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ABSTRACT 

AMAL, MOHAMMAD, ALIYAN, Masters: January : [2017:]

Masters of Science in Environmental Engineering 

Title: Deep Eutectic Solvent for CO2 Capture: Cholinium Chloride with PhenylaceticH Acid 

System  

Supervisor of Thesis: Mert,Atilhan. 

Global warming is one of the most pressing challenges that face societies these days. As 

result, worldwide public attention has risen due to the serious greenhouse gas effect, which causes 

detrimental environmental effects such as climate change. Carbon dioxide emission is considered 

as one of the most significant greenhouse gases activity involved in climate change. In power 

plants, these gases especially carbon dioxide are emitted by fossil fuels; therefore, capturing it will 

reduce the greenhouse effect. 

Increasing energy demand is triggering increased usage of fossil based fuels, which cause 

unprecedented toxic gaseous emissions to atmosphere. Release of these gases is harmful to 

environment, especially CO2 as it increases the acidity and salinity of fresh and sea/ocean water 

sources. Due to increased global risk in caused by the toxic emissions, several options have been 

considered in both political and academic platforms in order to find feasible and sustainable 

emission control models. CO2 capture contributes to three fourths of the overall gaseous emissions 

capture activities and it has a cumulative negative cost side effect of 50% increase in electricity 

production in related industries. The choice of the suitable technology differs on the characteristics 

of the gas stream in which CO2 will be captures. Such characteristic depends on the type of the 

dynamics of the process through which the fuel is processes and used. 
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Deep Eutectic Solvents (DESs) are a novel, advanced class of solvents, which maintain the 

most relevant characteristics of ionic liquids (ILs), but can be prepared using a more facile and 

inexpensive method. This alternative approach is based on producing eutectic mixtures of salts 

and hydrogen-bonding donors (HBDs).   

The purpose behind this study is to examine a new system of DES system which is Choline 

chloride/ Phenylacetic acid (ChCl/PAA) for CO2 capture. The CO2 solubility as function of 

temperature and pressure, with other relevant physicochemical properties including density, 

conductivity, corrosion, surface tension, Fourier Transform Infrared (FTIR) and 

Thermogravimetric analysis (TGA) characterizations are reported to analyze DES system and its 

capability for capturing the CO2. Experimental studies of DES that reported in this work showed 

that this sort of eutectic solvents have appreciable performance of CO2 at low corrosion effect in 

compared with monoethanolamine (MEA).  

CO2 absorption estimated by studying the behavior of the liquid –gas and interface 

properties. CO2/N2 solubility values were determined using high magnetic sorption apparatus 

(MSA) of Rubotherm at temperature   298.15 up to 338.15 K and pressure up to 30 bars. It’s 

conclude that the ChCl/PAA DES system with molar ratio of 1:2 absorbed 2.10 mmol/g of CO2 at 

308.15 K and 30 bar, with the same conditions ChCl/ Levulinic Acid system absorbed the same 

amount of CO2, while ChCl/ethylene glycol absorbed 3.1265 mmol/g of CO2 at 303.15 K and 

58.63 bars. The amount of absorption of ChCl/PAA increase to 3.35 mmol /g of CO2 by increasing 

the molar ratio to 1:3 at the same temperature and pressure of the 1:2 molar ratio . In compared 

with amine based, solid amine sorbent, consisting of poly (ethylenimine) (PEI) absorbed 2.8 

mol/kg of CO2 at 353.15 K and partial pressures more than 10kPa (0.1 bar). Moreover, in compared 
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with the most known amine in industry MEA, DES (1:3) at 30 bars and 308 K absorbed 3.35 

mmol/g CO2 while MEA at 24 bars and 313 K absorbed 2.66 mmol/g CO2. 

The non-toxic, low cost and the other advantages of reported eutectic solvent with 

favorable physical properties offers an environmentally promising alternative for effective CO2 

capture technological applications 
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1 . INTRODUCTION  

1.1 Overall Carbon Dioxide Management 

Global warming is one of the biggest challenges that societies face these days. As a result, 

worldwide public attention has raised due to the serious greenhouse gases (GHGs) effect, which 

causes detrimental environmental problems1. In the politics and science fields the GHGs effects 

and global warming are considered as important issues2,3. 

The main source of GHG emission is energy consumption4. The Organization of the 

Petroleum Exporting Countries (OPEC) reported that from 1970 to 2010 the energy consumption  

increased by 685%, whereas the carbon dioxide (CO2) emissions increased by 440% due to fossil 

fuels burning at the same time5. CO2 emissions that emitted because of burning fossil fuel caused 

increased in global temperature6. The consumption of oil trend and emission of CO2 of OPEC 

countries has serious implications by participate to global warming5. GHGs drive anthropogenic 

global warming, and CO2 is considered as the main contributor. In compare with other GHGs 

gases, CO2 display less global warming potential per mole, but it is the main one that exists in the 

atmosphere and it has longer atmospheric life.  

Figure 1.1 shows the top twenty countries that released the maximum amount of CO2 

during 2015 based on their share of global energy-related CO2 emissions7. The graph shows that, 

china comes at the top followed by the United States. The main source for CO2 emissions are 

industrial plants and thermoelectric power plants (eg. Refineries and steel mills) which 

approximately contribute in 45 % of global warming. The  emissions of CO2 from combustion of 

fossil fuel are the most important source of anthropogenic carbon emissions, accounting for about 

75% of global emissions since 17508. 
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The amount of CO2 that generated yearly by human activities is around 37 billion tons; 

therefore, climate change has become a global concern. Directly after CO2 emission to the 

atmosphere, half of it either used by nature for photosynthesis or it’s taken by ocean, while the 

remaining of CO2 is left-over in the atmosphere. As a result the amount of CO2 raised from 280 to 

400 parts per millions (ppm) in the last 50 years9,10. The excess amount of CO2 that dissolve in 

ocean cause several problems, its form carbonic acid and raised the level of acidity in water 

therefore, this amount of increasing can cause imbalance for marine life (nutrient levels). Moreover  

acidity of the water has the ability to dissolve the calcium-carbonate that used by marine life to 

produce coral reefs, and so it is destroying the marine habitat11.  

 

 

 

Figure 1.1. Level of CO2 emitted during 20157. 



3 

In order to control and reduce the emission of GHG especially CO2 into the atmosphere, 

CO2 capture from fossil fuel power plants is getting great attention. However, some economic, 

technological, environmental, and safety problems remain without solution with the capture 

system, such as increasing the efficiency of CO2 capture, reducing process cost, and verifying 

environmental sustainability of CO2 storage12. Post-combustion capture has an advantage over the 

other developed methods where it can be used to modify the existing power plant. The most 

established technology for the CO2 post-combustion is the amine-based absorption due to its high 

affinity to CO2
13 ,But this process is based on chemical separation method which requires using 

high energy to break down the chemical bound among the absorbent CO2 and the absorbed in the 

solvent regeneration step14.Other promising processes are membranes, however the productivity 

as well as selectivity is missing in the presence of CO2.Therefore, developing new technologies to 

separate CO2 is crucial to minimize energy consumption15.  

Ionic liquids (ILs) are one of alternative solvents that get a great attention, duo to its 

properties that has possibility to tuning. However, several problems appear with using ILs ,such 

as high viscosity and cost, although these disadvantages should not be considered as reasons to 

negate ILs as possible capture for CO2, nevertheless some alternative have been recommended to 

preserve the design flexibility of ILs and at the same time avoid their problems , therefore Deep 

eutectic solvents (DESs) are the most promising alternative to overcome ILs16. 

Consequently, the purpose behind this work is to study new system of DES which has not 

reported before, named choline chloride/ Phenylacetic acid (ChCl/PAA) and its appropriateness 

to capture CO2. So, full characterization for the new system was carried in order to analyze their 

strength and weaknesses for the aim of capturing CO2, for the purpose of design or to have 

information about the structure and behavior of fluid a physicochemical characterization of 
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ChCl/PAA was carried. Finally, at different temperature and pressure up to 30 bars CO2 absorption 

was studied. 

1.2 Current State of the CO2 Management Processes 

1.2.1 Capture Options 

Due to sharp increase in the level of CO2 in the past years, develop new technologies to 

reduce the emission of CO2 become a critical need. Scientists and researchers believed that the   

main technology for this target is CO2 Capture and Storage (CCS) to reduce theses emissions. 

These technologies simply base on capturing CO2 without emitting the emissions into the 

atmosphere. The main part of CCS technology is CO2 capture where 70 to 80 % of the total cost 

is belongs to this part17. Based on the various configurations of the plant, the emissions of CO2 

from power plant can be classified by one of the following method (Figure 1.2): 

Post-combustion:  Before capturing CO2, fossil-fuel is converted to energy. Two challenges faced 

while using this technology; the main one is separating CO2 with low concentration from nitrogen 

gas with high concentration; while the second challenges is flow of CO2 is low18.  

Pre-Combustion:   Firstly, synthesis gas (syngas) produces from gasified coal of fossil fuel. Then 

the syngas prepares by water-gas shift in which carbon monoxide (CO) reacts with steam, and CO2 

with H2 is formed after that CO2 is removed19. 

Oxyfuel-Combustion: In this system combustion fuel is inside a mixture of pure oxygen (O2) and 

CO2 (recycled from the reactor exit). The purity of O2 in the mixture is greater than 95%. This 

technology has a main attraction where it produces fuel gas that mainly contain water (H2O) and 

CO2. The H2O removed by condensation while CO2 compressed for transport and storage20.   
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In short, for post-combustion capture chemical adsorption is the most popular separation 

approach, since it can practicably capture CO2 at low concentration. For syngas that produce from 

gasification the most efficient capture technology is pre-combustion because the amount of CO2 

concentration in syngas is high. But, the capital cost for this type of method is larger in compare 

with a traditional pulverized coal combustion power plant. Possible separation techniques for pre-

combustion capture are membrane separation and physical sorption. With Oxy-fuel combustion 

system the flue gas mostly having steam (H2O) and CO2, this due to that the combustion happened 

in N2-less environment21. 

 

 

Figure 1.2. Schematic diagrams of the core technology of CCS which is CO2 capture and it is 

classified as (a) post-combustion (b) pre-combustion (c) oxyfuel-combustion17
. 
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1.2.2 Capture Technologies 

1.2.2.1 Membrane 

Membranes is relatively a novel concept for capture and separate some components from 

a gas stream, which can be used to separate CO2 from flue gas in post-combustion system, in 

natural gas processing to remove CO2 from the natural gas, in pre-combustion membrane can be 

used to separate CO2 from hydrogen or to separate oxygen from nitrogen in oxy-fuel combustion 

system. Different mechanism can be used with membrane to separate substance 

(adsorption/diffusion, solution/diffusion, ionic transport and molecular sieve) and they are 

available in different types of material such as organic (polymeric), inorganic (metallic, zeolite, 

carbon or ceramic) porous or non-porous. The membrane process can be categorized as two types, 

gas absorption membrane and gas separation membrane22.                      

Gas absorption membrane: it’s made of micro porous solid membrane, and used as contacting 

device between the liquid and gas flow (Figure 1.3). Figure 1.3 shows that in order to separate CO2 

from flue gas first, it diffused through the membrane then recovered by liquid absorbent by 

absorption. This process, due to high driving force, will gives higher removal rate than the other 

types. In this system at the beginning of autonomous control of liquid and gas flow cause flooding, 

foaming, channeling and minimum entrainment. More compact equipment used in this system in 

compared with other conventional membrane separator23.  

Gas separation membrane: this type of membrane work base on principle of preferential 

permeation of mixture constituents through the pores of the membrane which lead to diffuse one 

component faster than the other trough the membrane (figure 1.4). Permeability and selectivity are 

the key of membrane operation and design parameters. In this method, a stream of gas containing 
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CO2 enter at high pressure into the separator of membrane which consists of large number of 

hollow cylindrical membranes arranged in parallel. On the shell side of membrane separator the 

selectivity parameter of CO2 recovered at reduced pressure23,24. Gas separation membrane is 

available in various type such as polymeric, ceramic or combination of both or mixed matrix 

membranes. In this process the separation depend on diffusivity or solubility of gas molecules in 

the membrane also it relied on the difference in partial pressure which is the driving force for gas 

separation                                    22. 

 

 

Figure 1.3. Gas absorption membrane principle using hollow fiber membrane25. 
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Figure 1.4. Schematic diagram shows the CO2 separation from other gases using a spiral wound 

membrane25.  

 

 

The advantage of membranes processes is even though when the initial design value is 

reduced by 10%, it has the ability to maintain the purity of the product, where this can be achieved 

either by increasing permeate pressure, minimize feed pressure or isolating modules from system. 

Moreover, membrane has low cost processes for gases separation and with reference to the factor 

of on-stream is really reliable. It is continuous method of separation and the shutdown can cause 

due to flow control components. The membrane system has instantaneous response time, also 

immediate results can be taken from corrective action. The start-up time that needed by the 

membrane process is extremely small. Uses of the membrane process can be limit due to number 

of losses that related with capturing CO2 from flue gases. Whenever the concentration of CO2 is 
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upper than 20% these system can be reflect high flexibility, while for concentration less than 20% 

is very low flexibility24. Low CO2 concentration leads to minimize the driving force with a 

consequent reduction in the purity of the product and CO2 recovery. Therefore it can be concluded 

that the main problem with this technology is related to low CO2 in flue gases also pre-treatment 

such as cooling is required for high temperature application24,26. 

1.2.2.2 Solid Adsorbents 

Adsorption quality depends on the adsorbent surface (pore size, polarity and spacing) and 

the adsorbed particles (polarity, molecular weight and size). Adsorption is an exothermic process, 

so the adsorbents that used in adsorption can be regenerated by rising the temperature. Energy 

saving is an advantage that solid sorbents have over liquid solvent, this due to large amount of 

water which needed for repeatedly heated and cooled to regenerate the solvent solution is not 

required in solid sorbents. However, in compared these two-methods adsorption required lower 

energy and avoids shortcomings than absorption. In post-combustion method, adsorption is known 

to be attractive method for capturing CO2 from flue gas, because of low energy requirements27. 

CO2 emission from flue gas can be removed using different materials of solid physisorbents, such 

as zeolites, metal –organic frameworks (MOF), porous carbonaceous material and other. For CO2 

adsorption using activated carbon or zeolite, the mechanism for capturing CO2 can be shown as 

follow28: 

CO2+ surface <=> (CO2). (surface) 

 

Carbon-based adsorbents: Adsorption capacity of CO2 is very sensitive to surface group and 

textural properties of carbon-based adsorbents. Because the distributions of activated carbon pore 

size very from micro-pore to macro-pore, consequently, these materials are inappropriate for 
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selective adsorption of a specific gas. In general, pristine carbon-based adsorbents have weak 

affinities for CO2 with adsorption heats of less than 25 kJ/mol. At 0.1 bar and 298.15 K activated 

carbon have CO2 adsorption capacity about 5wt.%17. 

Siriwardane et al.29 investigate the adsorption isotherms of activated carbon, found that it 

is extremely reproducible and showing excellent reversibility of adsorption. Activated carbon at 

298.15 K and 20 bar have equilibrium adsorption capacity around 8.5mol CO2/kg of sorbent 

(37.4wt%). Formation of close pack monolayer of CO2 at saturation with activated carbon it is an 

indication of adsorption isotherm. Activated carbon at high pressure uses its whole surface to 

produce monolayer. Molecular structure of the activated carbon is shown in figure 1.5.  

 

 

 

Figure 1.5. Molecular structure of the activated carbon30. 

 

 

Zeolite: is member of aluminosilicate, where it belongs to microporous solids family named as 

molecular sieves. The name (molecular sieves) point out to its ability to arrange selectivity of 
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molecules, where it’s mostly depend on a size of exclusion process, this because the molecular 

dimensions are very regular pore structure. Tunnels diameters determines the size of ionic species 

of molecular that can pass in the pores of a zeolite. This material exists naturally; however, they 

can be synthesized. It can be produced  in a uniform, phase-pure state also desirable structure of 

zeolite where is not available in nature and can be manufacture31. Figure 1.6 shows the zeolite 

structure. 

   Siriwardane et al.32 studied three natural zeolites, the major difference between them was 

the cation. They conducted volumetric gas adsorption of O2, CO2 and N2 at 298.15 K up to 20 bars. 

CO2 adsorption showed better performance with all three types of the zeolites. The variations in 

adsorption of CO2 capacity were related to changes in the nature of chemical at the surfaces, since 

average diameters of the pore are similar. At 2005 Siriwardane et al.33 tested five manufactured 

zeolites, it was mentioned that if the sorbents were operated at moderated or higher temperature 

the CO2 system capture would be more efficient. But zeolites capacities of CO2 adsorption were 

lower at 393.15 K than at ambient temperature. 

The main disadvantage with zeolites is when fluidized beds are used; the sorbent might be 

carried over due to attrition. Attrition rates for zeolites 13X and 5A were found to be 2.1 to 4 times 

higher than activated alumina or activated carbon. Therefore, sorbent maintenance costs would be 

higher. However the adsorption capacities of 13X and 5A were reported to be 2.35mmol/g 

(10.34wt%) and 2.23mmol/g (9.81wt%) and this indicated that zeolites have higher adsorption 

capacities than other sorbents tested ( 1.5 to 2.7 times higher )31. 
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Figure 1.6. Zeolite structure 34. 

 

 

Metal Organic Frameworks (MOFs): They are crystalline compounds made of metal ion or 

clusters coordinated to organic molecules to produce one, two, or three dimensional structures that 

can be porous. These pores in some cases can be used to storage gases (eg. CO2)31. MOF structure 

and its topology is shown in figure 1.7.  

Yaghi and Millward35 studied the capacity of nine MOFs at room temperature for CO2 

storage. They found that MOF-177 which consist of zinc clusters and 1, 3, 5-benzenetribenzoate 

units have a capacity of 33.5mmol/g (147.4wt %), therefor its ability to adsorbed is much greater 

than any other porous material reported. Capacity of a container full of MOF-177 at pressure of 

35 bar for capturing CO2 is  nine times more than a container without adsorbent, also it has around 

twice amount when the container filled with benchmark materials (zeolite 13X and activated 

carbon).While Arstad et al.31 worked at low temperature adsorbent for CO2 capture for selected 

MOF adsorbents. The best adsorbents reached by CO2 capacity levels of 10wt% at atmospheric 

pressures of CO2 and as high as 60 wt% at ~25 MPa CO2 pressure and 25 C. The measured capacity 

had proportional relation with pore volume and surface area of the adsorbents. However, water 
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adsorption selectivity was greater than CO2 because existing of water would minimize adsorption 

capacity of CO2 in gas mixtures. Figueroa et al. 31 have pointed that appropriate characteristics for 

MOFs are low energy needed for regeneration, low cost, attrition resistance, tolerance to 

contaminants and good thermal stability. 

 

 

 

Figure 1.7. MOF-5 structure and its topology36. 

 

 

1.2.2.3 Liquid Absorbents 

Today in commercial use, most of the capture agents are based on liquid system either 

mixture, solutions in solvents (like water) or pure liquids. This means the system based on gas-

liquid separation with the sorption mechanism and it’s relied on many factor, however priority of 

the viscosity in the liquid phase is comes first. Regardless of the intermolecular interactions, 

usually the limiting step is mass transfer among the gas and liquid phase. In case, the mixture has 

low viscosity (good mixing) the process will be predominantly absorption into the bulk of the 

condensed phase, while for sorbents with high viscosity the mass transfer will be limited and the 

absorption will primarily on the surface37.  
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Nowadays the most common removal technology for CO2 is absorption with amine-based 

absorbents. In this process, large gas flow can be considered as inherent problems; for example, 

exhaust resulting from fossil fuel fired power stations. The most common aqueous solution used 

to remove CO2 and H2S (acid gas) from refinery, natural and synthesis gas is alkanolamines. 

Monoethanolamine (MEA) is the most popular aqueous has been used widely for this aim. Figure 

1.8 represents the elementary reaction steps during CO2 capture in aqueous MEA (a–d) and MEA 

regeneration (e–f).  
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Figure 1.8. Elementary reaction steps during CO2 capture in aqueous MEA (a–d) and MEA 

regeneration (e–f)38. 

 

 

 Several qualitative values have been given for MEA sorption capacity, while quantitative 

data are rare. As an example, in one of the review paper the authors states that this process has a 
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high CO2 adsorption capacity, but no numerical value was mention. Moreover, the authors do not 

mention if the process is pure MEA or aqueous solution. It has some advantages such as low 

solvent cost, high reactivity, low molecular weight and high absorbing capacity. In the other hand, 

it has high enthalpy which causes higher desorber energy consumption, producing stable 

carbamate and producing degradation products with COS or oxygen bearing gases. Furthermore 

this process does not have the ability to remove mercaptans, also due to high vapor pressure there 

is vaporization losses and finally alkanolamines are more corrosive than any other so with high 

concentration corrosion inhibitors are required37, 39,40.  

In General amine – based is bulky processes which cause high energy consumption, large 

investment cost, unstable absorbents and they produce product which degrade that must be  

handled 39. Even though there are numerous studies that proposed solutions for above problems41,42 

but the development of new CO2 capture with better properties than amine-based has attract great 

attention in the literature elsewhere43,28, 44. 

Green technology is considered as the key issues in the chemistry fields to preserve 

environment and to decrease the negative impact of human involvement. This technology 

facilitates the minimum use of non- hazardous chemical and environmentally acceptable 

solubilization techniques through controlling pressure, temperature and other physical properties 

to develop new green solvents. In the context of green technology, ionic liquids (ILs) have been 

considered as a good green solvent which can replace the current organic solvents45.  

In the last decade ILs was one of the most popular solvents that commonly used to be 

studied than any other present topic46. IL was known as class of fluid that contain ions, which are 

liquid at temperature less than 100 oC, so base on this definition there was distinguish between IL 

and molten salts, because molten salts melts at higher temperature. This definition was the first 
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description that used for chloroaluminate based ionic fluids, but now days ILs knows as solvents 

which generally contain solely of ions. There are two class of ILs, first and second generation. 

First generation at low temperature is fluid, because of formation of bulky chlorozincate or 

chloroaluminate ions at eutectic compositions of the mixture, while the second generation those 

that are completely composed of separated ions47.  

ILs identified by Figueroa44 to be long term targets that can be used for capture agents; but, 

recent studies suggest that these technologically important materials may prove commercially 

viable sooner than suggested. ILs become one of the most popular alternative solvents due to their 

low vapour pressure under ambient conditions 48,37. As it mentioned ILs known as term that can 

be used for capturing, so they forward this interest to CO2 capture. Although some problems notice 

from evidence, which are evaporation and decomposition loss of IL into the purified gas stream 

under elevated desorption temperatures49. However, in compared with amine solvents ILs have 

lower desperation temperatures37. Even though, in spite of the fact that ILs have all these benefits 

the literature has also deal with limitation and problems. Actually, several of papers and reports 

indicate the toxicity, poor biodegradability, unfavourable physical properties, for example high 

viscosity and high cost of production. Many of these problems can be avoided through appropriate 

selection or design considering the large amount of available ILs, therefore cheap, non-toxic, low 

viscous ILs can be found. Despite the possibility of finding appropriate candidates for several ILs 

technological applications, other methods are being developed to take advantage of ILs properties 

and avoiding their negative aspects10. Consequently, to overcome the problems related to ILs (eg. 

Toxicity and high price) a new generation of solvent has emerged at the beginning of the century 

which named Deep Eutectic Solvents (DESs)50. They formed from a eutectic mixture of Lewis or 

Brønsted acids and bases and they contain a different species of anion and cation47. 
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1.3 Corrosions Issues of Industry 

 The chemical corrosion is results of breaking down or distraction of metal through 

electrochemical reaction with their environmental. It is simply the tendency of the elemental 

metals to return to their natural more stable state as mineral oxides or carbonates. Therefore, 

corrosion of metals includes oxidation of the metal through oxidizing agents that exist in the nearby 

environmental and the concurrent reduction of these agents. Since corrosion is due to 

electrochemical reaction, so it has two type of reactions, oxidation and reduction reaction where 

both of them occurs simultaneously in the medium. The actual process of corrosion is the oxidation 

reaction, where in this part of reactions metal start to dissolve and metallic atoms loss electrons, 

therefore it converts to ions.  

In order to maintain the system electrically natural, any released of electrons must be taken 

by oxidizing species adjacent to the metal.  Indeed, once the species of oxidizing are available in 

the environmental they transfer from bulk solutions to surface of the meatal and then the process 

of corrosion is started. The driving force of this process which causes losses of the electron for the 

metal is potential differences. 

Corrosion problems in the Worldwide CO2 capture process occur in most frequent failures. 

Lots of industrial experiences showed that large quantities of CO2 are being handled (eg. 

petrochemical industry or the oil and gas industry), nevertheless the process of capturing the CO2 

is one of the most important factor in this aspect. The acidity of the flue gas is due to impact of 

CO2 on the equipment and existence of the oxidizing acid, Nitrous oxide (NOx) and Sulphur Oxide 

(SOx). Moreover, existence of free water made the flue gas to become corrosive to most parts of 

the installation’s equipment51.  
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In alkanolamine plant the appropriate choice of materials used for capturing the CO2 is 

determined based on the chemistry of the amine system, therefore carbon steel is the most common 

used for piping and equipment since it is an economical solution52. Kohl and Nielsen53  reported 

that in such plant the carbon corrosion is due to high operating temperatures, lean/rich loading of 

amine (mole of acid gas/ mole of amine),ratio of CO2 to hydrogen sulfide (H2S) in the acid gas, 

contaminates of solution (eg degradation of amine products and  heat stable salts) and type of 

amine and its concentration.  

Wet acid gas corrosion is encountered in all parts of the plant that made of carbon steel and 

they are in contact with aqueous phase where this phase have high concentration of acid gas such 

as CO2, H2S, and ammonia (NH3) and Hydrogen cyanide (HCN)54.The acid corrosion cause a 

reaction among iron (Fe) and hydrogen ion (H+) where is mainly depends on the pH. These gases 

will convert to acid gas in case the conditions of the environmental is wet, where leads to pitting 

in different parts of the installation. Under wet conditions, the rate of corrosion for carbon steel is 

between 1x10-3meter (m)/year (y) to 1.8x10-3 m/y , where these variations observed particularly at 

the  inlet to absorbers or coolers vessels in CO2 compression systems52.  

The economy of the plant can be directly affected by chronic corrosion because it causes 

production losses, reduction in life time of the equipment, unplanned downtime and injury or even 

death53. In terms of production losses the unplanned downtime of plant can cost $10,000 to $30,000 

per day55. Moreover, downtime can cause a large portion of expenditure necessary for restoring 

the corroded systems and for treatments initiated to mitigate the corrosion56.Acorrding to Gerus et 

al 57 millions of dollars are yearly paid for this purpose. Corrosion also have indirect impact on the 

plant’s economy by limiting the ranges of operating of the process. In general, excessive corrosion 
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cause to reduce the flexibility in varying the operating conditions. Corrosivity can be increased if 

the process operated beyond the typical conditions55. 

1.4 Deep Eutectic Solvents (DES) 

Relatively high costs of ILs synthesis is one of the main problem that avoid the widespread 

usage of it in industry, because the synthesis process of IL is costly due to expansive chemical 

requirements and the procedure of purification takes long time. Therefore, DESs emerged as low 

cost alternatives of ILs. By mixing two, three or even more components DESs can be formed. 

These compounds are ammonium halide salt known as hydrogen bond accepter (HBA) mixed with 

hydrogen bond donor (HBD), they have melting point much lower than constituting component. 

The liquid state of DESs because of depression of melting point, whereby hydrogen bond 

interactions between an anion and a hydrogen bond donor are more energetically favored relative 

to the lattice energies of the pure constituents58, 59. Usually, DESs are characterized by a very large 

depression of freezing point and at room temperatures (less than 423.15 K) they are liquid; while 

most of DESs are liquid between room temperature and 343.15 K. For some of the DESs it is hard 

to find the melting point, so obtaining glass transition temperature is required, thus these solvents 

know as low transition temperature mixture (LTTMs)10. 

DESs and ILs solvents share many solvation properties60. Moreover, DESs have others 

advantages such as; low vaper pressure, non-toxic, biodegradable, does not react with water and 

low flammability. Therefore, with all this benefits DESs can be considers as environmental-

friendly solvents. As it mentioned, DES are alternatives to IL in many application like, biodiesel 

purification61,bio- electrochemistry62, 63, pharmaceuticals64,catalysis65,,CO2 adsorption66. 

DESs development has short history. Abbott et al67. in 2001studied for different types of 

quaternary ammonium salts were heated with ZnCl2 then the freezing point of the new liquids 
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measured. The lowering melting point (296.15-298.15 K) was found, when choline chloride 

(ChCl) used as the ammonium salt. In  few years later in 2003, Abbott et al. 68   was the first who 

investigated DESs, which were a mixture of ChCl with urea in 1:2 molar ratio. Although numerous 

salts have been suggested for developing DES, ChCl is the most known based of DESs, due to its 

low cost, biodegradability, low toxicity, and biocompatibility. Moreover, it consider as essential 

nutrient since it might be extracted from biomass10. DES system can be described by equation 1. 

Cat+ X- z Y     (1)                                               

Where; 

Cat+: present any ammonium, sulfonium or phosphonium  

X: Lewis base, generally a halide anion 

Y: Brønsted acid 

Z= number of Y molecules interact with the anion   

Most of the researches have concentrated on quaternary ammonium and imidazolium cations with 

particular emphasis being placed on more practical systems using choline chloride, [ChCl, 

HOC2H4N+(CH3)3Cl-]47. Figure 1.9 summarized the most common halide salts and HBD used in 

preparing deep eutectic solvents10. 
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Figure 1.9. List of common  (a) halide salt used in preparing the DESs (b) HBD used in 

preparing DESs10. 
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1.5 Research Question and Motivation 

Having discussed the current state of the art technologies for CO2 capture and mitigation 

techniques that are implemented in process industries and their limitations, we seek answers to 

following questions:  

1. Would DES based new sorbents be able to exhibit CO2 capture performance that can 

compete with the existing amine-based solvents? 

2. How easily DES based solvents be regenerated? 

3. Are DES based solvents reusable? Do they lose capacity with time? 

4. Considering acid nature of CO2, what will be the corrosion effect of DES solvents on 

process equipment? 

 

1.6 Research Objectives 

The research implements a comprehensive evaluation according to the following specific 

objectives: 

1- Examine the proposed new system that made of ChCl/PAA with three different molar 

ratios (1:2,1:3 and 1:4). 

2-  Full physicochemical characterization of ChCl/PAA in order to analyze their strength 

and weaknesses for the aim of capturing CO2 therefore, FTIR, TGA, density, 

conductivity, corrosion and contact angle measurements will be carried.   

3- Gas solubility in order to analyze its appropriateness to capture CO2 
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1.7 Potential Beneficiaries  

The experimental design of this work is planned by considering the process conditions for CO2 

capture units located in oil and gas process industries as well as power generation sector. The wide pressure 

and temperature experimental design was selected due to screening the proposed materials at conditions 

that can be applicable for both pre- and post- combustion conditions. The utilization of these materials will 

be further investigated for CO2 capture units and how they can replace the existing amine systems with 

minimum process and equipment modifications. 

1.8 Limitations and Assumptions 

The design of efficient gas sorbents relies on below main factors:  

• Cost efficiency 

• Sorption efficiency 

• Societal impact 

• Environmental constraints 

DES based solvents can be used as alternative systems from the perspective of sorption 

efficiency and environmental aspects. However, one of the biggest limitations of the gas capture 

processes is the high viscosity and solid state of most of DESs at room temperature restricting their 

application as extraction solvents. Thus, search for more stable and liquid DES at lower 

temperatures is a must to excel in these materials. On the other hand, the cost of ionic liquids can 

also be considered as a limitation for DES materials due to the low production capacities of the 

ionic liquids. 

These factors must be considered in a separate study through economic benchmarking 

analysis against the other cutting edge sorbents. 
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2 . LITERATURE REVIEW  

The aim of this chapter is to review resent researches on different types of DESs system, 

and to analyze the present knowledge on gas separation using these materials. Studying the 

physical properties of DES provided information about the strengths and weaknesses of this sort 

of system and gives a direction for reported DES in this work.      

2.1 Physical Properties 

Detailed characterization of the solvent are necessary in industry for many purpose such 

as: simulation, process molding, design the contactor columns of gas-liquid for CO2 regeneration 

and adsorption69,70. Based to Wei et al71. and Kumar et al71. these results are important ,since 

chemical reaction kinetics from CO2 absorption rate experiments can be deduce72 by using this 

data. 

2.1.1 Phase Behavior 

By mixing suitable amount of HBA and HBD DES is produced. Almost all literature base 

on binary DES, which means from each component (HBA and HBD) only on type is used to form 

DES mixture73. Below solid-liquid phase diagram summarized the major characteristics for binary 

deep eutectic (figure 2.1).The minimum melting temperature (Tm) in the diagram represents the 

single value of the eutectic composition10. For better understanding let consider ChCl and urea 

DES system which produced at 1:2 molar ratio, Tm for the system is 285.15 k68, while the melting 

point for pure ChCl is 575.15 K and pure urea is 407.15. The strong intermolecular interaction 

between HBA and HBD cause this depression of melting point. Melting point for the DES system 

can reach 473 K50, but those with ambient temperature are more attractive, for practical reason for 
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example; energy required for melting the DES at ambient temperature less than those with higher 

temperature10. 

 

Figure 2.1. Solid-liquid phase diagram for binary DES system10. 

 

 

2.1.2 Density 

Density is one of the most important thermos-physical properties that have been studied 

for DESs. The majority, considered the density of the DES at the 298.15 K to be among 1 to 1.35 

g/cm3. However, those with metallic salts like ZnCl2 have larger densities (1.31 to 1.6 g/cm3
)
50. 

Table 2.1 summarized the literature that studied DESs system with ChCl based and their aqueous 

solutions. The densities of the system rely on temperature, molar ratio of HBA (ChCl) to HBD, 

pressure and water content. From the table, it is obvious that for ChCl/Urea DES system with same 

molar ratio there are around 4% differences between each source. These differences may be due 

to different experimental method, perpetration method, impurities of the samples. However, it is 

apparent that with increasing the temperature the density linearly decreased for all the systems that 

mention in the table and this can be true for all DESs with ChCl based where this reduction due to 

thermal expansion10,74.  
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Table 2.1. Density of DES systems with ChCl based10,74. 

HBD 
Molar 

Mixing 
Ratio 

T (K) ρ (g/cm3) Ref. 

Urea 1:2 298.15 1.25 75 

 1:2 298.15 1.212 76 

 1:2 298.15 1.1979 77 

 1:2 298.15 1.20 78 

 1:2 313.15 1.24 79 

 1:2 313.15 1.1893 79 

 1:2 313.15 1.1887 80 

Glycerol 1:1 298.15 1.1558 81 

 1:2 298.15 1.1920 81 

Malonic acid 1:1 303.15 1.0063 74 

Lactic acid 1:2 298.15 1.1377 74 

 

 

2.1.3 Viscosity 

At room temperature, most of the DESs exhibit high viscosities usually as high as a 750 

mPa.s. Which means the DESs is often represent a wide HB network among each component, 

therefore the high viscosity cause lower movement of free species within the DES. The viscosity 

of the DESs may be due to several means, ion size, small void volume of the DESs and electrostatic 

force or van der Waals interactions. Viscosity of DESs in general affected by water content, 

temperature and the chemical nature of the DESs (ammonium salts and HBDs type ,molar ratio of 

organic salt to HBD and etc.)82. High viscosity prevents many medical and industrial application, 

particularly for the aim of separation CO2 and other gases and this due to excessively high pumping 

cost and poor mass and heat transfer, consequently the lower viscosity is more desirable (less than 

500 mPa.s). Table 2.2 summarized some of DES systems that have low viscosity10. 
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Table 2.2. DES system with low viscosity10. 

Salt HBD Molar ratio T (K) η (mPa.s) Ref. 

ChCl urea 1:2 303.15 449 83 

ChCl glycerol 1:2 303.15 246.79 84 

ChCl ethylene glycol 1:2 303.15 35 83 

ChCl glycolic acid 1:1 303.15 394.8 85 

ChCl levulinic acid 1:2 303.15 164.5 85 

ChCl phenol 1:3 303.15 35.17 86 

ChCl o-cresol 1:3 298.15 77.65 86 

 

 

2.1.4 Conductivity 

This physical property has indirect relationship with viscosity, the higher the viscosity the 

lower the conductivity, therefore at the room temperature most of the DES system has very low 

conductivity, lower than 1 mS/cm, so this will cause problem for certain electrochemical 

applications. In order to predict the temperature effect on conductivity behavior of a DES 

Arrhenius equation can be used. Some of DES systems have high conductivity such as those 

containing ethylene glycol or imidazole with ChCl. As it mention , the molar ratio of the organic 

salt to HBD effect the viscosity, so it is clear that this parameter have a direct effect on the 

conductivity82,87,88.Table 2.3 shows the conductivity for some of DES system. 
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Table 2.3. Conductivity for selective DES system10. 

Salt HBD Molar ratio T (K) κ (mS×cm-1) Ref 

ChCl Urea 1:2 313.15 0.199 79 

ChCl glycerol 1:2 298.15 1.300 89 

ChCl malonic acid 1:1 298.15 0.742 65 

ChCl Imidazole 3:7 333.15 12 82 

 

 

2.1.5 Polarity 

The key property for a fluid is polarity, since it characterizes the ability of the fluid for 

dissolving solutes. Regardless of this importance, the information about this property is almost 

null and this consider as remarkable problem, because DES has been suggested as environmentally 

friendly substitute to alternative to common volatile organic solvents10. Commonly, this property 

measure by solvents polarity scale, ET (30), this refers to the electronic transition energy of a probe 

dye (Like Reichardt’s Dye 30) in a solvent. Using UV-vis technology and Reichardt’s Dye 30 the 

polarity of solvents can calculated by equation 2:  

E��30��kcal mol��� = h�� ���N� = � 2.8591x10� �U����cm��� =
"#$%�

&'()
    (2) 

 

Table 2.4, summarized polarity of ChCl/glycerol system with different molar ratio using 

Reichardt’s Dye method. Obviously, with increasing the ratio of the system the ET (30) of the DES 

increases. Also with increasing the concentration of ChCl/glycerol system almost linear increase 

of ET noticed 82.  
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Table 2.4. Polarity of ChCl/glycerol eutectic solvent at different molar ratio 82. 

Salt HBD Molar Ratio ET(30) (kcal mol-1) 

 Glycerol  57.17 

ChCl Glycerol 1:3 57.96 

ChCl Glycerol 1:2 58.28 

ChCl Glycerol 1:1.5 58.21 

ChCl Glycerol 1:1 58.49 

 

 

2.1.6 Surface Tension 

Surface tension is property that indicates the cohesive forces among the molecules of a 

liquid that exist at the surface. Structure of the molecular is related to the surface tension, however 

no quantitative observation have been obtain90. Factors that can control the surface tension of DES 

with ChCl based are HBD type, molar ratio of HBA to HBD, temperature and water content. Table 

2.5 shows some of ChCl based DES system with different HBD, the surface tension of malonic 

acid with ChCl based is higher than ChCl based with urea. For instance, at the same temperature 

(298.15 K) with molar ratio of 1:1 ChCl/malonic acid have surface tension of 65.7 mN/m while 

ChCl/urea system with molar ratio of 1:2 have surface tension of 52 mN/m. The surface tension 

and temperature has inverse relationship, with increasing one the other will decrease74. 
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Table 2.5. Surface tension of ChCl based DES 74. 

HBD Ratio T/K γ (mN/m) 

Urea 1:2 298.15 52.0 

Glycerol 1:2 298.15 56.0 

Malonic acid 1:1 298.15 65.7 

Lactic acid 1:2 298.15 48.0 

Phenylacetic acid 1:2 298.15 41.9 

Ethylene glycol 1:3 293.15 45.4 

 

 

 

2.1.7 Contact Angle 

In order to be able to characterize the degree of wettability or adhesion of liquid on solid 

surface, measurement of contact angle becomes an important tool. For membrane carbon capture 

technology wettability consider as one of the most important parameter, since it reduce the 

absorption performance of the membrane. The results of some of the literature on membrane 

wettability especially the contact angle is summarized in table 2.6. According to Lv et al. 91 contact 

angle of polypropylene (PP) membranes strongly decreased during immersion in absorbent 

solutions. Moreover, based on this study the contact angles of all the membranes were above 90°, 

therefore each one of studied membranes have hydrophobic surface. 

Blanco et al.92 investigated the contact angle of three bis(trifluoromethylsulfonyl)imide-

based ionic liquids: 1-Dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[C12MIM][NTf2], tributylmethylammoniumbis(trifluoromethylsulfonyl)imide [N4441][NTf2] and 

methyltrioctylammoniumbis(trifluoromethylsulfonyl)imide [N1888][NTf2] on AISI 52100 steel and 

three coatings of Titanium nitride  ,ceramic chromium nitride and zirconium nitride (TiN, CrN and 
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ZrN), the results are shows in Figure 2.2. In this study it was found that all the three surface showed 

hydrophobic behavioral, where lower contact angle was due to lower surface tension .Furthermore, 

Lv et al 91. found the same relationship between the contact angle and the surface tension for the 

membranes system. 

 

 

Table 2.6. Contact angle of membrane93. 

Membrane Type Absorbent Contact Angle Ref. 

PP hollow fiber 

deionized water CA: from 126.1° to 100° 91 

30 wt % MDEA solution CA: from 121.6° to 90.8°  

30 wt % MEA solution CA: from 121.6° to ∼92.5°  

20 wt % DEA CA: from 103.7° to 94.5° 94 

 

 

 

Figure 2.2. Contact angle of [C12MIM][NTf2], [N4441][NTf2]  and[N1888][NTf2]on TiN, CrN 

and ZrN92.  



33 

2.1.8  Corrosion 

One of the main problems related to the amine-based CO2 capture is corrosion process 

materials which results in unexpected downtime, production loss and even major fatality. The cost 

of corrosion was rated to be 25 % of the maintenance cost for gas sweetening plants95.  

Gunasekaran96studied the corrosion of carbon steel in a aqueous solution for 

Monoethanolamine (MEA), Methyldiethanolamine (MDEA), 2-Amino-2-methyl-1-

propanol (AMP), Diethanolamine (DEA) and piperazine(PZ) amine based under CO2 and 

temperature of 353.15 K. The corrosion rates of these systems are summarized in figure 

2.3. According to Gunasekaran the corrosion rates of these five different system can be 

ordered as : MEA > AMP > DEA > PZ > MDEA, and this studied of corrosion rate has 

good agreement with Kohl and Nielsen53 studied. 

 

 

 

Figure 2.3. Corrosion behavior of different amine based96. 
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Aida95 investigated the corrosion rate of carbon steel CS1018 in aqueous solution for MEA, 

DEA and MDEA (classic amine) at temperature of 353.15 k. the results were almost same as the 

previous. The results of Aid’s studied on amine base are summarized in table 2.7. This study also 

includes the corrosion rate of activated amine (MEA/PZ, MEA/MDEA MDEA/ piperazine (PZ), 

MEA/MDEA/PZ and PZ) and amine/RTILs (MEA/1-butyl-3-methylimidazolium 

tetrafluoroborate [BMIM][BF4] and MEA/ 1-butyl-3-methylimidazolium 

trifluoromethanesulfonate [BMIM][Otf]). The results of 3 classification are summarized in figure 

2.4. According to this study it’s found that the corrosion rate of classic amine increased by 

increasing the CO2 loading, also the corrosion rate increased based on the type of amine. The 

activated amines show less corrosivity in compared with classic amines where it’s due to the 

structure of PZ. Moreover, in terms of less corrosivity and more CO2 absorption capacity the 

mixtures of MEA/[BMIM][Otf] and MEA/PZ shows the better results. 

 

 

Table 2.7. Corrosion rate of amine based95. 

Amine type Temperature 
(K) 

Corrosion 
Rate (mm/y) 

MEA  
 
 

353.15 

3.41 

DEA 2.45 

MDEA 1.25 
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Figure 2.4. Corrosion rate of single amines, piperazine activated amines, and amine/RTIL 

solutions at 353.15 K95 . 

 

   

2.2 Gas Separation and CO2 Capture 

Around 3/4 of overall gaseous that emitted to the atmosphere capture by CO2 capture 

technology. There are different technologies that recently used for capturing CO2 such as 

adsorption, absorption, and cryogenic capture process and separation using membrane units. 

Characteristics of gas stream determine the best technology that have to be used for the purpose of 

capturing CO2. This characteristic is mainly relying on the sort of the dynamics of the process in 

which the fuel will be used or processes. Processes are based on chemical or physical separation 

method. Porous mediums’ or solvents nature determined the nature of the separation system97.   

 The solvents that used for more than 70 years in CO2 capture process is amine solvents 

based. It is chemical solvents that derivative from ammonia where the hydrogen (H2) atoms has 
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been changed by other groups such as alkyl or aryl therefore depend on the number of H2 that have 

been changed by organic functional groups it classified as primary, secondary, and tertiary. The 

most often type of amines that are used are monoethanolamine (MEA), methyldiethanolamine 

(MDEA), piperazine (PIPA), di-ethanolamine (DEA) and etc. It is the most commonly acid gas 

removal used from early stages since it recovers almost 98% of CO2 and the purity of product 

reach 99%10.  However, there are several disadvantage of using amine solvents; for instance, loss 

of amine regents, at desorption stage water transfer into gas stream, corrosive byproducts forms 

from chemical degradation, thru the regeneration the energy consumption is high and insufficient 

CO2/hydrogen sulfide capture capacity98. 

To solve the amine problems both industry and academia has been researching to find the 

substitute solvents which are chemically stronger, high CO2 affinity and with viable thermos- 

physical properties. In last 20 years in the academia area ILs get incredible consideration and their 

ability to uptake the gas specially CO2 was tested at different process conditions. The resent studies 

have shown that ILs are the promising alternative capture solvents for CO2 and other gases like 

hydrogen sulfate (H2S) and sulfur dioxide (SO2)99,100,101,102. ILs has very low vapor pressure, this 

advantage gives them the opportunity to overcome the high volatility amine process10.Early studies 

with ILs showed that the affinity of SO2 and CO2 increase by cation and anion base on their select 

and their tunability to synthesize task-specific solvents that can physically interact with the gas 

102,103,104, 105 to be absorbed through reversible binding. The first experimental study in 1999105 

showed that the nature of anion play the key role in solubility of CO2 in the IL, this research 

followed by range of other studies106,107,108 recommending the same concept. One of the study 

showed that the ILs with nitrate anion have less CO2 solubility than ILs with 

bis(trifluoromethylsulfonyl)imide anion109. Later it was highlighted that minimal extent on the 
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cation or fluorination on the anion increase the solubility of CO2 in ILs; but this fluorination has a 

trade-of negative side effect in actual processes110. In other hand, resent study showed that the 

solubility of CO2 in ILs mostly controlled by entropic effects111. Removing CO2 using ILs can be 

achieved by both pre and post combustion112,but however ,post-combustion gas capture and 

separation has the issue of low capacity113.Among all properties mentioned ,still ILs haven’t been 

so far proven to be alternative materials for large-scale industrial scrubbing agent because of many 

reasons; for example, high synthesis cost114, toxicity115 and low capacity113.Despite their 

fascinating functionalities, these materials still need huge capital investments for bulk 

productions10.Also other properties such as moisture and non-biodegradable make this solvent 

questionable for industrial application. Therefore to solve these problematic aspects of ILs and 

utilize their chemical flexibility, new techniques has been emerged which called DESs89,10. 

 

2.3 DES and CO2 System 

Different material and techniques over the past years have been developed to replace the 

amine base for the purpose of capturing CO2, such as DES and IL. Most of the ILs have the ability 

to dissolve CO2; DES system is similar to IL since it mainly contains ionic species and it has 

interesting solvent properties for high CO2 dissolution. This combination between the green 

solvents (DES) and CO2 has large potential for a diversity of chemical processes (gas separation 

and purification, catalysis, chemical fixation of CO2 and etc.). 

The effect of water in the DESs system can hinder the gas solubility performance, there are 

several published work on this issue that investigates the effect of the water content in a DES urea 

with 1:2, 1:2, 1:1, and 1:2 molar ratios respectively)116,117It has been shown that adding water to 
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DESs system causes significant drop in the solubility of CO2, representing that water can be used 

to regenerate the DES system. On the other hand, this indicated that the absorption of CO2 in such 

solvents will be less if flue gas is wet basis that contains moisture. 

Another study was conducted by Hsu et al120 on mixing MEA (30%w/w) with the 

ChCh:urea (1:2 molar ratio) DES system. It was found that adding 30% (w/w) of aqueous MEA 

as 15% (w/w) to the aqueous DESs caused an increase about 4-fold in the solubility of CO2 in 

compared with the original DES system. This method indicated promising results, however the 

disadvantages of MEA such as thermal degradation, high vapor pressure, ecological concerns 

121,122 raised question about the applicability and sustainability of such method. 

In literature it has been reported that the DES systems that are not amine functionalized 

can be regenerated with based on pressure swing methods16.Moreover, amine functionalized DES 

systems have posed a thermal requirement for regeneration10. 

Most of the recent studies on DES and gas sorption focus on physisorption based gas 

sorption mechanisms at high pressures. However, despite thermal regeneration requirements, 

chemisorption with DESs has been proven to be an alternative to physisorption. The most popular 

example to this mechanism is utilization of ionic liquids such as 1-alkyl-3-methlyimidazolium 

acetate 116, 118. It is a known fact that anion dominates the interactions with the carbon dioxide 

through the Lewis acid-based interactions119. Nevertheless, the strength of the carbon dioxide 

solubility is not directly related with the strength of the carbon dioxide gas and anion interactions. 

However, latest observations showed that the basicity of the anion has an effect on stronger 

interactions with the C-2 proton on the imidazolium and an anion with high enough basicity has 

the potential to abstract the proton to produce an N-Heterocyclic carbane and acetic acid120. In a 

recent study it has been shown that the stability of the formed carbanes from 1-alkyl-3-
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methlyimizasolium acerare and instead of ion pair, carbene acetic acid complexes dominated the 

vapor of neat 1-ethly-3-methylimidazolium acetate121. Thus it can be concluded that similar 

chemisorption mechanism of carbon dioxide via several other functionalized ionic liquids can be 

proposed for enhanced carbon dioxide update by including functional groups such as basic anions1, 

2,122, amine groups99,123,124,125, pyrrolide anions126, or pyrazolide anions126. It would be 

advantageous to select the less viscous cases, thus the pyrrolide and pyrazolide anion cases shall 

be the special interest. 

Most of the literature in this area (CO2 solubility) focus more on the DES system with ChCl 

based82,10. Lately, Li et al127 determined the solubility of CO2  using DES system made of ChCl 

with urea at different pressure, temperature and molar ratio. It’s found that the solubility of CO2 

(Xco2) in this system (ChCl/urea) depends on the following three factors: 

1. Values of Xco2 increased with increase the pressure of CO2, also at low pressure range 

this value was more sensitive to the pressure.  

2. Values of Xco2 decreased with increase in the temperature and this was true for all the 

pressure range. 

3. The molar ratio of ChCl and urea has significant effect on the value of Xco2; for example, 

at identical pressure and pressure the DES system of ChCl and urea at ratio of 1:2 exhibit 

higher Xco2 values than molar ratio of 1:1.5 of 1:2.5. 

 

DES system formed from ChCl and urea with molar ratio of 1:2 identified as reline and it 

have the lowest melting point. Reline describe as hygroscopic, because most of ChCl based DES 

always contain little amount of water and this may affect the HB interaction, therefore the chemical 

and physical properties of the system will modified128.For instance, densities of the DES system 
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made of ChCl and ethylene glycol at molar ratio of 1:2 reported to be decreased with increasing 

temperature and increased with increasing pressure in the range of 1 to 500 bars. This effect due 

to the dependency of HB on the temperature and also because of decrease in the molecular distance 

and free volume of the mixture129.Recently some finding shows that water in the DES act as anti-

solvents which prevent the CO2 absorption. At low pressure the hygroscopic behavior of DES 

remarkably affects in the solubility of CO2 , and this cause limitation for those mixtures130. 

Several studies16, 127, 131,132,133,134, 125, have investigated  the effect of decrease and 

improvement in solubility of CO2 with increasing pressure, temperature and present of water ( table 

2.8). Based on Li et al.127study, increasing the molar ratio for Chcl/urea eutectic solvent from 1:1.5 

to 1:2 and 1:2.5 does not show any effect on the CO2 capture. However, the amount of dissolved 

CO2 mole fraction in this system is 0.032 for molar ratio 1:2.5 at 333.15 k and 1.08 MPa and 0.309 

for molar ratio 1:2 at 313.15 K and 12.5 MPa. According to table 2.8, it can be concluded that, 

DES system made of ChCh/ urea with ratio of 1:2 at 303.15 K and 60 bars shown the best 

performance to uptake CO2 which measured to be 3.559 mmol/g. sulfonate ILs at 307 K and 80 

bar it absorbed 4.52 mol/kg which means it uptake more than ChCl/urea eutectic system, however 

at atmospheric pressure and ambient temperature DES made of ChCl/ glycerol at ratio 1:1 has the 

highest CO2 capture of 0.678 g/g in compere with mono-ethanol amine which it uptake 0.28 

mol/mol of CO2 at room temperature and 10 bar. Thus, this clearly indicates that, the DESs system 

can absorb more CO2 than the toxic ILs based.  
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Table 2.8. Solubility of CO2 in various DES system10. 

IL HBD Molar ratio Absorbent Solubility T/P (K/bar) Ref. 

ChCl Urea 1:2 CO2 3.559 
mmol/g 

303.15/60 132 

ChCl ethylene 
glycol 

1:2 CO2 3.1265 
mmol/g 

303.15/58.63 133 

ChCl ethanole 
amine 

1:6 CO2 0.0749 
mmol/g 

298/10 135 

methyltriphenylph
osphonium 

bromide 

ethanole 
amine 

1:6 CO2 0.0716 
mmol/g 

298/10 135 

ChCl Urea+H2O 50wt%rel 
Chcl/Ur+ 
50% H2O 

CO2 0.111 
mol/mol 

313/7.8 130 

ChCl Urea+H2O 60wt% rel 
+40%H2O 

CO2 0.103 
mol/mol 

313/8.06 130 

 

 

The effect of pressure and temperature on CO2 solubility for DES system with base of ChCl 

was investigated for range of 293.15 K to 323.15 K and pressure up to 30 bars was studied by Ruh 

et al16 Figure 2.5 shows the results of CO2 solubility in DES system made of ChCl and LA at 1:2 

molar ratio at 5 different isotherm and up to 30 bars. The graph indicate that the solubility of the 

system linearly increased with pressure, but it decreases with increasing the temperature. 

Furthermore, the kinetics of the absorption in the ChCl/LA system has been studied. The amount 

of CO2 absorptions with time and at both high and low pressures is shown in figure 2.6. For fully 

saturated DES solution at 1 bar it required time of 7 minutes in order to reach the equilibrium, 

while at 30 bars it required almost 12 minutes.  
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According to the promising results of ChCl/LA DES system in absorbing CO2, therefore 

this work is a complemented to the previous studied.      

 

Figure 2.5. Effect of pressure and temperature on CO2 solubility in ChCl/ glycerol DES system16.  

 

 

 

Figure 2.6. Isobaric CO2 solubility in ChCl/LA kinetics: (a) 1 bar and (b) 30 bar16.
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3 . MATERIALS AND METHODS 

3.1 Materials Used in this Work 

Materials that used for this work are ChCl, Phenylacetic acid (PAA), Nitrogen (N2) and 

CO2. The purpose of choosing ChCl and PAA because ChCl is the most common HBA used, since 

it is biodegradable, biocompatible where it’s known as vitamin B4 also both of them have low 

price, they are non- toxic and environmentally friendly, moreover no study has been published 

before focusing on suability of CO2/N2 gas in this mixture. 

 The melting point of ChCl is 575.15 K with purity of 97.0% and PAA have melting point 

of 350.15 K with purity of 99.0% were purchased from iolitech and Sigma-Aldrich respectively. 

N2 and CO2 gasses with purity of 99.99% are purchased from Buzware Scientific Technical Gases, 

Qatar. PAA is used as it received, while ChCl dried for 24 hours in oven at 400.15 K. A mixture 

of 1:2, 1:3 and 1:4 molar ratio of ChCh/PAA prepared by mixing 35.014 g of ChCl and 68.64 g of 

PAA, 35.07 g of ChCl and 103.05 g of PAA, 35.01 g of ChCl and 136.11 of PAA respectively. In 

order to avoid the moisture that might end up in the final mixture, the three mixtures were prepared 

under glove box (figure 3.1). Since both chemicals are solid at room temperature, thus they were 

heated on a hot plate at 423.15 k and grinded in mortar to form liquid mixture, after that the mixture 

was stirred till clear and homogeneous DES achieved. The first ratio (1:2) was liquid at room 

temperature, while the other two ratios (1:3 and 1:4) were heated at temperature 308 K and 323 K 

respectively with continued mixing over stirred for one hour. An easy and uncomplicated 

procedures was taken to prepare the DESs where no solvent was added in order to melt the two 

chemicals, only heat was supplied to keep DES 1:3 and 1:4 on their liquid state for characterization 

because they are solid at room temperature, also no extra steps were included for purification.  
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Figure 3.2 shows the three different DESs system that prepared where only 1:2 is liquid at 

room this temperature (a) and the melting point for 1:3 ratio is 308.15 K (b) and 321.15 K for 1:4 

ratio (c).  

 

 

 

Figure 3.1. Glove box instrument. 

 

 

 

Figure 3.2. ChCl/PAA DES system at (a) room temperature (b) 308.15 K (c) 321.15 K. 
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3.2 Methods 

3.2.1 Fourier Transform Infrared Spectroscopy (FTIR) Characterization 

The most important functions of FTIR technology are to study the structure of compound 

and to analyze the degree of the compound purity, in other word to obtain information about 

complexation and interaction between prepared ChCl/PAA based DES systems. It is molecular 

versus atomic analysis where its look at molecules structure not individual atoms, it’s a qualitative 

analysis. The devise has infrared light source, which is the base light of the energy. The sample is 

put in the light source and then absorbance of that sample is what is used to measure the bounds 

of the carbon atoms. FTIR used for several types of samples such as solid, liquid and others 

samples. FTIR instrument is shown in figure 3.3. 

 

 

 

Figure 3.3. Infrared IR Spectroscopy Test Instrument. 
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The individual compound (ChCl and PAA) and the DES mixture for the three ratio were 

characterized by FTIR using SpectrumTM 400 Spectrometer (PerkinElmer,USA).The prepared 

samples were scanned several times in the range of 400-4000 cm-1. The Detailed method is as 

follow: 

1- First start the OPUS software. No need to shut down the OPUS after use. 

2- Before using the machine be sure that the sample platform (figure 3.4) is empty and free 

of materials, because a background scan is required,  

3- If the platform is not clean use wipes and alcohol (ethanol is the best) to clean the lenses. 

4- Back to the software click on : 

a. Analysis.  

b. Measurement. 

c. Background scan.  

d. At the bottom of the software a green bar will appear, so when the scan is 

completed, this bar will disappear. 

5- For Liquid sample prepare a clean Pasteur pipette and pinch the bulb gently, only single 

drop will suffice because the droplet will separate.  

6- Drop a single droplet of the sample on the platform and rotate the screw. 

7- This time click on sample measurement in the software, the green bar will show up again 

when is disappear the spectrum will come into view. Figures 4.1, 4.2 and 4.3 show the 

spectrum of the materials that used in this work.  

8- Finally clean the platform.  
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Figure 3.4. Photo of FTIR platform 

 

 

3.2.2 Thermogravimetric Analysis (TGA) 

TGA is a technique that frequently used in thermal analysis. It’s mainly used to characterize 

the materials by measuring their change in mass as function of temperature and time. The 

properties and behavior that can be measure by TGA include composition, purity, decomposition 

reaction, decomposition temperature and absorbed moisture content. The principle of TGA is to 

measure the mass of a sample as it is heated, cooled or held at constant temperature in defined 

atmosphere. A TGA machine contain furnace and a highly sensitive balance, the device is shown 

in figure 3.5 where it is connected to the computer. In this work TGA used specifically to identify 

the temperature limitation of the absorbent. To put it differently, it used to check two essential 

temperatures, which are the decomposition temperature (Td) and onset temperature (Tonset) for each 

molar ratio of prepared DES.  
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Figure 3.5.TGA instrument. 

 

 

For this work PerkinElmer Pyris 6 TGA machine used for the samples characterization, to 

obtain the curve of weight loss with temperature. The DESs heated from 303.15 till 707.15 K at 

rate of 5 K min-1 under dried atmosphere using N2 gas. The procedure of using this device as 

follow: 

1. Fist open Pyris program click on start Pyris then data analysis. 

2. Method Editor Window will appear, therefore specify the sample name, operator and any 

comment regard to the sample then press Browse to save it.    

3. From the same window click on (figure 3.6 ): 

a. Initial state-to adjust initial temperature value (starting temperature value) 

b. Program (in the same window) in order to set the heater and cooler program 

temperature.  

4. Open the N2 gas (there is a N2 gas calendar next to the instrument). 
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5. Remove the cover of the furnace and insert the empty sample container (figure 3.7).  

6. In the program click on balance symbol (figure 3.8(a)) to keep the Wight at 0 .After that 

fill the container with the sample and put in the furnace again.  

7. Click on sample balance (3.8(b)) 

8.  The last step is to click on start measurement (figure 3.8(c)).       

The measurements need almost two hours to give the exact plot. Figure 4.4 shows the TGA carve 

for the three ratios that used in this work. 

 

 

 

Figure 3.6. Pyris program set up. 
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Figure 3.7. TGA furnace and Sample container. 

 

 

 

Figure 3.8. Pyris program set up. Balancing the empty container (a), balancing the sample (b), 

start measurement (c). 
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3.2.3 Corrosion Measurement and Data Analysis 

3.2.3.1 Experimental Procedure 

The importunes of this measurements is to realize the corrosivity limitation of the prepared 

DES, since a serious danger can be occur because of corrosion, such as vessels corrosion , 

corrosion of metallic pipes and for other assemblies where they are in direct contact with material. 

Also this test provides information about the stability of metal from polarization values. 

In order to carry the corrosion tests on the sample, ChCl/PAA DESs system should be at 

liquid state, therefore the tests were carried out at 298.15, 318.15 and 329.15 K for 1:2, 1:3 and 

1:4 molar ratio respectively. For this test 20 mL from each DESs samples were used, with surface 

area of 0.785 cm2 a circular specimen of low carbon steel was submerge into the liquid. Base on 

ASTM G1-03 standard the specimen was prepared. Wet grinding and polishing treatments were 

done using 320600 and 1200 paper of grit and SiC respectively. Additional cleaning was perform 

for the degassed specimen, first highly purified acetone and deionized water used then it dried 

using hot dry air. At the selected temperature the corrosion test was done in absent and present of 

CO2 and the experiments of corrosion were performed following recently published methodology. 

The cell of the experiment was equipped with reference 30K Booster attached to a reference 3000 

potentiostat / Galvanostate / ZRA, USA, standard calomel reference electrode, with graphite 

counter electrode and steel working electrode. The setup of the corrosion test is shown in figure 

3.9. 
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Figure 3.9. Set up of corrosion test. 

 

 

3.2.3.2  Tafel Extrapolation 

In order to determine the electro-kinetic data (eg. corrosion rate and current) for the tested 

environments the Tafel extrapolation method was used. The data acquisition system was used in 

the range of ±250 mile volts (mV) vs open circuit potential (OCP) and a scan rate of 0.0001 V/sec 

to generate the polarization curve. Tafel analysis is represented in figure 3.10. To execute this 

analysis the portion linear of the anodic and cathodic branches must be extrapolated till the two 

lines intersect in the middle. The current density of corrosion can be estimate by using this point 

(intersection point) where this density is corresponding to the corrosion potential. After obtaining 

the corrosion current, corrosion rate can be calculated using Equation (3)51: 
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CR =
 ."-��./0�12344�56

7
      (3) 

Where  

CR: Corrosion current (mm/y) 

icorr: Corrosion rate (μA/cm2) 

EW: Equivalent weight of the specimen (eg. Carbon steel 27.92 g/equivalent) 

D: Density of the specimen (eg. Carbon steel 7.87 g/cm3) 

 

 

 

Figure 3.10. Linear Tafel behavior in the anodic and cathodic branches of the polarization 

curve51. 
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3.2.4 Conductivity 

This test is important since it will evaluate ion mobility number of charged entity, where 

increasing the Van der Waals attraction force cause a reduction in the ion mobility. For 

conductivity measurement, also 20 mL of DESs samples were used and the measurements were 

conducted at different temperatures. The thermometer and the pro of 3200M Multi-Parameter 

Analyzer (Agilent Technologies, Inc., USA) with the accuracy ±5.2μscm-1 was dipped into the 

samples. The device is shown in figure 3.11, the thermometer and pro are located behind the 

device. First switch on the device then click on the measurement button the instrument will read 

the conductivity at different temperature. Figure 4.6 was plotted using the data obtained from this 

devise. 

 

 

 

Figure 3.11. Conductivity measurements instruments. 

 



55 

3.2.5 Density  

This measurement was performed, since density considered as one of the most important 

thermos-physical properties where this data can be used for simulation and modeling purpose. 

the densities measurements were performed at temperature range from 298.15 till 363 k. This 

measurement done by using an Anton Paar DMA 4500M densimeter, which uses the oscillating 

U-tube sensor principle. The accuracy for temperature and the density was ±0.05 K and ±0.00005 

g m-3 respectively. The instrument used for this experiment shown in figure 3.13. This devise 

has 2 main parts, operation and documentation. Figure 4.6 was provided using Anton Paar  DMA  

4500M  densimeter where it shows the densities data for the different molar ratios that used in 

this work also the figure shows the data for ChCl/ Glycerol , ChCl/Ethylene glycol81 and 

ChCl/LA131.  

 

 

 

Figure 3.12. Density meter instruments. 
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3.2.6 Contact Angle 

In order to be able to characterize the degree of wettability or adhesion of liquid on solid 

surface, measurement of contact angel becomes an important tool. Sessile drop method was used 

in order to obtain the contact angel measurements. For this measurement, only ChCl/PAA DES 

with ratio of 1:2 was characterized because the device can not characterize solid sample, and since 

only a signal drop will be use therefore using the heat for the solid sample is useless. Therefore 

DES 1:2 at room temperature was characterized using KRÜSS drop analysis system (Model: 

DSA25), Germany driven by software “Advance”. The instrument shown in figure 3.14 has the 

ability to record video and snapshot by installed microscope. The procedure to measure the contact 

angle is: 

1. Chose the proper needle that is suitable for your sample.   

2. Run the program of DROPimage Advanced 

3. Pmlace the surface that chosen to measure the contact angel on it in the top of the chamber 

(ake sure it is flat). 

4.  Adjust the position of the needle so that the bottom of the needle appears about forth of a 

way down in the live window screen. 

5. Adjust the baseline to be horizontal and about just below midpoint in the live window 

screen. 

6. Carefully apply one drop of the sample onto the solid surface.  

7. In the main bar click on measure then click on take picture. 

8. Click on CA tools and then on contact angel to open the contact angel tool. 

9. Adjust the green vertical line by simply clicking on the window screen to the lift of the 

drop. Make sure it is not touching the drop but that there is a small space between the line 
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and the drop. The yellow line should already be positioned to the right of the drop where it 

is not touching it on the wall of the application window. 

10. In the contact angel window click on measure.     

 

 

 

Figure 3.13. KRÜSS drop analysis system136. 

 

 

3.2.7 CO2 and N2 Solubility Measurements 

High magnetic sorption apparatus (MSA) of Rubotherm präzisions messtechnik GmbH, 

Germany used to obtain the solubility of CO2 and N2 gas. This apparatus (MSA) was demined up 

to 303 K and 350 bars. The MSA device has two main operation positions where they are different 

from each other. First step start with filling the cell of measurement with CO2 or N2 gases and then 

the MSA will start records the sample weight change that is inside in the sample container as the 

sample absorbed the high-pressure gas. The Next position is used to measure the in-situ density of 

the high-pressure gas, where this data needed to calculate the amount of gas that adsorbed by the 

sample. In this work, pressure up to 30 bars is used at three different isotherm131. The details of 
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the experimental findings of these measurements are provided in results and discussion section of 

this thesis and the detailed procedure is stated in the appendix. Figure 3.14 shows the devise that 

used for this purpose.  

 

Figure 3.14. MSA instrument. 

 

 

Operating principle, procedures, data correlation of the magnetic suspension force 

transmission and calibrations of overall instrument have been already explained in our previous 

works elsewhere131,137 The density measurement works on Archimedes' buoyancy principle by 

utilizing a calibrated silicon sinker placed just above the sample basket in the pressure cell. A 

volume of 4.4474 cm3 silicon sinker was used to measure at 20 °C with a 0.0015 cm3 uncertainty 

and a density of 4508 kg m−3measured at 293.15 K with a 4kgm−3 uncertainty. Pressure transducers 
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(Paroscientific, USA) have accuracy of 0.01% in full scale and they were connected to MSA to 

monitor experimental pressures with an uncertainty of ±0.05% from vacuum to 350 bars. The 

temperature sensor that was used has an accuracy of ±0.5 K and was provided by Minco PRT, 

USA.
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4 . RESULTS AND DISCUSSIONS 

4.1 FTIR of DESs 

The purpose of using FTIR characterization was to obtain information about complexation 

and interaction between prepared ChCl/PAA based DES systems. This characterization has been 

done for pure ChCl, pure PAA and their mixture with different molar ratio as it shown figures 4.1 

to 4.3 respectively. FTIR spectra of pure PAA (figure 4.1) is characterized by vibrational bands at 

around 1300 cm-1 , which is indicate that hydroxyl group (OH) is present in this chemical , and 

absorbance band at 1691 cm-1 , which shows the presence of ketone (C=O). While the absorption 

peaks appear at 1076 and 1028 cm-1, and this indicate presence of the benzene ring and the carbon-

oxygen bond of the acid grouping. Therefore, the existence of this groups in the FTIR spectrum 

confirms that this chemical it’s PAA. 

 

 

 

Figure 4.1. FTIR spectra of PAA. 
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 The same analysis was carried for pure ChCl. The FTIR spectra of pure ChCl is shown in 

figure 4.2, it is characterized by a broad vibrational band that extends from 3500 to 3200 cm-1 

referring to the presence of hydroxyl (OH) or amino group (N-H), while those bands 3015-2882 

cm-1 and 1482-1417 cm-1 refer to the presence of an alkyl group (C-H). 

 

 

 

Figure 4.2. FTIR spectra of pure ChCl. 

 

 

As it mentioned before, mixture of ChCl and PAA produce the reported DES system. This 

mixture with molar ratio of 1:2, 1:3 and 1:4 also characterized using FTIR as shown in figure 4.3. 

The vibrational bands at 3031-2891 cm-1 and 1496-1370 cm-1 indicate the presence of alkyl group 

(C-H). While vibrational bands at 1496-145 cm-1, 130 cm-1 and 1230-1158 cm-1 represent the 

aliphatic ketone group (C-O). Carbonyl group (C=O) is represented by 1720cm-1. This spectrum 
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gives collective characteristics of ChCl and PAA, where it shows that during the reaction the 

hydrogen bond occur. Furthermore, the three-molar ratios of DESs systems showed almost similar 

and overlapped FTIR spectra. Comparing the functional group stretching bands of other 

works16,138,78 with results of this work for ChCl/PAA DES FTIR spectra it showed good agreement. 

 

 

 

Figure 4.3. FTIR spectra of 1:2, 1:3 and 1:4 molar ratio of ChCl/PAA DES. 

 

 

4.2 TGA of DESs 

The aim behind using the TGA experiment was to check two essential temperatures, which 

are the decomposition temperature (Td) and onset temperature (Tonset) for each molar ratio of 

synthesized DES; in other word to identify the temperature limitation of the absorbent. Figure 4.4 

shows weight percent loss for each DES. The three systems of ChCl/PAA based have almost 
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similar Tonset where it is in the range of 373.15 K, while the Td found to be closed to 473.15 K; but 

close observation indicate that the Td of 1:2 molar ratio is 463.15 K whereas for 1:3 molar ratio is 

473.15 and for 1:4 molar ratio is 468.15 K. Consequently, it is obvious that the DESs are stable if 

the temperature is less than 463.15 K because at higher temperature materials will start to 

decompose so is not advisable to use this material higher than 473.15 K. Moreover, from figure 

4.4 it is clear that adding more PAA (acid ratio) did not have much change on the both temperatures 

(Tonset and Td). Therefore, the synthesized DESs are appropriate for post combustion CO2 capture 

process conditions.   

 

 

 

Figure 4.4. TGA Carve for ChCl/PAA DES (1:2, 1:3 and 1:4). 
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4.3 Corrosive Behavior of DESs 

Before perform any materials (traditional or new) in industrial or commercial process it is 

important to know the properties of those materials such as chemical and physical properties. 

Therefore, it is necessary to check all the properties of the new DES (ChCl/PAA) one by one, also 

it is essential to understand the corrosivity limitation of this chemical, since a serious danger can 

be occur because of corrosion, such as corrosion for vessels, corrosion for metallic pipes and for 

other assemblies where they are in direct contact with the material. Polarization values gives 

information on the stability of the metal in the corrosive environment. The ChCh/PAA based DESs 

that have been prepared are targeted for capturing the CO2 and since the corrosive rate increase by 

CO2 saturated DESs, thus the experiments were carried with and without CO2 saturated DESs. The 

temperatures for the test were selected based on the melting point of each molar ration in order to 

understand the behavior of corrosivity. Therefore, for the first molar ratio (1:2) where it is liquid 

at room temperature so it measured at 298.15 K , however the other ratios (1:3) and (1:4)  are solid 

at room temperature so to bring them to the liquid condition and measure them they heated up to 

318.15 and 329.15 K, respectively. The current density for the three molar ratios as a function of 

potential is shown in figure 4.5. At the mentioned temperatures, also carbon steel used to assess 

the corrosion behavior, the curves show the corrosion potentials for ChCl/PAA (1:2), (1:3) and 

(1:4) to be -0.633 (Figure 4.5 (a)), -0.511 (Figure 4.5(b)) and -0.521 (Figure 4.5(c)) volt where the 

values for corrosion rate were 0.0224, 0.118 and 0.278 mm/y respectively. For CO2, saturated DES, 

the corrosion rate found to be 0.044 (Figure 4.5 (a)), 0.267(Figure 4.5(b)), and 0.916 (Figure 

4.5(c)) mm per year while the corrosion potentials appear -0.490, -0.493 and -0.488 volt with 

respect to above mentioned DESs. These informations also summarized in table 4.1. Comparison 

between the three DESs cannot be done since they have different melting point temperature. 
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However CO2 loaded ChCl/PAA (1:2) of this work can be compared with other published data 

reported by Ullah et al 16 on ChCl/Levulinic acid (ChCl/Lev) with the same molar ratio (1:2) and 

monoethanolamine  (MEA) system at temperature of 298.15 K. The corrosion rate for ChCl/Lev 

reported by Ullah et al was 0.027 mm /year and the potential -0.43 volts where it was 0.540 

mm/year at potential -0.750 volts for MEA. From the results, it is obvious that the ChCl/PAA (1:2) 

reported in this work was not better that the other published data, however it has lower corrosion 

rate than the previous reported MEA loaded CO2 samples. The literatures139 shows that with 

increasing the concentration of CO2 (acidity) or temperature, this lead to increase current density 

and thus increase the corrosion rate. In 2014 Abbott et al78 published the corrosion behavior for 

four pure DES named as Glyceline, Ethaline, Reline and Oxaline with mild steel , the rate of 

corrosion were appear  0.0004, 0.00198, 0.002503 and 0.1764 mm per year, respectively. 

According to this study the DES can have very low corrosivity so the results encourage working 

more in this area. Table 4.1 summarized the corrosion rates of this work, previous work with 

ChCl/LA and the resent published data for the most common amine type. 

 

 

Table 4.1.Corrosion rate of DES systems and amine. 

Molar Ratio T/K Corrosion Rate 
/(mm/yr) 

Amine 
type 

T/K Corrosion Rate 
/(mm/yr) 

Ref 

ChCl/PAA(1:2) 298 0.044 *MEA 353.15 3.41 *95 

ChCl/PAA(1:3) 318 0.267 *DEA 2.45 

ChCl/PAA(1:4) 329 0.916 *MDEA 1.25 

**ChCl/LA(1:2) 298 0.027 **MEA 298 0.540 131 
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Figure 4.5. Corrosion resistance performance experiments for (a) ChCl:PAA(1:2 ), (b) 

ChCl:PAA (1:3) and (c) ChCl:PAA (1:4)  DES system with and without CO2 . 
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Table 4.2.Corrosion Test Experiments for DES mixtures of ChCl/PAA at different ratios. 

DES Ratio (1:2) (1:3) (1:4) 

CO2 solubility 
T/ K= 298.15, 
303.15, 318.15 

T/ K= 303.15, 
318.15, 328.15 

T/ K = 328.15, 
329.15, 339.15 

Corrosive tests At 298.15 At 318.15 At 339.15 

Without CO2 

Potential (V) -0.633 -0.511 -0.521 

Corrosion rate (mm/yr) 0.0224 0.118 0.278 

With CO2 

Potential (V) -0.490 -0.493 -0.488 

Corrosion rate (mm/yr) 0.044 0.267 0.916 

 

 

4.4 Conductivity of DESs 

The goal behind carrying the conductivity experiment is to evaluate ion mobility number 

of charged entity where increasing the Van der Waals attraction force cause a reduction in the ion 

mobility. Ion mobility will increase in case there is weak interaction and this is close to the 

viscosity temperature dependence behavior. Therefore, this means that increasing the conductivity 

lead to increasing the ion mobility, where the conductivity increases with temperature. The same 

outcomes were found in this work for the conductivity experiments when temperature range from 

298.15 K to 340.1 K applied for the three DESs (1:2, 1:3 and 1:4) as it shown in figure 4.6. The 

results of conductivity for the molar ratio of 1:2, 1:3 and 1:4 at temperatures of 333.15, 340.15, 

and 330.15 K were 2470, 3560, and 2310 μ S/cm, respectively. The other values in the mentioned 

range for the three molar ratios they had the same trend line, and the acid concentration does not 

have much change in the conductivity results. In compared with Cholinium-amino acid based ionic 

liquids at different temperatures the DESs in this work have very high conductivity, moreover in 
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other publication the conductivity of Oxalic acid-Trimethylglicine DES was 5.1 mS / cm, at 

temperature 303.15 K140,141,90. 

 

 

 

Figure 4.6. Conductivity plot for ChCl/PAA DES (1:2, 1:3 and 1:4) at temperature range of 

298.15 K to 340.15 K. 

 

 

4.5 Density 

This measurement was preformed, since density consider as one of the most important 

thermos-physical properties where this data can be used for simulation and modeling purpose. 

Densities of prepared DESs 1:2, 1:3 and 1:4 molar ratios measured at 293.15, 308.15 and 323.15 

K respectively up to temperature of 363.15 K. Densities of ChCl/PAA based DESs (1:2,1:3 and 
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1:4) appear to be 1.144, 1.138 and 1.127 g cm-3 at temperature 298.15 K, 303.15 K and 323.15 

K respectively. At temperature 298.15 K Abbott et al78 and Leron et al77 studied the density of 

ChCl/urea DES system at ratio of 1:2 and it’s appear to be 1.1979 and 1.20 g cm-3 where it is 

close to density of  ChCL/PAA DES system at the same ratio. Density of malonic acid reported 

by Zhang et al74 at temperature 303.15 was 1.0063 g cm-3.  

All the densities at mentioned temperatures for ChCl/PAA DES system is shown in figure 

4.7 , the densities sharply and linearly decrease by increasing the temperature where the same 

trend was absorbed for ChCl/Lev based DES16. Figure 4.7 shows an interesting comparison 

between DESs, where the density for the molar ratio of 1:3 and 1:2 are very close to each other 

while the other ratio 1:4 noticed to be away from the others, which means that with 1:3 and 1:2 

molar ratios the interaction between the molecules are similar to each other than 1:4 molar ratio. 

Moreover, figure 4.7 shows results for other published stuiedid that they investigated the density 

over rang of temperatures where it shows that densities of this work are realistic.  
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Figure 4.7. Density of ChCl:PAA system with ratio of 1:2,1:3,1:4 and ChCl/Glycerol and 

Ethylene glycol. 

 

 

4.6 CO2 Solubility of DES 

The solubility of CO2/N2 was investigated using magnetic suspension based MSA, details 

producer of using this device mentioned in the appendix. The solubility was measured at given 

temperature and pressure, then the amount of absorbed CO2 and N2 was calculated. The experiment 

was carried using accurate data from MS device where it was able to measure high temperature 

and pressure with accuracy of +/-0.5 K and 0.1% respectively. The values of in-situ density for 

CO2 also was measured, since it is required for calculating the absorbed amount of CO2. The 

temperature and pressure selection of the solubility experiments are selected to suit more on the 

post combustion CO2 capture conditions. However, the selected isotherms for the solubility 

experiments are lower than the classical post-combustion CO2 capture conditions, simply by 
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considering heat integration and optimization is implemented in order to recover the waste heat in 

the process, thus leaving the CO2 stream at lower temperatures. 

ChCl/PAA based DESs with three different molar ratios (1:2, 1:3 and 1:4) were used to 

test the solubility of CO2 and N2. The solubility of these two gases (CO2/N2) with prepared DESs 

were measured up to pressure of 30 bars at different intervals and at three different isotherms. At 

the first observation of figures 4.8 and 4.9 it’s notice that by increasing the gas pressure the 

solubility of CO2 and N2 gas increase, while figure 4.10 shows that the solubility decrease with 

increasing the temperature of DESs. 

Regards to the first molar ratio (1:2) of ChCl/PAA DES, it’s found that at 30 bars it 

absorbed 2.12, 2.10 and 1.99 mmol/g of CO2, and 3.50, 3.30 and 3.1 mmol /g of N2 at temperature 

298.15, 308.15 and 318.15 K, respectively. While the DES with molar ratio of 1:3 absorbed 3.35, 

3.22 and 3.05 mmol/g of CO2 where it absorbs 3.20, 3.17 and 3.07 mmol/g of N2 at temperature 

308.15, 318.15, and 328.15 K respectively. ChCl/PAA with 1:4 molar ratio absorbed 2.50, 1.76 

and 1.75 mmol/ g of CO2 while for N2 gas its absorbed 3.11, 1.84 and 1.80 mmol/g at temperature 

323.15, 329.15 and 339.15 K respectively. It is obvious from the results that this DESs absorbed 

higher N2 gas than the CO2 where it gives an unusual but at the same time interesting outcome 

where it is useful for gas selectivity, since the solubility of CO2 in ILs is higher than N2 or other 

gases 142. 

The only comparison that can be done is between ChCl/PAA 1:2 and ChCh/PAA 1:3, 

where it found that at temperature 308.15 and 318 .15 K the adsorption capacity of CO2 and N2 is 

higher at molar ratio of 1:3 than 1:2. Furthermore, it’s noticed that for ChCl/PAA 1:3 and 1:4 at 

temperature 328.15 and 329.15 K respectively (only one degree kelvin is difference) there is sharp 



72 

difference in the solubility of CO2 and N2. From the results, it can conclude that the intake 

efficiency of CO2 with this system as follow: 

• ChCl/PAA at molar ratio of 1:3>molar ratio of 1:2. 

• At temperature 325.15 K molar ratio of 1:3 > 1:4 molar ratio at 329.15 K. 

These results can be compared with other published DES system where some of them 

mentioned in section 2 (table 2.7). In section 2 three different DES with molar ratios of 1:2 are 

shown in table 2.7.These systems are: ChCl/urea132 , ChCl/ethylene glycol133 and ChCl/ LA16. 

ChCl/urea system absorbed 3.559 mmol/g of CO2 at 303.15 K and 60 bar, while ChCl/ethylene 

glycol absorbed 3.1265 mmol/g of CO2 at 303.15 K and 58.63 bars , however the last system 

(ChCl/LA) at 308.15 K and 30 bar absorbed 2.100 mmol/g of CO2. These results can be compared 

with 1:2 molar ratio at temperature of 308.15 K and pressure of 30 bars where the DES 1:2 that 

reported in this work absorbed 2.10 mmol/g of CO2 where it is similar to ChCl/LV system. 

Moreover, the reported systems in this work (1:2, 1:3 and 1:4) at 30 bars and different isotherms 

absorbed more CO2 than 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4]143 based 

ionic liquid where [EMIM][BF4] absorbed 1.5999 mmol/g of CO2 at 298.15 K and 41.55 bars. 

Furthermore, the DES (1:2) at 298.15 K and 30 bars absorbed more CO2 than 1-methoxyethyl-3-

methylimidazolium hexafluoroborate ([EOMmim][PF6])144 at the same tempurature and 27.88 

bars where  [EOMmim][PF6] absorbed 1.7575 mol/ kg of CO2. The same observation was notice 

with 1:3 molar ratio of reported DES where it absorbed 2.50 mmol/g of CO2 at 323.15 K and 30 

bars, while [EOMmim][PF6] absorbed 1.1243 mol/kg of CO2 at the same temperature and  

pressure of 28.71 bars.  

In compered this system with amine based it’s found that DES (1:4) at 323.5 K and 4.94 

bar absorbed 0.306 mmol/g of CO2 while fatty amine polyoxyethylene ethers (FAPEs)145 at the 
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same conditions (T=323.15 K and 4.94 bars) absorbed 0.174 mol/kg of CO2. Furthermore, at 

pressure 4.94 bars and temperature of 308.15 K, DES absorbed 0.536 mmol/g of CO2 whereas the 

FAPEs at higher pressure and temperature (T=313 K and P=5.069 bars) absorbed 0.224 mol/kg. 

DES (1:3) system at maximum pressure of 30 bars and 308.15 K absorbed 3.35 mmol/g of CO2 , 

while solid amine sorbent, consisting of poly (ethylenimine) (PEI) 146absorbed 2.8 mol/kg of CO2 

at 353.15 K and partial pressures more than 10kPa (0.1 bar).Moreover, in compared with the most 

known amine in industry MEA, DES (1:3) at 30 bars and 308 K absorbed 3.35 mmol/g CO2 while 

MEA at 24 bar and 313 K absorbed 2.66 mmol/g CO2
147

. The above-mentioned comparison are 

summarized in table 4.3 

It is important to mention here that sorption hysteresis was also checked by conducting 

absorption / desorption cycle during conducting gas solubility experiments. Neither hysteresis nor 

chemisorption was observed during the sorption measurements and this is shown in figures 4.8 

and 4.9 where we start with 0 pressure and 0 absorption and we got back to the same point of 0 

pressure and 0 absorption., also the weight measurements provided the same path during both 

absorption and desorption cycles. in this work, we are going to high pressure to be able to compete 

with current -state -of the art amine solvents. High pressure also means energy and this is 

something to benchmark, this is something to consider economic visibility point of view. 

Moreover, every experiment was measured at mentioned temperatures for three times and there 

was no notable degradation or absorption activity loss observed of DESs.  

On the other hand, the kinetics of the absorption on DES system (chcl/PAA) has been 

investigated. Figure 4.11 shows the amount of absorbed CO2 in DES system with time at both low 

and high pressures. At 1 bar pressures average of 7 minutes were required reaching the equilibrium 
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for a fully saturated DES solution. Whereas at 30 bars, 8 minutes passed to reach the equilibrium 

conditions. 

 

Figure 4.8. CO2 solubility of ChCl/PAA DESs (a) 1:2 (b) 1:3 and (c) 1:4 molar ratio. 
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Figure 4.9. N2 solubility of ChCl/PAA DESs (a) 1:2 (b) 1:3 (c) 1:4 molar ratio. 
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Figure 4.10. Colum chart represent the absorption for the 3-different systems DES-2 (1:2), DES-

3 (1:3), DES-4 (1:4). 

 

 

Below table (Table 4.3) summarized all the comparison that mentioned in above for DES, IL and 

amine systems  

 

 

Table 4.3.Solubility of CO2 in different systems. 

System Solvents Molar 
ratio 

Absorbent Solubility 
(mmol /g) 

T/P (k/b) Ref. 

DES ChCl/PAA 1:2 CO2 2.12 298.15/30 - 
ChCl/PAA 1:3 3.35 308.15/30 - 
ChCl/PAA 1:4 2.50 323.15/30 - 
ChCl/urea 1:2 3.559 303.15/60 132 

ChCl/ethylene 
glycol 

1:2 3.1265 303.15/58.63 133 

ChCl/ LA 1:2 2.100 298.15/30 131 
IL [EMIM][BF4] - 1.5999 298.15/41.55 143 

[EOMmim][PF6] - 1.7575 298.15/27.88 144 
amine PEI - 2.8 353.15/0.1 146 

MEA - 2.66 313.15/24 147 
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Figure 4.11. Isobaric CO2 solubility in ChCl/PAA kinetics: (a) 1 bar and (b) 30 bar. 

 

 

4.7 Contact Angle 

In order to be able to characterize the degree of wettability or adhesion of liquid on solid 

surface, measurement of contact angle become an important tool. When the liquid sample become 

in contact with the solid surface this gives an angel and the wetting ability of the sample appear 

due to that. The interaction of intermolecular among the phases determine the contact angle, where 

the high wettability indicate that the contact angle is small and when the wettability is high that 

mean the contact angle is large. Numerous of studies148,149 ,150 have been done on the contact angle 

of ILs, in order to investigate the wetting ability of ILs on different solid materials. ILs have low 

contact angle when it became in contact polar surface due to hydrogen bonding acceptability, 

therefore non-polar surface will lead to higher contact angle.  

In this work, only ChCl/PAA with 1:2 molar ratio was measured, since measuring the other 

two ratios is not possible, because they are not at liquid state during the measurements. The 

ChCl/PAA 1:2 was studied on brass, carbon steel, stainless steel and on copper surfaces at 

temperature 293.15 K and the results is shown in figure 4.12. The results showed that the contact 
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angle of DES (1:2) at different solid surface is lower than 900 (36<θ<56), which means high 

wettability and the surface consider as hydrophilic, and the liquid can separate on large area of the 

surface. In comparing these results with ionic liquid that mentioned in section 2.17 it seems that 

they have nearly similar results where the contact angles of the ionic liquids were also lower than 

900 (9<θ<43), however DES has higher contact angles then the ionic liquids. Furthermore, in the 

same section the contact angles of membranes with different concentration of amine based 

mentioned, where in this study Lv et al. state that the contact angles of all the membranes were 

above 90° (90 <θ<126.1), therefore each one of studied membranes have hydrophobic surface. 

Consequently, contact angles of DES that reported in this work fall in between where it can be 

considered as moderate. Table 4.3 summarized the contact angles for the mentioned systems (DES, 

IL and membrane).   

 

 

Table 4.4.Contact angles for DES, membrane and IL systems. 

System Contact angle Contact angles range Ref 

DES < 90o 36 < θ < 56  

IL < 90o 9 < θ < 43 92
 

Membrane > 90o 90 < θ < 126.1 91,94
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Figure 4.12. Contact Angles of ChCl/PAA (1:2) at different surfaces 

.
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5 . CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

New and different technologies are needed in order to able to face the problems related to 

the environment that cause due to processes design, and it should be environmentally friendly 

method. For the last 50 years, the main concern that motivated the researchers to develop process 

with zero emission was the globe warming. Therefore, decreasing the amount of CO2 that emitted 

to the atmosphere turn into a hot topic for the scientist, because the main reason for greenhouse 

phenomenon is CO2.Capturing the CO2 from the flue gas in post-combustion method that used by 

industry or removing this gas (CO2) from the natural gas become a significant problem, because 

CO2 has large volume and also has low concentration. For the capturing purpose, amine- base 

absorbent such as DEA, MEA and MDEA are used. However, beside their good advantages they 

show same drawbacks such as operation cost, degradation and solvent regeneration. Thus, several 

processes have been suggested like membrane processes, solid adsorption and liquid absorption. 

Even though these processes were succeeded in industrial processes but the main problems with 

them are corrosion and energy consumption. Consequently, to solve mentioned problem a new 

family of IL has been proposed as promising green technology named DES.  

The main idea behind this work was to studied characterization of ChCl/PAA based DESs 

system from the macroscopic viewpoints and check its capability to capture CO2.This study 

intensively focused on finding the physical properties of prepared DESs, as well as the solubility 

of CO2 at different range of pressure where the main point of this experimental study was the 

temperature conditions.  
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The promising features of prepared DESs have been noticed for gas absorption capacity 

between two ratios of DES and as well as gas selectivity between CO2 and N2. The amount of CO2 

that absorbed by ChCl/PAA 1:2 and 1:3 DESs at temperature 308.15 K and 30 bar pressure was 

2.1 mmol/g and 3.35 mmol/g, at the same conditions these systems absorbed 3.30mmol/g and 3.20 

mmol/g N2 gas respectively. Unfortunately, because of experimental limitation, so with DES 1:4 

no comprising can be done for gas (CO2 or N2) solubility at the same temperature. However, the 

reported systems of DES showed higher CO2 absorption then [EOMmim][PF6] and 

[EOMmim][PF6] ionic liquid based. In comparing with amine based the DES (1:4) at 323.5 K and 

4.94 bars absorbed 0.306 mmol/g of CO2, while fatty amine polyoxyethylene ethers (FAPEs) at 

the same conditions (T=323.15 K and 4.94 bars) absorbed 0.174 mol/kg of CO2. Moreover, in 

compared with the most known amine in industry MEA, DES (1:3) at 30 bars and 308 K absorbed 

3.35 mmol/g CO2 while MEA at 24 bars and 313 K absorbed 2.66 mmol/g CO2
147 

Furthermore, to check the stability of Chcl/PAA DESs system the absorption experiments 

repeated 4 times for each ratio and the same results were obtained in each time, in other words the 

sample can be used 4 times and it will give the same adsorption. When a gas dissolves in system 

like ionic liquid, conformational rearrangements of the ions takes place due this change polar as 

well as non-polar cavity formed. Thus, polar cavities favor dissolution of CO2, whereas nonpolar 

cavities accommodate both CO2 and nonpolar gases. From this perspective, it is highly possible 

that ChCl/PAA system favors more to accommodate N2 molecules. 

Moreover, the corosivity study shows that with CO2 saturated DES the corrosion rate of 

ChCl/PAA 1:2, 1:3 and 1:4 is 0.044, 0.267, and 0.916 mm/yr respectively, while for CO2 saturated 

MEA system the corrosion rate was 0.54 mm/yr.  
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The process of CO2 absorption is characterized by a very minor volume expansion, 

confirming the ability of the fluid to rearrange its structuring without weakening hydrogen bond 

acceptor – hydrogen bond donor intermolecular interactions. The CO2 capturing mechanism, 

which was studied in this work, can be characterized by a two steps process in which the 

development of water, CO2 and nitrogen layers is the main step. It is quite possible that adsorbed 

water layers in the inner regions of the solvent – gas interface is could slow the CO2 diffusion 

toward bulk liquid regions in the solvent, and should be considered in the design of CO2 capturing 

operations using the studied DES. 

5.2 Future Work 

In a journey to find new sorts of green solvents, scientists come with ILs and DESs. ILs 

was the first invention and because of their low melting point also low vapour pressure under 

ambient conditions they become very popular. Nevertheless, the idea that these solvents are green 

is not true because several of ILs are toxic to the human and environmental. Therefore the next 

class of ILs are DESs ; DES and IL solvents share many solvation properties60. Moreover, DESs 

have others advantages such as; non-toxic, biodegradable, does not react with water and low 

flammability. Consequently, with all this benefits DESs can be considers as environmental-

friendly solvents, however they have some limitation where most of DESs are solid at room 

temperature. 

In order to solve the synthetic problem and to increase the candidates for ILs and DES and 

extend their applications, scientists find natural products such as organic acids151,amino acids152, 

153,sugars ,choline151 and urea. In fact the natural products are plentiful and ideal source of DES 

and IL because of their massive chemical diversity, biodegradable properties, pharmaceutically 

acceptable toxicity profile and sustainability45.Therefor the natural deep eutectic solvent (NADES) 
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proposed as alternative, where it appear as a new generation of IL. Basically, the new solvent is a 

mixture of inexpensive and easily available components that is non-toxic ammonium salts and 

naturally-derived uncharged HBD.NADESs have many benefits that respect the environmental 

such as easily available components, inexpensive, easy to prepare, sustainability and low toxicity 

profile. Moreover, NADESs have perfect physicochemical properties including negligible 

volatility, even at temperature below 273.15 K they have liquid state, modifiable viscosity, a wide 

polar range and a high degree of solubilisation strength for different compounds. These solvents 

have several possible structures and for different object they can redesign physicochemical 

properties, thus they can consider as designer solvents154. Yuntao Dai et al45 characterized and 

check the solubility for 100 different combination of NADESs some of this combination are shown 

in table 5.1.  

Moreover, the utilization of DES towards the acid gas removal for gas streams that includes 

sulphur compounds (e.g. H2S or mercaptans) shall also be studied since the hydrogen bonding 

development will be superior with Sulphur containing gas streams and hydrogen bond acceptors 

in DES or NADES solvents. On the other hand, the utilization of DES systems might allow the 

process facilities to adopt these low volatile physical solvents with no or minimum process 

retrofitting requirements for already existing acid gas removal systems consist of absorber and 

regeneration columns. For this purpose, a thorough study on process system analysis and process 

simulations needs to be carried out with process simulator software (e.g. ASPEN/HYSYS) in order 

to be able to benchmark the DESs against the current state of the art physical (or chemical) 

solvents. 
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Table 5.1. Different combinations of DESs from natural products45. 

Components Molar ratio 

Component 1 Component 2  

ChCl Lactic acid 1:1 

Malonic acid 1:1 

Maleic acid 1:1, 2:1 

Citric acid 1:1, 2:1 

Aconitic acid 1:1 

Raffinose 11:2 

Betaine Sucrose 2:1 

d-(+)-Trehalose 4:1 

dl-Malic acid 1:1 

Citric acid 1:1 

Citric acid Raffinose 3:1 

d-Sorbitol 1:1 

Ribitol 1:1 
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7 . APPENDIX 
 

Rubotherm® magnetic suspension 

For high pressure (up to 200 bar) CO2/N2 sorption measurements, a Rubotherm® magnetic 

suspension sorption apparatus (figure 7.1 and 7.2) based on magnetic levitation was employed. 

The magnetic suspension balances make it possible to weigh the samples of interest in almost all 

environments including compressed gas at high pressures and high temperatures with a balance 

located at ambient conditions. The sample is located in the measuring cell and can be coupled 

specifically to the balance without a physical link. An electromagnet, which is attached to the 

bottom of the balance, lifts a so-called suspension permanent magnet assembly (PMA) that 

consists of a permanent magnet, sensor core and a measuring load basket (or cage).  The 

electromagnet assembly (EMA), which is attached to the bottom of the weighing balance via hook 

connections, maintains a free suspension state of the PMA via an electronic control unit. This 

arrangement allows different vertical positions for the PMA based on the control action commands 

to the EMA. The first position is called the zero point (ZP) in which the suspension part suspends 

alone contactless and thus represents the unburdened balance. The second EMA point is called the 

measuring point (MP) in which the suspension part reaches to a higher vertical position and 

couples the sample to the balance and transmits the weight of the sample to the balance. This 

principle is illustrated in the figure 7.3.  
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  For buoyancy calculations used in sorption measurements, in-situ density of the 

pressurized gas in the high-pressure cell is measured. Archimedes’ principle is used for density 

measurements by utilizing a calibrated silicon sinker placed just above the sample basket in the 

pressure cell. The silicon sinker used in this apparatus had a volume of 4.4474 cm3 measured at 20 

0C with a 0.0015 cm3 uncertainty and a density of 4508 kg/m3 measured at 20 0C with a 4 kg/m3 

uncertainty. 

 Buoyancy force on a submerged object is famously explained by Archimedes’ principle: 

“when a solid body (sinker) is immersed in a fluid, it displaces a volume of fluid the weight of 

which is equal to the buoyancy force exerted by the fluid on the sinker.” Magnetic sorption 

apparatus is equipped with a sinker body, which enables the in-situ density measurements of the 

adsorbate gas based on Archimedes’ hydrostatic buoyancy method via contactless magnetic 

levitation principles. In classical buoyancy based densimeters, a sphere or cyclinder shaped sinker 

hangs from a commercial digital balance by a thin wire. The pressure and temperature of the fluid 

remains constant in the pressure cell using a temperature control mechanism. The sinker is 

submerged in the fluid, and the weight of the sinker is measured. According to the same 

Archimedes’ principle, the density of the fluid can be calculated using equation 7.1: 

ρ = mv − ma

Vs(T,P)
     (7.1)     
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In Equation  7.1, mv
 is the ‘true’ mass of the sinker measured in vacuum, ma

 is the apparent mass 

of the sinker in the fluid that is charged in the pressure cell and Vs
 is the calibrated volume of the 

sinker, which is a function of temperature and pressure. When compared with the classical 

buoyancy densimeters, the novelty of the magnetic suspension coupling is that it uses non-

physical-contact force transmission between the sinker in the pressurized cell and the weighing 

balance at atmospheric pressure, thus allowing a cell design that covers wide temperature and 

pressure ranges 155. 

In a typical sorption measurement, the weight of the adsorbent is measured initially under 

vacuum and that is followed by weight measurements of the adsorbent at each pressurized 

adsorbate gas condition. Meanwhile a titanium sinker with a calibrated volume is weighed 

continuously in a sequential order with the sorption measurements in order to obtain the density 

of the measuring fluid surrounding the sample as it is required for the buoyancy correction of the 

measured sorption values. The simultaneous measurement of sorption and density is especially 

needed if the buoyancy effects caused by the density of the adsorbate gas are large, i.e., high 

pressure or low temperature conditions. From thermodynamics point of view, density 

measurement in a binary gas mixture also offers the possibility of determining the concentration 

for the gas mixture without further analysis since the density is a function of the mixture 

composition. 
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Typical measurements start with placing an approximately 0.25 g of a sorbent sample 

within the sample holder after activating by degassing at 150 oC. Once the sample is in place, the 

system is taken under vacuum for 24 h at 65 oC. Carbon dioxide is then pressurized via a Teldyne 

Isco 260D fully automated gas booster and charged into the high-pressure cell. For each pressure 

point it takes about 45 minutes to reach equilibrium and once temperature and pressure equilibrium 

is reached, four different sets of measurements are taken for a period of 10 min each. During the 

10 min measurement period pressure, temperature and weighing measurements are collected at 

every 30 sec along with the sinker weight measurements for in-situ density values of the absorbate 

gas. Some pressure points might require repetition, depending on the experimental stability. 

Consequently, the total duration of each experimental sorption measurement takes about 40 to 60 

min. At the end of each pressure point, the system goes to the next automatically.  

In this work, pressures up to 30 bar are used for maximum pressure and at the end of each 

isotherm, a hysteresis check is conducted by collecting desorption data as the system is 

depressurized. The temperature of the high-pressure cell is controlled by an automated external 

constant temperature circulator (Polyscience model 9512) via a platinum resistance thermometer 

(Jumo DMM 5017 Pt100) attached to the high-pressure cell body. The cell temperature is 

maintained within ± 0.6 °C accuracy. The automatic gas dosing system is used for controlling the 

pressure inside the high-pressure cell. The pressure control unit is a combination of shut valves, a 

special PID control instrument and precise pressure transducer, Paroscientific® Digiquartz 745-3 
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K with an accuracy of with an accuracy of 0.01 %. The schematic of the automatic gas dosing 

system is given in figure 7.4. 

Adsorption data is analyzed and the amount of adsorbed gas on the sample is calculated by 

using equation 7.2: 

8 + 8:;<=,?@ABCD + 8:;<=,?EFG = H@I? + H?@ABCD + H?EFG  (7.2) 

Where; 

W = Signal read by the instrument 

8:;<=,?@ABCD  = Vsample*dgas = Buoyancy correction due to the sample 

Vsample = Volume of the sample 

Vsample = Vtotal –Vpore 

dgas = Density of the gas 

8:;<=,?EFG  = Vsinker * dgas = Buoyancy correction due to the sinker 

Vsinker = Volume of the sinker 

H@I? = Surface excess mass of the CO2 

H?@ABCD = Mass of the sample 

H?EFG = Mass of the sinker 
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dgas is measured in situ and the mass of empty sinker is measured at several pressures of helium to 

determine the buoyancy caused by the sinker (Wbuoy,sink). Volume of the sinker (Vsinker) is calculated 

from the slope of weight vs. density plot obtained from this measurement. A blank measurement 

at vacuum is performed to determine the mass of the sinker (msink). The buoyancy correction caused 

by the sample (Wbuoy,sample) is performed by calculating the volume of the sample (Vsample), which 

is obtained by subtracting the pore volume of the sample measured by BET analysis (Vpore)  from 

the total volume of the sample (Vtotal) calculated from the density of the material determined by 

tapping method. A typical screenshot from the sorption apparatus for vacuum measurement and 

adsorption test under pressure measurement is given in figure 7.5. 

The single-sinker densitometer also operates based upon Archimedes’ principle for the 

buoyancy force acting on a cylindrical sinker in the presence of a fluid. The density is calculated 

by measuring mv, the ‘true mass’ of the sinker in vacuum, ma, the ‘apparent mass’ of the sinker in 

the presence of fluid and vS, the volume of the sinker calculated using equation 7.3: 

ρ =
m

v
− m

a

v
S

          (7.3) 

The sinker volume appearing in above equation undergoes a change because of distortion 

of the sinker material at a temperature and pressure (T, P) other than the reference temperature and 

pressure (To, Po) at which the reference sinker volume, vSo, is measured (equation 7.4).  
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  (7.4) 

where, ΔL/Lo is the thermal expansion, E is the Young’s modulus and υ is the Poisson’s ratio of 

the sinker material at a temperature, T. The thermal expansion was calculated using equation 7.5:  

∆L

L
o

T( ) = α T − T
o( )      (7.5) 

where, α is the thermal coefficient of expansion of the sinker material. For titanium, α is calculated 

to be 8.8x10-6 K-1 in the range (-80 to 260) oC. The reference sinker volume calibration, Rubotherm 

made the measurements at 20 oC and 990.4 mbar as 4.4474 cm3 with the uncertainty of 0.0015 cm3 

in sinker volume 156.  
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Figure 7.1. Rubotherm® Magnetic Suspension Balance (MSB). Photos of the magnetic 

suspension assembly and the sample container basket156. 

 

Figure 7.2. MSB overview. Photo of the measuring cell and the magnetic coupling housing156 
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Figure 7.3. Schematics of magnetic suspension sorption apparatus operating principle. (a) sample 

loaded to measuring basket in high pressure cell; (b) Measurement point 1 (MP1) - magnetic 

coupling is on and mass of the sample is measured; (c) Measurement point 2 (M(c) Measurement 

point 2 (MP2) – in-situ density of the adsorbed gas is measured 156. 

 

 

 



113 

 

Figure 7.4. Schematics of the gas dosing manifold system under (a) CO2 measurement; (b) 

reference gas (He) measurement; (c) vacuum measurement156. 
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Figure 7.5 .Magnetic suspension sorption apparatus screenshots at, (a) vacuum and, (b) under 

pressure measurement 156. 

 


