellular FLICE (FADD-like IL-
1β-converting enzyme)-inhibitory protein (FLIP)-mediated
cell viability and apoptosis, while supplementation with
EGF or transfection with a wildtype-AKT (WT-AKT) plas-
mid inhibited apoptosis and the activation of proapoptotic
proteins [124]. Mesenchymal stem cells (MSCs) can pro-
mote cancer cell growth and tumor formation due to their
ability to secrete proinflammatory cytokines. In this con-
text, a dose of 1 µM resveratrol can increase the relia-
bility and safety of stem cell therapy by suppressing IL-6
and VEGF release from co-cultured A549 cancer cells and
MSCs, thereby making it a potential candidate for combi-
nation therapy with stem cell treatment [125]. The in vitro
effects of thymoquinone, caffeic acid phenyl ester (CAPE),
and resveratrol were investigated in lung cancer cells and
revealed an upregulation of apoptotic proteins, the down-
regulation of antiapoptotic proteins, and a reduction in the
expression of cyclin D alongside an increase in p21 expres-
sion [126]. Resveratrol was also reported to inhibit migra-
tion and invasion of human metastatic lung and cervical
cancer cells through the suppression of metalloproteinase
(MMP)-9 expression and its transcriptional factors, NF-κB

and AP-1, thereby suggesting its potential clinical use to
prevent cell invasion by these cancers [127].

Resveratrol was indicated to decelerate the develop-
ment of inflammatory chronic diseases [128]. Addition-
ally, it was also suggested that the anti-inflammatory and
anti-fibrotic action of resveratrol may promote a potential
therapeutic effect toward pulmonary diseases with fibrotic
complications [129] (Fig. 2).

4. Pulmonary Fibrosis, Interstitial Lung
Diseases, and Associated Systemic Disorders

PF is a feared component in over 200 interstitial pul-
monary diseases, which are characterized by reduced lung
compliance and capacity as well as increased alveolar wall
thickness [21,23]. Some of these diseases have known
etiologies; however, many of them have a complex eti-
ology that remains obscure or not fully elucidated [20].
ILD refers to a diverse group of disorders characterized
by varying degrees of inflammation and/or fibrosis in the
lung parenchyma and interstitium [22]. These diseases are
broadly classified into different categories, including ILDs
with a known etiology, which are those that occur from
occupational/environmental factors, drugs, hypersensitiv-
ity reactions, and infections; ILDs associated with systemic
disorders, such as sarcoidosis and collagen vascular disor-
ders; rare miscellaneous conditions, such as eosinophilic
granuloma, and the idiopathic interstitial pneumonias (IIPs)
[20]. In the latter category, IPF figures as the most common
form among the 27 known classes, while other forms in-
clude nonspecific interstitial pneumonia, cryptogenic orga-
nizing pneumonia, acute interstitial pneumonia, respiratory
bronchiolitis-associated interstitial lung disease, desqua-
mative interstitial pneumonia, and lymphocytic interstitial
pneumonia (Fig. 3) [21].

IPF is a severe and progressive disease with limited
treatment options, while exacerbations are associated with
a high degree of morbidity and mortality [130]. Alterna-
tively, the CTD-associated ILDs may share PF as an asso-
ciated pattern. CTD is a heterogeneous group of inflam-
matory disorders that affect bone, cartilage, tendons, lig-
aments, muscle, joints, blood vessels, and specific organs
[22]. Many CTDs, such as SLE, RA, SS, polymyositis
(PM)/dermatomyositis (DM), SSc, and mixed connective
tissue disease (MCTD), are autoimmune-mediated [22].
CTD-related interstitial lung disease (CTD-ILD) is one of
the leading causes of CTD-associated morbidity and mor-
tality. Clinically, CTD-ILD is highly heterogenous and in-
volves rheumatic immunity and multiple manifestations of
respiratory complications that affect the airways, vessels,
lung parenchyma, pleura, and respiratory muscles [22]. The
major CTD pathological feature is the chronic inflammation
of blood vessels and connective tissues, which can progress
and affect any organ, ultimately leading to multisystem
damage [22]. The complex CTD-ILD etiology includes
genetic risks, epigenetic changes, and dysregulated immu-
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Fig. 2. Molecular pathways underpinning resveratrol antioxidant, anti-inflammatory, and anticancer effects. ARE, Antioxidant
Response Elements; GSH, glutathione; SOD, dismutase; CAT, catalase; TNF-α, tumor necrosis factor-α; NF-κB, nuclear factor-kappa
B; COX2, Prostaglandin-endoperoxide synthase 2.

nity, which interact and lead to disease onset and develop-
ment from various ill-defined environmental triggers [22].
CTD-ILD exhibits a broad spectrum of clinical manifesta-
tions, ranging from asymptomatic to severe dyspnea and
from respiratory system single-organ involvement to multi-
organ involvement [22]. The disease course is also fea-
tured by remissions and relapses, stability, or slow progres-
sion over several years to rapid deterioration, and presents
highly progressive clinical manifestation from the onset of
the disease. Currently, the diagnosis of CTD-ILD is primar-
ily based on a distinct pathology subtype(s) and imaging,
as well as the presence of related CTD and autoantibodies
profiles. Meticulous comprehensive clinical and laboratory
assessments to improve diagnostic processes and manage-
ment strategies are much needed [22]. In this regard, het-
erogeneity and the lack of preclinical ILD and CTD-ILD
pathogenesis models further complicate the establishment
of an accurate diagnosis [131].

5. Pathogenesis, Etiology, and Treatment of
PF in ILD and ILD-CTD

A great body of research on identifying the PF patho-
physiological mechanisms is still ongoing owing to the di-

versified etiologies of this disease, which may result in dif-
ferent primary mechanisms that all lead to a common fi-
brotic outcome. PF patients share the common character-
istic of a manifestation of excessive fibrotic components,
which lead to the development of PF [132]. Moreover, they
can extend to IPF following the development of a severe
pulmonary fibrotic disease with an unknown insult [23].

The progression of PF may be stimulated by microen-
vironmental insults of intrinsic (genetic, age, and gender)
or extrinsic origins (viral infections such as COVID-19,
cigarette smoke, or occupational exposure to irradiations)
targeting the alveolar epithelial cells (AECs), which are re-
sponsible for regulating many inflammatory aspects [23].
Following the initial insult, AECs initiate an immune re-
sponse to counteract the microenvironmental insult, thereby
promoting the resolution and repair of the damaged tis-
sue. Nevertheless, if this process is not correctly performed,
it will result in the formation of a perpetual fibrotic scar,
which is characterized by ECM constituents, such as fi-
bronectin, interstitial collagens, hyaluronic acid, and pro-
teoglycans [133,134]. At the same time as the tissue injury
occurs, endothelial cells and epithelial cells produce inflam-
matory mediators that activate antifibrinolytic-coagulation
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Fig. 3. Schematic summary of the different interstitial lung diseases.

mechanisms, resulting in ECM formation and deposition
[135]. Platelet accumulation and the recruitment of inflam-
matory cells (e.g., eosinophils, macrophages, neutrophils,
and lymphocytes) to the site of injury [136] induce a cas-
cade of chemokines and cytokines that additionally en-
hances the inflammatory response and stimulates fibroblast
proliferation and mobilization [137,138]. Generally, fibro-
sis occurs when the injury insult is aggressive or when the
healing process mechanism is altered [135].

Conversely, the activation of myofibroblasts, which is
responsible for collagen synthesis, alveolar epithelial type
II cells (AEC2) apoptosis, and PF formation, is accompa-
nied by a dysregulation in the immune response [139]. In-
flammatory cytokines, including TGF-β, play a major and
complex role in PF progression, primarily by modulating
ECM deposition through myofibroblasts activation [140].
Additionally, TGF-β1 and other TGF-β species regulate
cell recruitment to the sites of injury, induce fibroblast dif-
ferentiation in the myofibroblast, stimulate ECM produc-
tion by the myofibroblasts, and inhibit ECM degradation by
the matrix metalloproteinases (MMPs) [134]. Under these
conditions, the ERK- and Wnt/B-mediated augmentation in
the secretion of the alveolar fibroblast growth factor (FGF)-
2, in response to increased TGF-β1 activity, has also been
reported [134]. Consonantly, ERK1/2 inhibition seems to
attenuate fibrotic differentiation, while its overexpression
appears to increase disease exacerbation and poor progno-
sis among IPF patients [141,142]. In addition to increased

TGF-β signaling, fibrosis progression is also characterized
by a shift of TH1 to TH2 [143], since the TH1 inflammatory
profile, mainly characterized by the secretion of interferon-
gamma (IFN)-γ and interleukin 12 (IL)-12, is responsible
for fibrosis attenuation [144]. In contrast, the TH2 inflam-
matory profile, which is mainly defined by increased IL-
4, IL-5, and IL-13 levels, is involved in inducing fibrosis
[144]. Other cytokines, such as TNF-α, platelet-derived
growth factor (PDGF), CXC chemokines, and IL-1a, have
also been linked to IPF pathogenesis [145].

At a cellular level, previous studies have indicated the
presence of extensive B cell infiltrations in lung tissue of
SSc-ILD patients [146], while in RA-ILD, a prominent in-
crease of follicular B cell hyperplasia and CD4+ cell num-
ber has been observed [147,148]. In RA-ILD and SSc-ILD
patients, T cells release fibrogenic mediators, which subse-
quently stimulate fibroblasts and prime the fibrotic response
[149]. Toll-like receptors (TLRs), which are critical com-
ponents of innate immunity, have multifaceted effects on
ILD in patients with CTD; indeed, they have been proposed
as markers of ILD progression [150]. Correlation studies
showed that TLR2 [151] and TLR9 [152] are profibrotic,
while TLR3 [153] is antifibrotic in PF. On the other hand,
TLR4 can be either profibrotic [154] or antifibrotic [155]
depending on the micro-environment. However, the con-
tribution of other innate players on CTD-ILD remains to be
explored [22].
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Promoting myofibroblast development is another
mechanism through which the lungs respond to insults or
injuries. Myofibroblasts are responsible for ECM secretion
within the damaged area, a phenomenon that is supposed
to prompt the repair process; however, an imbalance in this
process with an altered ECM deposition results in the for-
mation of fibrosis [133]. Various factors, including TGF-
β1, promote the development of myofibroblasts by involv-
ing different microRNA (miRNA) [156] or the Src family
of kinases [157]. Therefore, a promising strategy to coun-
teract PF progression might be attenuating the differentia-
tion of fibroblasts into myofibroblasts and limiting collagen
deposition.

Oxidative stress is another important player in PF de-
velopment; indeed, excessive amounts of ROS are gener-
ated during disease development [21]. Since a large amount
of O2 exchange takes place in the lungs, they are consid-
ered an organ vulnerable to oxidative stress and its asso-
ciated phenomena, which can lead to apoptotic epithelial
cells, increased secretion of profibrotic factors, and an in-
crease in the differentiation of fibroblasts into myofibrob-
lasts [78,79,81,82,103,107,158]. A great body of literature
supports the involvement of epigenetics in the pathogene-
sis of IPF; however, studies examining the correlation be-
tween epigenetics and CTD-ILD are limited [21]. The as-
sociation between a number of genetic loci and the risk of
developing CTD-ILD was established by a high through-
put genetic analysis [159–161]. It has been shown that rare
pathogenic mutations in the telomere maintenance genes
are associated with PF. Indeed, Newton et al. (2016) [162]
demonstrated that ILD patients with rare telomere-related
variants of TERT, TERC, PARN, or RTEL1 exhibited var-
ious forms of PF, which included IPF, interstitial pneumo-
nia with autoimmune features (IPAF), and CTD-ILD. Ac-
cordingly, several studies have shown that MUC5B mi-
nor alleles correlate with a deterioration in lung function
and survival rate by IPAF and CTD-ILD patients [159–
161]. Similarly, exome-sequencing studies related to famil-
ial IPF revealed several mutations in TTR, RTL1, PARN,
or SFTPC in RA-ILD patients, suggesting that IPF-linked
genes contribute to RA-ILD susceptibility [163]. Further-
more, accumulated evidence has also shown that several
genetic loci are associated with SSc-ILD susceptibility, in-
cluding CTGF (also known as CCN2, which encodes the
connective tissue growth factor), CD247, and IRF5 [164–
167]. Other PF-associated epigenetic mechanisms include
the involvement of DNA methylation, post-translational hi-
stone modification, non-coding RNA (ncRNA), miRNAs,
and DNA methylation-influenced regulatory sites of genes
involved in IPF [168,169]. Another interesting aspect re-
lates to the studies on histone modifications, which re-
vealed the involvement of epithelial-mesenchymal transi-
tion (EMT), apoptosis, and the prostaglandin E2 pathway
[170]. Interestingly, histone deacetylase inhibitors were
found to counteract the TGF-β1-induced differentiation of

fibroblasts into myofibroblasts, the restoration of surfactant
protein-C expression in AEC2, and mitigate bleomycin-
induced PF [171,172]. A correct and timely diagnosis of PF
within CTD-ILD and the degree to which it has progressed
are necessary for establishing the appropriate therapy. In-
deed, individualized treatments for each patient alongside
the use of glucocorticoids (GC) and immunosuppressive
agents depend on the primary disease, systemic activity,
reversibility, and ILD clinical course [173,174]. For in-
stance, when the disease reaches the chronicity phase, high-
dose GC and immunosuppressive therapy may not be ef-
ficient; thus, anti-PF treatments may be applied, such as
pirfenidone and nintedanib [175–177]. Interestingly, pre-
viously reported data indicated that these two drugs pos-
sess antioxidant activity, which may form the basis of their
therapeutic effect [81,82]. Notably, nintedanib has been
approved by the United States FDA for use in CTD-ILD
with a PF-ILD phenotype alongside SSc-ILD as an in-
hibitor of multiple tyrosine kinases [178,179]. When the
disease reaches its end stages or during its refractory cases,
two promising novel therapeutic strategies have been pro-
posed: autologous hematopoietic stem-cell transplantation
and lung transplantation [180].

Based on the previous PF presentation, the pathogen-
esis of diseases, such as ILDs and CTD-ILD, is believed to
be tightly linked to fibrosis. However, it is largely accepted
that the impairment of inflammatory-associated pathways is
the primary molecular mechanism that promotes profibrotic
cascades and leads to aberrant tissue remodeling and fibro-
genesis [181]. Nonetheless, conventional treatments are not
always efficient in reversing PF progression and provoke
multiple side effects; hence, alternative therapies are neces-
sary for controlling the patient’s symptoms and ameliorat-
ing their quality of life [182]. The promising anti-PF roles
for natural compounds have increasingly attracted the inter-
est of scientists over the last two decades. Indeed, natural
compounds encompass multiple biological properties and
potent safety standards, which are pivotal in PF prevention
and treatment [183]. Interestingly, natural product-based
treatments have demonstrated promising outcomes in PF
management, with studies demonstrating that natural prod-
ucts can exert antifibrotic effects by inhibiting inflamma-
tion, oxidative stress, endothelial mesenchymal transition
(EndMT), and counteracting TGF-β-mediated profibrotic
cell signaling [13,184].
6. Effect and Molecular Targets of
Resveratrol on PF

In addition to its antioxidant, anti-inflammatory, an-
tiapoptotic, and anticancer effects, resveratrol was found
to exert preventive and therapeutic effects on PF by im-
pacting signaling pathways specifically implicated in PF-
associated pathologies. Indeed, the inhibition of fibrogenic
events such as TGF-β-mediated cell signaling and EndMT
underpin the antifibrotic properties of resveratrol on PF at-
tenuation (Fig. 4).
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Fig. 4. Molecular targets underpinning the antifibrotic effects of resveratrol in lungs. PF, Pulmonary fibrosis; EMT, epithelial
mesenchymal transition; Nrf2, the nuclear factor (erythroid-derived 2)-like 2; SIRT1, sirtuin-1; PI3K, phosphoinositide 3-kinase; VEGF,
vascular endothelial growth factor; mTOR, mammalian target of rapamycin; IL-6, interleukin-6.

6.1 EMT Molecular Events and Myofibroblast
Differentiation Inhibition

PF is associated with differentiating fibroblasts into
myofibroblasts, aberrant ECM deposition, and parenchy-
mal disorganization, all of which, ultimately, affect lung
biomechanical parameters [185]. EMT is a process dur-
ing which epithelial cells lose apical-basal polarity and ad-
hesion and undergo a transition into mesenchymal cells,
which potentially leads to PF formation [186,187].

Resveratrol has shown antifibrotic effects in multiple
tissues and organs, including vessels, kidneys, and livers.
As for the lung, resveratrol was found to alleviate fibrotic-
associated pathological changes. Interestingly, by inhibit-
ing the profibrogenic cytokine TGF- β1, which is recog-
nized as the pivotal enhancer of EMT-associated α–SMA
fiber depositions. Moreover, resveratrol also counteracts
both fibroblast proliferation and their differentiation into
myofibroblasts, which are two critical stages in the lung fi-
brotic process [188].

6.2 SIRT1 Activation

TGF-β1-induced EMT is primarily triggered by ERK
1/2 and Akt stimulation, and the subsequent activation

of their downstream mediators, Smads [102], which are
SIRT1-regulated targets that are responsible for E-cadherin,
collagen I, and α–SMA expression [110,189–192]. Resver-
atrol was also shown to alleviate PF by inhibiting TAK1,
which is a TGF-β-activated kinase that participates in fi-
broblast proliferation, collagen deposition, and scar for-
mation [193]. SIRT1 was also demonstrated to stimulate
AMPK expression in the presence of moderate resveratrol
concentrations, thereby suggesting that resveratrol-induced
SIRT1 may serve as a therapeutic target in the treatment
of ILD diseases [194]. SIRT1/p53-activated signals have
been reported to be involved in the pathogenesis of ILDs by
inducing AEC2 senescence [195]. Thus, resveratrol treat-
ment has been reported to maintain AEC2 integrity by ac-
tivating SIRT1 expression, promoting p53 destabilization,
and stimulating Akt and MDM2 (an oncoprotein) phospho-
rylation [195]. As demonstrated in neonatal rats, resver-
atrol acts in hyperoxia-induced lung injuries by modulat-
ing the antioxidant and anti-inflammatory hallmarks [196].
In this regard, SIRT1 has been shown to be able to control
ROS levels and modulate ROS-associated cellular activi-
ties [197]. In human lung AECs, resveratrol upregulates
SIRT1, which ameliorates mitochondrial membrane poten-
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tial, decreases ROS levels, and reduces apoptosis, to ulti-
mately decrease hyperoxia-induced cell damage [198].

6.3 Nrf2 Pathway Activation
The activation of various Nrf2 downstream signaling

targets, such as NAD(P)H quinone dehydrogenase 1 (HO-
1/NQO1), NADPH oxidase 4 (NOX4), and GSH, via sev-
eral Nrf2-induced mechanisms, has been shown to promote
potent antifibrotic effects and significantly attenuate PF,
both in vivo and in vitro, by counteracting inflammation,
oxidative stress, fibroblast–myofibroblast differentiations,
and EMT [199]. Consonantly with these findings, resvera-
trol was found to exert a protective effect on PF by reducing
systemic oxidative and nitrosative stress through the acti-
vation of AMPK- and Nrf2-associated antioxidant defense
mechanisms [200,201].

The potential therapeutic and preventive effects of
resveratrol are believed to both decelerate ILD and indi-
rectly inhibit the progression of autoimmune-related ILD
via the same molecular mechanisms and pathways [202].

7. Resveratrol Effect in Rheumatoid
Arthritis Associated with Interstitial Lung
Disease (RA-ILD)

RA-ILD is one of the leading causes of interstitial fi-
brosis and pulmonary failure and occurs from a compli-
cation of RA. RA is a common autoimmune disease that
causes progressive articular damage, functional loss, and
comorbidities; thus, presenting ILD as one of its most com-
mon extra-articular manifestations [203]. Autophagy is a
self-digestion process that occurs in eukaryotic cells and
mediates several intracellular biological functions, such as
the removal of cytoplasmic material [204]. Autophagy
plays a pivotal role in maintaining lung tissue metabolic
homeostasis as well as in the occurrence and progression
of chronic lung diseases owing to its role in the regula-
tion of several respiratory tract biological functions, includ-
ing inflammatory response, DNA damage repair, cell apop-
tosis, and cell proliferation and differentiation [205,206].
Under specific circumstances, autophagy may occur in
autophagosomes, which when combined with lysosomes
leads to the formation of autophagolysosomes. More-
over, autophagolysosome-associated degradation of some
junction proteins, such as P62, leads to the disruption of
homeostasis-associated cellular signals and metabolic path-
ways that are involved in several metabolic disorders [207].
In this regard, evidence supporting the connection between
autophagy and ILD, further, demonstrated that resveratrol
can improve RA progression through autophagy regulation.
Thus, resveratrol can potentially attenuate PF by amelio-
rating the autophagic flux and modulating the autophagy–
lysosome pathways [28]. Among the signal transduction
pathways implicated in RA onset and progression, IL-6
predominantly activates the Janus kinase/signal transduc-
ers and activators of the transcription (JAK/STAT) path-

way [208]. JAK/STAT has been found to be involved in
PF pathogenesis [209], and its downregulation is believed
to prevent the development of RA [208].

The receptor activator of nuclear factor kappa-β lig-
and (RANKL), also known as tumor necrosis factor lig-
and superfamily member 11 (TNFSF11), is one of the ma-
jor JAK/STAT signaling pathway outputs and is reported to
be the key mediator in arthritis-associated bone loss [210].
In this regard, resveratrol was found to interfere with the
JAK/STAT/RANKL signaling pathway and significantly
ameliorate lung disease by preventing the production of
proinflammatory cytokines in RA-ILD rodents [211].

The activation of SIRT1 and its downstream path-
ways has been highlighted as a common molecular path-
way that underpins the resveratrol therapeutic effects on RA
and ILD. Overall, the activation of SIRT1 and its down-
stream pathways can downregulate the NF-κB signaling
pathway and the production of several related monocyte in-
flammatory factors, such as TNF-α, IL-1b, IL-6, and Ki-
67, which act as anti-inflammatory molecules and attenuate
the RA severity [212]. The excessive production of inter-
membrane metalloproteinases (IMMPs) is another mech-
anism that promotes RA-associated EMC remodeling. In
fact, the overproduction of IMMPs was found to be respon-
sible for histological barrier impairment in fibroblast-like
synoviocytes (FLS) cells and was characterized by a severe
degradation of ECM proteins, FLS migration, and inva-
sion, along with articular bones and cartilages destruction
[213–215]. SIRT1 activation was also found to suppress
RA progression by promoting the decomposition of MMPs
and counteracting FLS invasion [216].

The Nrf2– Kelch-like ECH-associated protein 1
(Keap1) pathway is recognized as playing a key role in
resveratrol-mediated antioxidant activity [217]. Under
physiological conditions, Nrf2 is found sequestered in the
cytoplasm in its inactive form, which is bound to Keap1
[218–220]. In response to appropriate stimuli, the con-
formation of Keap1 is modified, which releases Nrf2 to
complex with the small Maf (sMaf) protein. The Nrf2–
sMaf protein complex, then, translocates into the nucleus
and binds to DNA-contained antioxidant response ele-
ments (AREs), which promotes the expression of heme
oxygenase-1 (HO-1), and exerts antioxidant protective ef-
fects [221–223]. Resveratrol was found to promote Nrf2
and HO-1 expression, while downregulating the expres-
sion of Keap1 which reduced ROS and malonaldehyde
(MDA) generation, and inhibited NF-κB–p65 activation,
and FLS proliferation and migration [217]. NF-κB was
also shown to negatively regulate the expressions of miR-
29a-3p and miR-23a-3p, the miRNAs responsible for ac-
tivating Keap1, which directly targets Cullin3 (CUL3), an
essential regulator of Nrf2 ubiquitination and degradation
[224]. In this context, it was proven that resveratrol ame-
liorated RA by activating the Nrf2-ARE signaling pathway
via the SIRT1/NF-κB/miR-29a-3p/Keap1 and SIRT1/NF-

10

https://www.imrpress.com


κB/miR-23a-3p/CUL3 cascades [224]. The resveratrol-
mediated blockage of the previous pathway is also believed
to inhibit the ROS-mediated MAPK activation and promote
the whole cascade that leads to the activation of both activa-
tor protein-1 (AP-1) and NF-κB; hence, forming a complex
network of signals that are all interconnected by the SIRT1
pathway [225].

8. Resveratrol Effect in Associated Systemic
Sclerosis with Interstitial Lung Disease
(SSc-ILD)

Systemic sclerosis (SSc), also referred to as sclero-
derma, is a rare autoimmune disease that is associated with
vasculopathy and characterized by microvascular damage,
innate and adaptive immune dysfunction, and fibrosis of
the skin and/or internal organs [77–80]. ILD is a com-
mon complication and the leading cause of death in SSc
patients and is often linked to pulmonary hypertension (PH)
[226]. Although there is a paucity of studies investigat-
ing the effect of resveratrol on SSc-associated PF, recently,
it has been reported that resveratrol could counteract SSc-
related PF by suppressing proinflammatory and profibrotic
processes, including cell proliferation and fibroblast dif-
ferentiation, via a SIRT1-mediated inhibition of the TGF-
β pathway [227]. Furthermore, the serine/threonine pro-
tein kinase, mammalian target of rapamycin (mTOR) has
been reported to initiate PF-associated fibrotic events [228].
Moreover, Yao et al. (2020) [227] demonstrated that a
resveratrol-dependent overexpression of SIRT1 suppressed
mTOR expression and ameliorated fibrosis and inflamma-
tion, thereby suggesting that the downregulation of mTOR
by SIRT1 underpins the resveratrol therapeutic effect on
SSc-associated PF. Additionally, in the same study, a meta-
analysis of the genes associated with the biological proper-
ties of resveratrol illustrated the involvement of 79 path-
ways, which contained genes targeted by resveratrol, 27 of
which were concomitantly involved in SSc [227].

9. Resveratrol Effect in Schrödinger’s
Syndrome with Interstitial Lung Disease
(SS-ILD)

ILD is considered the most frequent and severe pul-
monary complication in primary Sjögren’s syndrome (SS),
with significant morbidity and mortality. Although ILD
was described as a late manifestation of SS, recent stud-
ies have demonstrated that between 10 and 51% of pa-
tients might develop ILD years before the onset of SS [229].
Resveratrol was shown to improve SS by enhancing SIRT1
activity and the expression of IL-10. Thus, the therapeu-
tic effect of resveratrol on SS-associated salivary dysfunc-
tion appears to be mediated by a SIRT1-like activity, which
is known to block NF-κB nuclear translocation by inhibit-
ing IkappaB kinase (IKK) [230], yet little is known about
the effect of resveratrol on SS as an autoimmune disease.

Thus, more studies are required to identify the molecular
mechanisms through which resveratrol affects both SS and
SS-ILD.

10. Resveratrol Effect in Pulmonary
Hypertension PH-ILD

The development of pulmonary hypertension (PH) as
a secondary ailment to PF (PF-PH) is the primary factor in
the mortality and morbidity of the disease [231]. The high
prevalence of PH in PF patients is very worrisome since
it presents a significant predictor of mortality [231]. Until
recently, PH was thought to be solely provoked by fibrosis-
mediated lung parenchyma destruction, which leads to hy-
poxic vasoconstriction, severe pulmonary vascular remod-
eling, loss of vascular bed density, and elevation in pul-
monary pressure [232]. The increase in pulmonary pressure
is maintained, at least in part, by sustained inflammation,
oxidative stress, and dysfunction in endothelial cells (ECs)
proliferation and angiogenesis as well as ECs- and vascu-
lar smooth muscle cells (VSMCs)-mediated ECM remod-
eling [77–80]. This aberrant vascular remodeling occurs
in all types of vessels within the pulmonary vascular tree,
with ECs and VSMCs the most prominently involved vas-
cular cells [77–80]. However, it has been recently demon-
strated that there is no significant correlation between fi-
brosis severity and the development of PH [232]. Indeed,
relevant histological and molecular differences between PF
and PF-PH patients have recently been identified and have
helped to deviate from this paradigm [233–236]. Inter-
estingly, the systemic and cardiac vasculature therapeutic
properties of resveratrol may also target pulmonary hyper-
tensive disease mediators, including the antifibrotic path-
ways [237]. In this regard, resveratrol was shown to protect
against pulmonary artery hypertension (PAH), via chemo-
protective [95], anti-inflammatory, antioxidant [238], an-
tiproliferative [239], and antiapoptotic mechanisms [240].
Specifically, resveratrol alleviates hyperoxia-induced his-
tological lung injury, regulates redox unbalance, decreases
proinflammatory cytokines, and downregulates fibrosis-
associated protein expression [241].

The Wnt/beta-catenin signaling pathway not only me-
diates cell differentiation in the early stages of lung de-
velopment, yet also participates in the organization of the
lung tissue structure. In fact, Wnt signaling expression was
shown to be impaired in the lungs of IPF patients [242,243].
Accordingly, recent studies demonstrated that the inhibi-
tion of glycogen synthase kinase (GSK)-3β, a negative reg-
ulator of the Wnt/β-catenin signaling pathway [244], medi-
ated the downregulation of the Wnt/β-catenin signaling ex-
pression in hyperoxia [245]. Wnt signaling also regulates
the trans-differentiation of stem cell-like alveolar epithe-
lial type 2 cells (ACE29) to type 1 epithelial cells (ACE1)
[246]. Specifically, a study suggested that resveratrol could
exert protective effects against PF by promoting the trans-
differentiation of ACE2 into ACE1 through inhibiting the
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Wnt/β-catenin-associated signals, thereby effectively at-
tenuating hyperoxia-induced oxidative stress, the inflam-
matory responses, and PF [241]. The same study also in-
dicated that resveratrol could inhibit the Wnt/β-catenin sig-
naling pathway by diminishing the expressions of lymphoid
enhancer factor-1, Wnt-induced signaling protein-1, and
cyclin D1 [241].
11. Resveratrol Effect in Systemic Lupus
Erythematosus (SLE)

SLE is an autoimmune disease, which is characterized
by the production of autoantibodies and presents a complex
pathogenesis that is triggered by both environmental fac-
tors and genetic predisposition [247,248]. The early stages
of SLE are associated with the impaired clearance of apop-
totic cells by macrophages, which leads to an altered au-
toimmune response, characterized by the hyperactivation
of T cells, a shift from Th1 to Th2, increased IL-10 lev-
els, activation of B cells, and the excessive generation of
autoantibodies [249,250]. This altered response can cause
damage to the peripheral tissue blood vessels, vasculopa-
thy, and vasculitis, which are common aspects in SLE pa-
tients that lead to cardiovascular and renal damage [251–
253]. In this context, resveratrol was shown to attenuate
proteinuria, decrease IgM/IgG kidney deposition, and re-
duce kidney histological lesions [254]. Authors also re-
ported that resveratrol alleviated the altered autoimmune
response, T cells/B cells activation, the proliferation pro-
file [254], Th1/Th2 ratio, and Th1 cytokine-promoted im-
munoglobulins release by acting in a SIRT1-mediated fash-
ion [254]. Conversely, resveratrol enhanced the apoptosis
of T cells, either by acting through Fas, BCL-2, Bax, or
p53-mediated pathways, or through a mechanism involv-
ing the depolarization of mitochondrial membranes and cas-
pase activation [29,255–257]. Ultimately, both methods
alleviated the impaired apoptosis, which characterizes the
SLE autoimmune response. Additionally, the activation of
SIRT1 by resveratrol was found to inhibit COX2 expression
by suppressing both NF-kB activation and TNF-α-induced
inflammation in fibroblasts [29,255–257]. Resveratrol also
appeared to potentially delay SLE-induced atherogenesis
progression and SLE-associated kidney and heart failures
by normalizing cholesterol levels [258]. In contrast, the
lack of data regarding the use of resveratrol in other com-
mon SLE complications, such as lung impairment, might
be a solid motive for performing more clinical trials to bet-
ter understand its molecular mechanism in attenuating these
ILD-related pathologies. Given these findings, it is hard to
suggest resveratrol as a curative drug for SLE; however, it
should be considered a promising supplement in managing
SLE therapy [128].

PF may co-occur in other pathologies than the previ-
ously mentioned autoimmune diseases. Indeed, an impor-
tant number of PF and lung cancer patients were infected
with COVID-19 during the virus pandemic. As featured
diseases of PF, they are known to cause high morbidity and

mortality rates worldwide [259]. Therefore, a significant
body of data has been generated by investigating the effects
of resveratrol on lung cancer and COVID-19 infections by
targeting PF as a component.

12. Resveratrol Effect in Other
PF-Associated Pathologies
12.1 COVID-19-Associated PF

The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is a recently emerged viral pathogen
that causes coronavirus disease-2019 (COVID-19) [260].
SARS-CoV-2 belongs to a family of coronaviruses, which
are enveloped and segmented RNA viruses [261]. The rapid
rate of transmission and infectivity of this viral disease re-
sides in the fact that the SARS-CoV-2 protein is cleaved by
many serine proteases [23]. Interestingly, IPF patients and
patients with severe post-COVID-19 infection-PF manifest
similar pathological characteristics [23]. Since AEC2 and
alveolar macrophages are essential regulators in PF promo-
tion, their altered physiology due to COVID-19 infection
may cause PF as a sequela of the disease [23]. SARS-
CoV-2 potentially infects epithelial cells, AEC2, alveo-
lar macrophages, intestinal enterocytes, and eventually the
basal epithelial cells in the nasal passages [23,261,262].
COVID-19 patients have increased levels of IFN-γ, TGF-
β, IL-17, and IL-8, compared to a normal cytokine pro-
file, which correlates to an excessive Th1 response and
a profibrotic inflammatory profile [261,262]. Addition-
ally, high levels of TGF-β suggest increased ECM depo-
sition and enhanced fibroblast to myofibroblast differentia-
tion [23,262]. An increase in IL-17 was also demonstrated
during COVID-associated PF resulting in neutrophil de-
granulation, high oxidative stress, and fibrotic deposition in
the lungs [263]. These pathological conditions are similar
to those in IPF-associated PF and might occur in the longer
term to eventually promote COVID-19-associated PF [23].
In this regard, resveratrol was proposed as an anti-covid
agent because it was shown to act as an antiviral along-
side its role in the immune stimulation, downregulation of
proinflammatory cytokine release, and reduction in oxida-
tive stress-associated lung injury [16,264]. In silico studies
showed that resveratrol has a high affinity for the COVID-
19 S1 spike protein [265]. It is also strongly believed that
resveratrol counteracts COVID-19 viral infection through
its ability to inhibit several infection-associated features,
such as the transcription of the viral proteases Mpro and PL-
pro [266–269], the polymerase activity of RNA-dependent
RNA [270], the release of proinflammatory cytokines [271,
272], the aggregation of platelets [273,274], the synthesis of
endothelial nitric oxide [275–277], the activation of proin-
flammatory NF-kB [278], and the activation of proinflam-
matory Th-17 T cells [279]. Within the COVID-19 setting,
resveratrol has also been reported to promote antioxidant
and anti-inflammatory effects by stimulating the production
of glutathione in lung epithelium cells [280–282] and sup-
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pressing the bradykinin-induced COX-2/PGE2 production,
in a SIRT1-dependent way [283]. The ability to counteract
and/or ameliorate COVID-19-associated hemostatic disor-
ders has also been reported as part of the resveratrol thera-
peutic potential against COVID-19 [16].

12.2 Effect of Resveratrol in Lung Cancer-Associated with
Pulmonary Fibrosis (LC-PF)

PF patients manifest chronic progressive and diffuse
fibrotic lung disease. This persistent inflammatory state,
along with the repeated fibrotic scars, has been linked to
the etiologies of various neoplasms, including lung can-
cer [83,113]. In this regard, studies demonstrated an in-
creased estimated risk of lung cancer in ILD patients of
between 7 and 14 times [284]. Interestingly, lung tumors
in IPF patients develop preferentially in the peripheral ad-
jacent zones to fibrotic areas and present different histo-
logic distributions and immunohistochemical characteris-
tics compared to non-IPF-associated lung tumors [24,25].
Furthermore, studies have indicated that IPF and lung can-
cer share many pathogenic features, including genetic and
epigenetic mechanisms [24,25]. Indeed, genetic and epige-
netic impairments lead to the abnormal activation of com-
mon transduction pathways, such as Wnt/β-catenin and
phosphoinositide 3-kinase/protein kinase B, which mediate
the metaplasia and hyperproliferation of AEC2. Such an
aspect represents a common thread between carcinogenesis
and ILD, which might even lead to the use of similar drugs
[25].

These alterations are also believed to be age-related
and may result in deregulated gene expression, increased
oxidative stress, and the accumulation of dysfunctional or-
ganelles, ultimately resulting in the development of lung
diseases, including cancer. Resveratrol has been reported to
positively impact lifespan regulations, health maintenance,
and age-associated disorders [285]. Additionally, resver-
atrol administration appears to be a potential method for
slowing the aging-related decline in lung function and struc-
ture by maintaining the integrity of AEC2 [195]. In lung
cancer cells, resveratrol acts as an inhibitor of the epithelial
growth factor receptor EGFR [286,287], mTOR [286,288],
and Akt [289–291]. Moreover, in addition to the GLUT1
glucose transporter, resveratrol has been reported to inhibit
the NF-κB [126,290,292] and JAK/STAT pathways [292].
Alternatively, resveratrol has been demonstrated to activate
the p53 tumor suppressor [289,291] and increase caspase
activation [286,292], thereby orienting cancer cells toward
apoptosis. As indicated in previous sections of this paper,
resveratrol is a well-established SIRT1 activator [293,294].
Notably, resveratrol-induced SIRT1 activation resulted in
a SIRT1-mediated decrease in NF-κB activation in cancer
cells [26,27].

Accumulated data have also shown that resveratrol
amplifies the effects of lung cancer chemotherapy drugs,
by increasing their intracellular concentrations and trigger-

ing apoptosis, autophagy, and senescence [287]. Addition-
ally, resveratrol can interact with other chemotherapeutic
drugs to induce and/or potentiate their antitumor effects
and, in some cases, abolish chemotherapeutic drug resis-
tance [295,296].

Given the diverse resveratrol effects, this compound
was subjected to increasing multidisciplinary studies aim-
ing to highlight its therapeutic prospect in ILD and CTD-
ILD.

13. Studies on Resveratrol Effects in PF and
Related Pathologies

Research on the potential therapeutic effects of resver-
atrol in ILDs is ongoing, and although the results are still
preliminary, there is evidence that suggests it may have
beneficial effects. In animal studies, resveratrol has been
shown to reduce the key features in ILDs, such as lung in-
flammation and fibrosis. Additionally, some studies have
found that resveratrol can improve lung function in patients
with ILDs.

13.1 In Silico Studies
Despite the compelling data highlighting the thera-

peutic potential of resveratrol, in silico studies remain lim-
ited. A resveratrol-targeted genes interaction network anal-
ysis established using both STITCH and the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) database has
shown that 79 genes were included in the pathways as-
sociated with the therapeutic effects of resveratrol in SSc
[227]. The study focused on the SIRT1/mTOR signal-
ing pathway as one of the crucial regulatory components,
previously suggested to alleviate inflammation and fibro-
sis [227]. Another study on Polygonum cuspidatum, a
resveratrol-contained plant, found that it exhibited excel-
lent inhibitory activity of TGF-β receptor type I (RI) at a
dose of 2.211 µM. Moreover, molecular docking studies
showed the establishment of hydrogen bonds at HID_283
and GLU_245, which could be considered the active sites
underpinning the interactions between resveratrol and TGF-
β RI. The study suggests that the potential inhibitory effect
of resveratrol is a promising lead for developing TGF-β RI
inhibitors in the future [297] (Table 2).

13.2 In Vitro Studies
Extensive data have confirmed the role of oxidative

stress in the onset and development of PF [78–82,103,
311]. In particular, several studies concluded that the
SIRT1-mediated protective effect against oxidative stress
and inflammation by resveratrol played an important role
in regulating several pathways implicated in PF-associated
pathologies [293]. For instance, a dose of 50 µM resveratrol
activated SIRT1 and protected the lungs against bleomycin-
induced inflammation and fibrosis [30]. In A549 cells,
which are used as a model of human AEC2, treatment with
resveratrol (10 µM) protected against cigarette smoke-
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Table 2. Resveratrol effect in CTD-ILDs experimental models (in silico, in vitro, and in vivo studies).
Model Type of cell/rodent Dose Major results Reference

In vitro BEAS-2B, WI38-VA13, and
Raw264.7

30 mg/kg; 10 µM Activation of AMPK and Nrf2-associated antioxidant defense mechanisms [196,197]

C57BL/6 female mice 50 µM SIRT1 activation, ↓ collagen production, and ↓ TNF-α overexpression [30]
A549 cells 10 µM Activation of Nrf2 and ↑ glutathione synthesis [99]
HPAEpiCs 50 μM Activation of JNK1/2 /p38 MAPK, via the c-Src/PDGFR pathway, ↑ VCAM-1 expression, and ↓ H2O2-induced

oxidative stress
[197]

U937 cells 10–50 µM Inhibition of PI3K and VEGF functions [298,299]
HUVECs 10 µM SIRT1-mediated mTOR degradation [300]

MCF-7 cells 50 µM ↓ phosphorylation of PRAS40T246 and PRAS40S183 and increased binding of PRAS40 to RAPTOR/TORC1 [301]
In vivo Mice 15–60 mg/kg Activation of AMPK and Nrf2-associated antioxidant defense mechanisms [196,197]

Mice ↓ associated pathological changes: weight loss and reduced mortality rates [102]
C57BL/6 mice 20 mg/kg ↓ myofibroblast differentiation and ECM expression [302]
Wistar albinos 10 mg/kg ↓ proinflammatory cytokine levels, including TNF-α, TGF-β, IL-1b, and IL-6, and ↓ MDA [303]

Rats 10 mg/kg ↓ fibrosis, ↓ MDA levels in lung tissue and serum, ↑ plasma antioxidant profile, and ↓ neutrophil numbers [304]
BALB/c mice 25–50 mg/kg ↓ MDA, ↓ protein carbonyl, ↓ total oxidant status, ↓ myeloperoxidase, ↓ oxidative stress index, ↓ hydroxyproline, and

↓ DNA damage
[305]

Wistar male rats 10 mg/kg/day ↓ PF-induced inflammatory response, ↓ lung damage, EMT inhibition, ↓ TLR4/NF-κB, and TGF-β1/Smad3
signaling pathway expressions

[306]

Wistar male rats 50 mg/kg SIRT1/PGC-1α signaling pathway inhibition [307]
ICR male mice 0.3 mg/kg ↓ TGF-β1 levels, ↑ SOD, ↑ CAT TGF-β1/Smad2/3/4 signaling pathway suppression, LPS-induced oxidative stress,

and PF
[100]

Sprague-Dawley rats 60 mg/kg ↓ TGF-β1 and p-Smad2/3, ↑ miR-21 expression [309]
Inflammatory responses and EMT inhibition

Bleomycin-induced lung fibrosis
in mice

↓ SIRT1-mediated PF through EMT inhibition in lung tissue [102]

Sprague-Dawley rats 40 mg/kg ↓ TGF-β1; inhibition of Smad2/3 and ERK1/2 phosphorylation, ↓ TNF-α, ↓ IL-6, and ↓ IL-13 levels [308]
Bleomycin-treated mice ↑ resveratrol-mediated SIRT1 overexpression in lung epithelial cells and fibroblasts [310]

Bleomycin-induced PF in mice 50 µM ↑ resveratrol-mediated SIRT1 and ↓ PF features [29]
C57BL/6J mice 20 mg/kg ↓ inflammation and fibrosis and ↓ STAT3 activation [111]

ICR mice 5 mg/kg ↓ VCAM-1 protein levels, ↓ mRNA expression in mice lungs, and ↓ leucocytes in the BAL fluid [295]
Wistar male rats 10 mg/kg Inhibition of JAK/STAT/RANKL signaling pathways [207]

AMPK, AMP-activated protein kinase; JNK1/2/p38 MAPK, c-Jun N-terminal protein kinase/1/2/protein38–mitogen-activated protein kinase; a c-Src/PDGFR, proto-oncogenes tyrosine kinases/platelet-
derived growth factor receptor; VCAM-1, vascular cell adhesion molecule 1; H2O2, hydrogen peroxide; TORC1, mammalian target of rapamycin complex-1; TGF-β, transforming growth factor-β; IL-1b,
interleukin-1b; IL-13, interleukin 13; MDA, malonaldehyde; TLR4, toll-like receptor 4; ERK1/2, extracellular signal regulator kinase; miR-21, microRNA-21; STAT3, signal transducer and activator of
transcription 3; mRNA, messenger RNA; BAL, bronchoscopy and bronchoalveolar lavage. JAK/STAT/RANKL/Janus kinase/signal transducers and activators of transcription RANK ligand. ↑ , increase
in/upregulation of; ↓ , decrease in/downregulation of.
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induced oxidative stress by activating Nrf2 and inducing
glutathione synthesis [281]. Studies conducted on the hu-
man lung epithelial cell line (HPAEpiCs), reported that
resveratrol (50 µM) could attenuate Staphylococcus au-
reus-induced inflammation [298] by (a) activating both
JNK1/2 and p38 MAPK via the c-Src/PDGFR pathway,
(b) upregulating VCAM-1 expression, and (c) attenuating
H2O2-induced oxidative stress [299,300]. Both PI3K and
VEGF have been shown to be involved in PF as part of
the activated inflammatory machinery [301,312]. In this
context, studies performed in vitro on differentiated U937
monocytes reported that resveratrol (10–50 µM) inhibited
PI3K and VEGF functions, further, emphasizing these two
pathways as important components in the resveratrol anti-
inflammatory mechanism [312,313]. Additional in vitro
studies emphasized the role of resveratrol in activating
SIRT1-mediated mTOR degradation, which ameliorated
bleomycin-induced fibrosis and inflammation [314]. A
study that focused on mTOR pathway phosphoproteomics
suggested that resveratrol (50 µM) inhibited autophagy in
serum-deprived cells by (1) decreasing the phosphorylation
of PRAS40T246 and PRAS40S183, two proteins that belong
to the mTORC1 signaling pathway, and (2) increased the
binding of PRAS40 to RAPTOR/TORC1 (Table 2) [302].

13.3 In Vivo Studies

PF is characterized by continued alveolar epithelial in-
jury and unregulated repair, which occur through several
different mechanisms, including fibroblast accumulation
and differentiation and excessive ECM deposition [303].
Bleomycin is an antitumor drug that can induce PF dur-
ing clinical treatment and, for this reason, has been used
as means to artificially induce PF in animal models [304].
Here, resveratrol was shown to counteract weight loss and
reduce the mortality rate in a bleomycin-induced mouse
model of lung fibrosis [192]. Another fibrosis hallmark is
the differentiation of fibroblasts into myofibroblasts [305].
In this context, resveratrol was shown to decrease fibrob-
last differentiation and ECM deposition, thereby alleviating
lung fibrosis in a mouse model of bleomycin-induced lung
fibrosis [306]. In comparison to the control group, resvera-
trol (14 days treatment at 10 mg/kg) significantly decreased
lung collagen deposition, proinflammatory cytokines secre-
tion (TNF-α, TGF-β, IL-1b, and IL-6), and MDA levels
[307] in a bleomycin-induced PF rat model [307]. More-
over, in an adult mouse model of PF, resveratrol (10 mg/kg)
decreased tissue lung fibrosis and MDA serum levels, while
increasing the plasma antioxidant profile. Further, in a
bleomycin-induced PF mouse model, resveratrol admin-
istration (25–50 mg/kg) reduced a set of oxidative stress
markers, including MDA, protein carbonylation, total ox-
idant status, myeloperoxidase, oxidative stress index, and
DNA damage, while concomitantly increasing GSH, to-
tal antioxidant status, and SOD [308]. Similarly, in a
bleomycin-induced PF rat model, resveratrol administra-

tion was able to reduce both the PF-induced inflammatory
response and lung damage by inhibiting EMT and downreg-
ulating TLR4/NF-κB and TGF-β1/Smad3 signaling path-
ways [309]. To assess the resveratrol protective effects
on inflammation-elicited PF, Wang et al. (2017) [310] in-
duced lipopolysaccharide (LPS)- and cigarette smoke (CS)-
elicited inflammation and oxidative stress in the lungs of a
rat model. The finding in the study indicated that resveratrol
was able to inhibit the peroxisome proliferator-activated
receptor gamma coactivator-1α (PGC-1α) signaling path-
way, while further experiments proved that resveratrol in-
take significantly increased the levels SOD, while reduc-
ing those of MDA, to ultimately promote PGC-1α mRNA
expression and attenuate oxidative stress-associated effects
[310].

In an LPS-induced PF mouse model, treatment with
resveratrol (0.3 mg/kg) managed to downregulate TGF-
β1 levels, and increase the activities of SOD and CAT
by suppressing the TGF-β1/Smad2/3/4 signaling pathway,
ultimately reducing LPS-induced oxidative stress and PF
[102]. Another recent study demonstrated that polydatin
(40 mg/kg), a resveratrol glucoside derivative, both sup-
pressed the expression of TGF-β1 in an IPF rat model and
inhibited the phosphorylation of Smad2/3 and ERK1/2, to
efficiently decrease TNF-α, IL-6, and IL-13 levels. Con-
comitantly, an attenuation in alveoli damage, reduced in-
flammatory cell infiltration, and edema formation were also
observed [111]. In line with the previous study, resver-
atrol (60 mg/kg) reduced TGF-β1 and p-Smad2/3 in a
bleomycin-induced PF rat model by inducing miR-21 ex-
pression, to ultimately ameliorate PF by inhibiting both
the inflammatory responses and EMT [315]. In a re-
lated study, resveratrol was also capable of ameliorating
bleomycin-induced PF by inhibiting EMT and suppress-
ing the TLR4/NF-κB and TGF-β1/Smad3 signaling path-
ways [309]. In a mouse model of bleomycin-induced lung
injury, resveratrol promoted SIRT1-mediated PF amelio-
ration by inhibiting EMT in lung tissues [192]. A simi-
lar study also suggested that the viability rate in animals
treated with resveratrol improved and fibrotic marker lev-
els reduced, which might be due to a resveratrol-mediated
SIRT1 overexpression in lung epithelial cells and fibrob-
lasts [316]. In their research, Chu et al. (2018) [30] demon-
strated that resveratrol-mediated SIRT1 activation attenu-
ated PF features in a mouse model of bleomycin-induced
PF. Furthermore, a study analyzing the resveratrol effects
on PF development reported that resveratrol administration
(2 mg/kg) inhibited inflammation and fibrosis by prevent-
ing STAT3 activation [317].

Additionally, an increase in the atherosclerotic hall-
mark vascular cell adhesion molecule 1 (VCAM-1) pro-
tein and mRNA expression was observed in mice intra-
tracheally administered with a heat-killed Staphylococcus
aureus (HKSA) preparation. Resveratrol administration (5
mg/kg) managed to reduce the HKSA-induced increase in
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VCAM-1 protein levels and mRNA expression. Notably,
both the VCAM-1-neutralizing antibody and resveratrol
treatment were able to reduce the HKSA-induced leucocyte
infiltration in the bronchoalveolar lavage (BAL) fluid and
pulmonary hematoma formation, in a similar way [299].
It was also observed that resveratrol (10 mg/kg) inhibited
the JAK/STAT/RANKL signaling pathway and ameliorated
RA-ILD symptoms in a rat model [211]. Moreover, further
studies have also demonstrated that resveratrol can improve
RA progression by regulating autophagy, a process, as pre-
viously explained, which is believed to be connected to ILD
(Table 2) [28].

14. How Much do We Know about
Resveratrol as a Drug Candidate?

Resveratrol is a well-known nutraceutical compound
that possesses a wide range of pharmacological proper-
ties. Several clinical trials have previously highlighted this
molecule as a promising therapeutic drug candidate in the
treatment of many diseases [318]. In addition to its protec-
tive effects on the respiratory system, resveratrol also pos-
sesses beneficial actions against cardiovascular diseases,
platelet aggregation, diabetes, and neurodegenerative dis-
eases [319]. Indeed, resveratrol and its analogs are phar-
macologically safe and can be used alongside other drugs
to improve their therapeutic efficacy and reduce toxicity
[318]. However, its application in the food and pharma-
ceutical industries is still limited, mainly due to its low
bioavailability, water solubility, and chemical stability;
moreover, resveratrol is easily degraded and excreted, es-
pecially in biological systems [320,321]. In the liver and
the intestine, UDP-glucuronosyltransferase (UGT) rapidly
degrades resveratrol to glucuronic acid and sulfate con-
jugations producing resveratrol-3-O-glucuronide (R3G) as
the most abundant metabolite in both animal and human
models [322,323]. This metabolic pathway appears to be
the main factor in modulating resveratrol bioavailability
[321,324]. Indeed, glucuronidation was demonstrated to
reduce resveratrol permeability and increase its excretion
in cells [118,322,323], while metabolites resulting from the
degradation of resveratrol can become a systemic reservoir
of these compounds [325].

In line with this, resveratrol is also known to be pho-
tosensitive, thermosensitive, and pH sensitive, and because
of its low hydrosolubility, it requires emulsifiers or stabi-
lizers to reach a biologically effective dosage [320,326].
Another potential issue is whether resveratrol can accu-
mulate in target organs at suitable bioactive concentra-
tions. Indeed, studies have proven that circulating levels
of plasmatic resveratrol are barely detectable [321,327],
and in most cases, resveratrol is administered in its free
form, which has low solubility and, therefore, is poorly
suited for its delivery in biological systems [328]. In
this regard, pulmonary administration could be consid-
ered an appealing alternative to the oral administration

of resveratrol since the pulmonary route may ameliorate
the pharmacokinetic parameters of molecules with exten-
sive metabolism [329]. Several research groups have at-
tempted to ameliorate resveratrol bioavailability through
its complexation with β-cyclodextrins or hydroxypropyl-
β-cyclodextrins [330], or by employing new formulations,
which have included solid dispersion [331], liposomes
[332], and lipid or polymeric nanoparticles [328,333]. In
particular, Trotta et al. (2015) [334] formulated resveratrol
as a spray-dried powder for inhalation, which was found
to exert a significant antioxidant and anti-inflammatory
effect in Calu 2 pulmonary epithelial cells. Moreover,
in an acute lung injury animal model, inhaled resveratrol
loaded on cholesterol-conjugated polyamidoamine (PAM-
Chol) was able to decrease proinflammatory cytokine lev-
els, thereby indicating the potential therapeutic effect of
this resveratrol formulation [335]. Concurrently, another
study investigated and confirmed the feasibility of resvera-
trol pulmonary route delivery to improve its bioavailability
by avoiding first-pass metabolism and depositing signifi-
cant amounts at lung disease sites of action. In this study,
the resveratrol/hydroxypropyl-β-cyclodextrin (HP-β-CD)
inclusion complex was used as an inhaled resveratrol for-
mulation to resolve the previous solubility issues since HP-
β-CD was proven to enhance the hydrophilicity of drugs
with low solubility [329]. These findings strongly empha-
size the feasibility of resveratrol pulmonary administration,
although some limitations, including excipient amounts and
efficiencies, and pharmacodynamics, still need to be re-
solved [329]. Therefore, new resveratrol formulations are
needed to improve its bioavailability and target specific or-
gans. Moreover, resveratrol combinations with conven-
tional chemotherapeutic preparations have been proven ef-
ficient, especially in tumor treatment [336], thereby high-
lighting novel ways to use these drug formulations.

15. Conclusion and Future Perspectives
Based on the data presented in this review, a large

body of evidence supports the multifaceted and quite boun-
tiful benefits of resveratrol on PF. Resveratrol can exert
its lung antifibrotic action through more classical effects,
such as scavenging free radicals, modulating antioxidant
enzymes, and inhibiting inflammatory-associated signal-
ing pathways, as well as by modulating closely associ-
ated PF molecular targets, including SIRT, Nrf2, and EMT.
The data gathered and discussed here indicate that the re-
ported resveratrol benefits are not only disease-preventive
but also disease-ameliorative; thus, it would not be surpris-
ing if this nutraceutical becomes more adopted into the rou-
tine management of PF patients or those at high risks of
similar fibrotic diseases. In fact, despite some challenges
involving the adverse effects and poor bioavailability of
resveratrol, various efforts have been put forward to mit-
igate these issues, and indeed, much improvement has been
achieved during the past decade by employing new resver-
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atrol formulations, which have been specifically adapted
for lung-associated pathologies. Nonetheless, future chal-
lenges should be directed to performing long-term clini-
cal trials on PF patients using well-determined resveratrol
concentrations to possibly reinforce and prove resveratrol’s
protective and/or therapeutic role. Indeed, in vitro and in
vivo concentration ranges of biologically active resvera-
trol differ significantly; thus, based on the available data,
it is difficult to extrapolate the most beneficial resveratrol
dosage with which to avoid potential toxicity in humans
[12]. A more critical aspect of that mentioned above is
the dose-dependent hormetic behavior of resveratrol, which
tightly determines whether the final biological outcome is
positive or negative [337–339]. Moreover, the interaction
between resveratrol and the body’s redox state also affects
its final effect [340–342]. Furthermore, to improve the poor
bioavailability attached to resveratrol, new lung-oriented
formulations with better absorption and pharmacodynamics
need to be developed and commercialized. All the afore-
mentioned factors might explain many of the controversial
results associated with resveratrol that are found in the liter-
ature; therefore, a more comprehensive and systematic in-
vestigation is needed to further define the therapeutic poten-
tial of resveratrol. In conclusion, we firmly believe resver-
atrol could be helpful in fighting PF and associated fibrotic
conditions; therefore, more pharmacological and clinical
studies should be conducted to better determine its safety,
dosages, and efficacy.
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