
ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

Copyright to IJIRCCE www.ijircce.com 845

Towards a Distributed Quality of Service

Handler for Multimedia Presentations
Loay S. Ismail

Assistant Professor, Dept. of Computer Science and Engineering, College of Engineering, Qatar University, Doha,

Qatar

ABSTRACT:Distributed multimedia presentation, involving different media objects on different servers, must strictly

follow its defined temporal scenario. Out of synchronization is a fundamental problem in case of distributed

multimedia. In this paper, we introduce a distributed QoS handler, whose aim is to distribute the QoS adaptation tasks

among all the servers holding the media object. In this case, the client is considerably freed from the QoS-related tasks

and it focuses only on playing the received, adapted media objects and notifying the end of their presentation to the

concerned servers. This will lead to a better load balance for playing a distributed multimedia application, where the

tasks of applying QoS rules and playing the objects are better distributed among the playing client and the media object

servers.

Keywords: Quality of service, multimedia presentation, distributed system, synchronization.

I. INTRODUCTION

A multimedia presentation is the process of playing a set of media objects, such as video, audio, still images, and

text, according to a temporal scenario, previously specified by a multimedia application author. These different media

objects may reside on different sites on the network. In this case, the presentation is classified to be a distributed

multimedia presentation. The distribution of the media objects over the network imposes the risk of entering in an out-

of-synchronization state due to the random values of end-to-end delays and networks congestion in the paths between

the client that runs the presentation and the different servers that hold the media objects.

Thus, a mechanism of Quality-of-Service (QoS) must be put in place at the application level, to guarantee a

minimum level of presentation quality. In most of the time, a multimedia presentation can restore its synchronization

through some acceptable degradation in the presentation quality of media objects [1]. The degree of quality degradation

must be agreed upon between the client and the server. The way of degrading the presentation quality of media objects

differs from one media type to another. For example, in the case of video objects, we can skip frames, reduce number

of colors, or reduce size of frames, but in case of audio objects, we can use broadcast or even telephone quality instead

of hi-fi quality for audio objects.

Most of the current work on QoS support for multimedia traffic acknowledges the need to support application-level

QoS. In response, many network QoS control schemes with resource reservation planning have been designed [1].

Generally, these QoS control schemes provide guaranteed QoS to users by reserving resources based on the worst-case

analysis, and this reservation is sustained for the entire transmission period. Although QoS is guaranteed, it leads to low

resource utilization. This poses a challenge to design suitable QoS control schemes, which should help in handling

multimedia traffic with its desired QoS characteristics, and with optimum resource utilization.

In this study, we propose a mechanism for an application level distributed QoS handler that allows servers to act in

an autonomous way in taking QoS decisions and performing QoS actions, while sending the media objects data to the

client. In section II, we give an overview of the proposed system. In section III, we present how to generate plan of

actions for different servers starting from a temporal scenario. Then in section IV, we present how the plans of actions

are concurrently executed. Then finally, we conclude the paper in section V.

II. SYSTEM OVERVIEW

In this section, we will present an overview of the suggested QoS handler.The temporal scenario of the multimedia

presentation is written using the Synchronized Multimedia Integration Language (SMIL) [2], which is a declarative

language that declares the media objects taking part in the presentation and how they are related in time and space.

When a SMIL document is chosen to be played, the document will be passed to the scenario parser to parse the

document and convert the declared scenario from the textual format to an intermediate representation that can be

analyzed and handled by the scheduler. This intermediate representation of the temporal scenario can be in one of the

following forms: hierarchical directed acyclic graphs [3], timelines [4], temporal Petri-nets [5], or any other form of

representation that can hold data about media objects, and the temporal and spatial relationships between them.

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

Copyright to IJIRCCE www.ijircce.com 846

Now, the intermediate representation of the scenario is ready to be analyzed by the scheduler at the client side. The

result of the analysis is composed of the list of the media objects taking part in the representation and their exact

locations on the network, i.e. addresses of servers holding the media objects. Also, the scheduler will extract the plan-

of-actions (PoA) for the client as well as for each of the servers in the list. A plan-of-actions (PoA) is a sequence of

scheduled actions needed to be performed by the server on every media object residing on it, as an initial phase of

playing the object. The scheduling of these actions is based on the temporal scenario to be presented. Scheduled actions

can be one of the following:

1. applying a QoS rule on media data,

2. adapting media data according to a given QoS rule, or

3. sending the adapted media data to an appropriate media player running on the client.

Every PoA is to be sent to its corresponding server to be executed locally at each server. The PoAs are generated in a

way that allows the different PoAs to communicate and exchange status information about the progress of their servers.

This communication facility allows for the synchronization between the different servers to comply with the original

scenario. The PoA is responsible of applying QoS rules, if needed, before sending the media data to the client.

The servers themselves may be using different platforms. In other words, the servers may be running on different

types of hardware and system software. So, the PoA must be platform independent to allow it to run on any hardware-

software configuration.

In the next section, we will present the mechanism of generating plans-of-actions (PoAs) used by the distributed

QoS handling system.

III. GENERATION OF PLANS OF ACTIONS

The PoAs generated by the scheduler must be in a standard, exchangeable, human readable format. So, we chose the

XML [6] syntax to describe the PoAs. The XML format of the PoA can be used as a generic pivot format for

converting this multimedia document to any other target format, which can be either a programming language or any

other non-executable format.

Fig. 1 System Overview at Client Side

Temporal

Scenario (SMIL)
Parser

Scheduler

List of Servers Intermediate

Form

Plan of Actions

for Server #1

(XML)

Plan of Actions

for Server #2

(XML)

Plan of Actions

for Server #N

(XML)

XML-to-Java Converter XSLT XML Schema

Plan of Actions

for Server #1

(Java)

Plan of Actions

for Server #2

(Java)

Plan of Actions

for Server #N

(Java)

Java Compiler

Plan of Actions

for Server #1

(Byte code)

Plan of Actions

for Server #2

(Byte code)

Plan of Actions

for Server #N

(Byte code)

Upload to Servers 1 to N

Temporal

Scenario (SMIL)
Parser

Scheduler

List of Servers Intermediate

Form

Plan of Actions

for Client

(XML)

Plan of Actions

for Server #1

(XML)

Plan of Actions

for Server #N

(XML)

XML-to-Java Converter XSLT XML Schema

Plan of Actions

for Client

(Java)

Plan of Actions

for Server #1

(Java)

Plan of Actions

for Server #N

(Java)

Java Compiler

Plan of Actions

for Client

(Byte code)

Plan of Actions

for Server #1

(Byte code)

Plan of Actions

for Server #N

(Byte code)

…

…

…

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

Copyright to IJIRCCE www.ijircce.com 847

In our system, see Fig. 1, we chose the Java language as the programming language for its portability and

independence of platforms. So, an XML-to-Java converter can be put in place to make the conversion from XML to

Java format using Document Type Definition (DTD) [7],XML Schema[8]or REgularLAnguage for XML Next

Generation (RELAX NG) [9] to represent the structure of the generated Java document, and Extensible

StylesheetLanguage Transformations (XSLT) [10] to represent the layout of the Java document.

A separate Java document will be automatically generated for each PoA, i.e. one Java document for each server

taking part in the multimedia presentation. Then, all of the generated Java documents will be compiled producing a

corresponding byte-code (class) file. Each generated byte-code file will be uploaded to its corresponding server. The

byte-code file is a platform independent, executable code that can be executed on any software/hardware platform,

provided that the platforms, under consideration, have appropriate Java Virtual Machines (JVM) installed on them.

Thus, each server will be able to execute its PoA using the JVM installed on it.

As previously mentioned, the PoAs are generated in a way allowing the different servers to communicate between

each other for synchronization purposes. So, the client-servers communications, needed for synchronization, can be

significantly reduced, leading to a distributed, decentralized method of inter-servers synchronization. However, the

servers and the client are in continuous communication with each other to exchange information about the progress of

playing the document on the client side. Moreover, the client can send time access control messages to the servers, such

as start, stop, pause, and resume, to control the media stream and, consequently, the progress of the presentation.

On each server, the PoA will call a QoS module, which should:

 Probe the network for end-to-end delay and throughput,

 Apply appropriate QoS rules to adapt the media object data according to the current status of the network, the

type of media object and the temporal constraint of the object,

 Finally, send the adapted media object data to the appropriate media player on client side.

When the playing of an object ends, a completion acknowledgement signal will be sent to the server that stores the

media object, and the action plan will respond accordingly.

Consider the simple scenario shown in Fig. 2, written using SMIL temporal operators SEQ and PAR, for sequential

and parallel temporal relations, respectively. The scenario temporally relates four objects A, B, C and D, residing on

three different servers, SERVER_1, SERVER_2 and SERVER_3. Objects A and D reside on SERVER_1, while object B

resides on SERVER_2, and, finally, object C resides on SERVER_3.

Fig. 2 Scenario in SMIL

We use the Directed Acyclic Graph (DAG) as our intermediate form. A directed graph is an ordered pair D = (V, E),

where V is the set of nodes or vertices and E is the set of directed edges. Each edge is represented as e = (s, d, O),

where s is the source node, d is the destination node and O is an attribute of the media object represented by this edge.

The attribute O is an ordered pair O = (t, r), where t represents the properties of the media object and r is the server

address on which the object resides. Let R = {r} be the list of servers holding the media objects composing the

multimedia application.

The PoA of each server is generated as a function of the objects residing at that server and its temporal position with

respect to the other objects among all the servers. The synchronization algorithm, used for generating the PoAs of

servers R is as follows.

 r R, W = { e eE server (e) = r }

 w W

 let x = n nNn = source (w)

 let Y = { e eE destination (e) = x }

 y Y

 wait (end (y))

 start (w)

 wait (end (w))

 notify (end (w))

<SEQ>

<SEQ>

<PAR>

 http://SERVER_1/A

 http://SERVER_2/B

</PAR>

 http://SERVER_3/C

</SEQ>

http://SERVER_1/D

</SEQ>

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

Copyright to IJIRCCE www.ijircce.com 848

Consider Fig. 3 that shows the DAG intermediate form representation for the scenario under consideration (see Fig.

2). The horizontal arrows are the directed edges representing the temporal duration for playing an object, while the

vertical lines are the nodes representing the synchronization instants, such that the outgoing edges will start their

presentations only if the presentations of all of the incoming edges come to an end. For example, objects A and B

should start simultaneously with the beginning of the multimedia application presentation, while object C should start

playing only when both objects A and B come to an end. Also, object D should start once object C comes to an end.

Fig. 3 Intermediate Form of Scenario

IV. EXECUTION OF THE PLANS OF ACTIONS

The pseudo-code, of the generated PoA for the client, is shown in Fig. 4, while the PoAs created for the three servers

are shown in Figs. 5, 6 and 7. Each server will create a thread to handle its generated PoA. Each media object on the

server will be handled by a separate thread, that can serve the delivery of the adapted media to the client. Separate

thread per object is essential, especially in case if more than one object reside on the same server and need to be

presented simultaneously. The synchronization between objects is provided by message passing techniques between

threads. For each PoA, you can notice that the plan is generated as a combination of mainly four methods:

WaitMessage, SendMessage, ApplyQoSRules and SendObject. These methods work as follows.

1) WaitMessage (srvAddr , msgType): This is a blocking method that blocks its caller until it receives a message

whose type is msgType from the server whose address is srvAddr.

2) ApplyQoSRules (mediaObj): This method probes the network between the caller and the client and make a decision

of applying the QoS rules, based on the result of network probing and the type of the media object mediaObj itself.

The application of the QoS rules is performed by the server on which the media object is residing.

3) SendObject (cltAddr, mediaObj): This method sends the mediaObj to the client whose address is cltAddr, while

applying the QoS rules decided by the ApplyQoSRules method.

4) DoAction (cond, srvAddr, actionType): If condition cond is true, the method asks the server whose address is

srvAddr , to do an action of type actionType. As a result of calling this method, a thread is created that receives the

data sent from the server as a result of the requested action and processes this data, by calling the appropriate

media player. Once the action is terminated, a notification will be sent back to the client‟s main thread.

As can be noticed from the PoAs for SERVER_1 and SERVER_2, holding the initial objects to be played, they start

by waiting for a message from the client, holding the media players, to start playing objects A and B.

Notifications of the “end of presentation” of the media objects are handled by the client‟s scheduler. The scheduler

can be implemented as a combination of singleton and observer design patterns. The singleton pattern is used to define

the scheduler object, since we need one instance of scheduler per multimedia presentation at the client side. The

observer pattern can be used in implementing the notification mechanism, where the media object presentation end

instants are defined as events, and the client can subscribe as an observer of these events.

Communication among threads on servers and the client can be achieved by socket-based communication, which

enables each thread as well as the client to deal with networking as if it is a file input/output operation. So, any thread

or client can read/write from/to a socket. These sockets can be used to: (1) carry synchronization messages between the

servers and the client, (2) transfer adapted multimedia objects from servers to the client, and (3) transfer access control

commands, such as start, stop, pause and resume, from client to servers.

The whole system of distributed QoS handler can be implemented using the Service Oriented Architecture (SOA)

[11] where the QoS adaptation tasks will be considered as the services that are provided and executed on the servers,

and, consequently, the client‟s task will be limited to schedule when the media objects need to be adapted, and then

play the received, adapted media object(s).

A

B

B

)

C D

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

Copyright to IJIRCCE www.ijircce.com 849

Fig. 4 PoA for CLIENT

Fig. 5PoA for SERVER_1

Fig. 6PoA for SERVER_2

Fig. 7PoA for SERVER_3

V. CONCLUSION

In this paper, we presented a mechanism for an application level distributed QoS handler that allows servers to act in

an autonomous way in taking QoS decisions and performing QoS actions, while sending the media objects data to the

client. So, the application of the QoS rules for adapting the media objects are distributed among the servers on which

the media objects are residing. In this case, the client is completely freed from the QoS-related tasks and it focuses only

on playing the received media objects and notifying the end of their presentation to the concerned servers. We claim

that this solution results provides a better load balance for playing a distributed multimedia application, where the tasks

of applying QoS rules and playing the objects are better distributed among the playing client and the media object

servers.

// Start of PoA for SERVER_3

Thread_3_1 {
WaitMessage (CLIENT, start_C);

WaitMessage (CLIENT, start_C);

ApplyQoSRules (C);
SendObject(CLIENT, C);

}

// End of PoA for SERVER_3

// Start of PoA for SERVER_2
Thread_2_1 {

WaitMessage (CLIENT, start_B);

ApplyQoSRules (B);
SendObject(CLIENT, B);

}

// End of PoA for SERVER_2

// Start of PoA for SERVER_1

Thread_1_1 {
WaitMessage (CLIENT, start_A);

ApplyQoSRules (A);

SendObject(CLIENT, A);
}

Thread_1_2 {
WaitMessage (SERVER_3, start_D);

ApplyQoSRules (D);

SendObject (CLIENT, D);
}

// End of PoA for SERVER_1

// Start of PoA for CLIENT
MainThread {

end_A = DoAction (true, SERVER_1, start_A);
end_B = DoAction (true, SERVER_2, start_B);

end_C = DoAction (end_Aend_B, SERVER_3,

start_C);
end_D = DoAction (end_C, SERVER_1, start_D);

}

// End of PoA for CLIENT

http://www.ijircce.com/

ISSN (Print) : 2320 – 9798

ISSN (Online): 2320 – 9801

 International Journal of Innovative Research in Computer and Communication Engineering

 Vol. 1, Issue 4, June 2013

Copyright to IJIRCCE www.ijircce.com 850

REFERENCES

[1] A.R. Abo Elenien, L. S. Ismail, and H. S. Bedor (2004), „Quality of service handler for MPEG video in best effort environment‟,

Proceedings of the International Conference on Electrical, Electronics and Computer Engineering (ICEEC‟04), IEEE, Egypt, p.p. 393-
398, Egypt, September 2004.

[2] D.Bulterman (2009), „Basic SMIL Timing‟, SMIL 3.0: Flexible Multimedia for Web, Mobile Devices and Daisy Talking Books, 2nd

Edition, Springer, pp. 125-156.
[3] N. Layaida, C. Roisin and L. Sabry Ismail (2011), „Chapitre 6: Support d'exécution de documents multimédia‟, Systemesmultimédia

communicants, Hermès Science Publications, Paris, .
[4] M. Sadallah, O. Aubert, and Y. Prie (2011), „Hypervideo and Annotations on the Web‟, Proceedings of the 2011 Workshop on

Multimedia on the Web (MMWeb 2011), IEEE, p.p. 10-15, Austria, September 2011.
[5] L. Yulong and L. Naiwen (2012), "A multimedia synchronization MDTSPN model based on Petri nets", Proceedings of the 2012 Eighth

International Conference on Natural Computation (ICNC 2012), IEEE, p.p. 497-501, May 2012.
[6] W3C (2008), “Extensible Markup Language (XML) 1.0 (Fifth Edition)”, Internet: http://www.w3.org/TR/REC-xml/ , November 2008,

[accessed on June 10, 2013].
[7] W3C (2004), “Extensible Markup Language (XML) 1.1”, Internet: http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-doctypedecl

, February 2004, [accessed on June 10, 2013].
[8] W3C (2012), “W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures”, Internet: http://www.w3.org/TR/xmlschema11-1/ ,

April 2012, [accessed on June 10, 2013].
[9] E. Van der Vlist (2011), „What RELAX NG Offers?‟,RELAX NG, Kindle Edition, O‟Reilly, pp. 3-7.
[10] W3C (2007), “Extensible Stylesheet Language (XSL) Version 1.1”, Internet: http://www.w3.org/TR/2007/REC-xslt20-20070123/ ,

January 2007, [accessed on June 10,2013].
[11] M. Bell (2010), „Service-Oriented Discovery and Analysis Road Map Patterns‟,SOA Modeling Patterns for Service Oriented Discovery

and Analysis, 1st Edition, Wiley, pp. 21-68.

http://www.ijircce.com/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-doctypedecl
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/2007/REC-xslt20-20070123/

