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ABSTRACT 

 

ABOUNADA, MOHANAD, F., Masters: June : [2017], Masters of Science in Computing 

Title: Features Ranking Techniques for Single Nucleotide Polymorphism Data  

Supervisor of Thesis: Abbes Amira. 

Identifying biomarkers like single nucleotide polymorphisms (SNPs) is an 

important topic in biomedical applications. Such SNPs can be associated with an 

individual’s metabolism of drugs, which make these SNPs targets for drug therapy, and 

useful in personalized medicine applications. Yet another important application is that 

SNPs can be associated with an individual’s genetic predisposition to develop a disease.  

Identifying these associations allow proactive steps to be taken to hinder, delay or eliminate 

the disease.  However, the problem is challenging; data are high dimensional and 

incomplete, and features (SNPs) are correlated. The goal of this thesis is to propose features 

ranking methods to reduce the number of selected features and the computational cost 

required to select these features in a binary classification task.  

The main idea of the hypothesis is that specific values within a feature might be 

useful in predicting specific classes, while other values are not. In this context, three 

heuristic methods are applied to select the best features. The methods are applied to the 

Wellcome Trust Case Control Consortium (WTCCC1) dataset, and evaluated on Texas 

A&M University Qatar’s High Performance Computing platform.    

The results show that the classification accuracy achieved by the proposed methods 

is comparable to the baseline. However, one of the proposed methods reduced the 

execution time of the feature selection and the number of features required to achieve 



  
   

iv 
 

similar accuracy in the baseline by 40% and 47% respectively. 



  
   

v 
 

DEDICATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For my father and my mother. 

 

  



  
   

vi 
 

ACKNOWLEDGMENTS 

 

 I would like to thank my thesis supervisor Prof. Abbes Amira for his efforts in 

guiding and helping me through my thesis journey. 

 

 

  



  
   

vii 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ................................................................................................. vi 

LIST OF TABLES ............................................................................................................. xi 

LIST OF FIGURES .......................................................................................................... xii 

ABBREVIATIONS ........................................................................................................... iii 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

Human Genome............................................................................................................... 1 

Bioinformatics in Qatar ................................................................................................... 2 

Motivation ....................................................................................................................... 3 

Single Nucleotide Polymorphism ................................................................................... 5 

Problem Statement .......................................................................................................... 6 

Research Objectives ........................................................................................................ 7 

Research Contributions ................................................................................................... 8 

Thesis Structure ............................................................................................................... 9 

CHAPTER 2: FORMAL PROBLEM DEFINITION ....................................................... 10 

Problem Description ...................................................................................................... 10 

Preprocessing ................................................................................................................ 11 

Quality Control .......................................................................................................... 11 

Imputation .................................................................................................................. 11 



  
   

viii 
 

Codifying ................................................................................................................... 11 

Classification Performance Metrics .............................................................................. 12 

Accuracy .................................................................................................................... 13 

Sensitivity and Specificity ......................................................................................... 13 

Area Under the ROC Curve ....................................................................................... 14 

Dimensionality Reduction ............................................................................................. 15 

Filter Methods............................................................................................................ 16 

Wrapper Methods ...................................................................................................... 17 

Embedded Methods ................................................................................................... 17 

Cross-Validation............................................................................................................ 17 

CHAPTER 3: LITERATURE REVIEW .......................................................................... 18 

Overview ....................................................................................................................... 18 

Filter Methods ............................................................................................................... 19 

Wrapper Methods .......................................................................................................... 21 

Embedded Methods ....................................................................................................... 23 

Comparison ................................................................................................................... 27 

Discussion ..................................................................................................................... 29 

CHAPTER 4: RESEARCH METHODOLOGY .............................................................. 31 

Dataset ........................................................................................................................... 32 



  
   

ix 
 

Dataset Preprocessing ................................................................................................... 33 

Transformation .......................................................................................................... 33 

Quality Control .......................................................................................................... 34 

Imputation .................................................................................................................. 34 

Codifying ................................................................................................................... 34 

Merging and Class Labels Generation ....................................................................... 35 

Baseline ......................................................................................................................... 36 

Dimensionality Reduction ......................................................................................... 36 

Symmetrical Uncertainty ....................................................................................... 36 

Conditional Entropy ............................................................................................... 36 

Classifiers .................................................................................................................. 37 

K-Nearest Neighbors ............................................................................................. 37 

Support Vector Machine ........................................................................................ 38 

Proposed Scoring Scheme ............................................................................................. 39 

Feature Ranking Method 1 ............................................................................................ 42 

Feature Ranking Method 2 ............................................................................................ 44 

Feature Ranking Method 3 ............................................................................................ 46 

CHAPTER 5: EXPERIMENTAL RESULTS .................................................................. 48 

Experiments Setup......................................................................................................... 48 



  
   

x 
 

Results ........................................................................................................................... 50 

Discussion ..................................................................................................................... 76 

CHAPTER 6: CONCLUSION AND FUTURE WORK .................................................. 78 

Overview ....................................................................................................................... 78 

Achievements ................................................................................................................ 78 

Limitations .................................................................................................................... 79 

Future Work .................................................................................................................. 79 

REFERENCES ................................................................................................................. 81 

 

 

  



  
   

xi 
 

LIST OF TABLES 

Table 1 Comparison of the Reviewed Papers ................................................................... 28 

Table 2 Dataset Details ..................................................................................................... 32 

Table 3 Codifying Strategy ............................................................................................... 35 

Table 4 Experiments Details ............................................................................................. 49 

Table 5 Average of Maximum Accuracy, Number of Features and Running Time of the 

Baseline and the Proposed Methods .......................................................................... 50 

Table 6 The Maximum Accuracy, Number of Features and Running Time of 

Symmetrical Uncertainty ........................................................................................... 51 

Table 7 The Maximum Accuracy, Number of Features and Running Time of Conditional 

Entropy ...................................................................................................................... 52 

Table 8 The Maximum Accuracy, Number of Features and Running Time of Feature 

Ranking Method 1 ..................................................................................................... 53 

Table 9 The Maximum Accuracy, Number of Features and Running Time of Feature 

Ranking Method 2 ..................................................................................................... 54 

Table 10 The Maximum Accuracy, Number of Features and Running Time of Feature 

Ranking Method 3 ..................................................................................................... 55 

  

 



  
   

xii 
 

LIST OF FIGURES  

Figure 1. An illustration of DNA double helix [1] ............................................................. 1 

Figure 2. An illustration of a SNP [11] .............................................................................. 3 

Figure 3. Toy example of bi-allelic and multi-allelic SNPs ............................................... 5 

Figure 4. Confusion Matrix .............................................................................................. 12 

Figure 5. Literature Review outline .................................................................................. 18 

Figure 6. Methodology Overview .................................................................................... 31 

Figure 7. Snapshot of one of the files ............................................................................... 33 

Figure 8. Toy example of KNN [49] ................................................................................ 37 

Figure 9. Toy example of linear SVM [51] ...................................................................... 38 

Figure 10. Toy example of regions................................................................................... 39 

Figure 11. Example of the scoring scheme ...................................................................... 41 

Figure 12. Example of method 1 ...................................................................................... 42 

Figure 13. Example of method 3 ...................................................................................... 46 

Figure 14. Plots of SU with KNN .................................................................................... 56 

Figure 15. Plots of SU with KNN (cont) .......................................................................... 57 

Figure 16. Plots of SU with SVM .................................................................................... 58 

Figure 17. Plots of SU with SVM (cont) .......................................................................... 59 

Figure 18. Plots of CE with KNN .................................................................................... 60 

Figure 19. Plots of CE with KNN (cont) .......................................................................... 61 

Figure 20. Plots of CE with SVM .................................................................................... 62 

Figure 21. Plots of CE with SVM (cont) .......................................................................... 63 

file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599527
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599535
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599536
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599537
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599538
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599539
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599540
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599541
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599542


  
   

xiii 
 

Figure 22. Plots of Method 1 with KNN .......................................................................... 64 

Figure 23. Plots of Method 1 with KNN (cont)................................................................ 65 

Figure 24. Plots of Method 1 with SVM .......................................................................... 66 

Figure 25. Plots of Method 1 with SVM (cont)................................................................ 67 

Figure 26. Plots of Method 2 with KNN .......................................................................... 68 

Figure 27. Plots of Method 2 with KNN (cont)................................................................ 69 

Figure 28. Plots of Method 2 with SVM .......................................................................... 70 

Figure 29. Plots of Method 2 with SVM (cont)................................................................ 71 

Figure 30. Plots of Method 3 with KNN .......................................................................... 72 

Figure 31. Plots of Method 3 with KNN (cont)................................................................ 73 

Figure 32. Plots of Method 3 with SVM .......................................................................... 74 

Figure 33. Plots of Method 3 with SVM (cont)................................................................ 75 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599543
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599544
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599545
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599546
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599547
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599548
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599549
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599550
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599551
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599552
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599553
file:///C:/Users/m.abunada1309/Dropbox/Thesis_final/final/MohnadAbunada-200004720-Thesis%20-MOD-2.docx%23_Toc484599554


  
   

iii 
 

ABBREVIATIONS  

 

ARM   Association Rule Mining  

AUC/AUROC  Area Under the ROC Curve  

BD   Bipolar Disorder 

CAD   Coronary Artery Disease 

CE    Conditional Entropy  

CV    Cross Validation 

DNA    Deoxyribonucleic acid 

FCBF   Fast Correlation Based Filter 

FN   False Negative  

FP   False Positive 

FPR   False Positive Rate 

GE    Grammatical Evolution  

GWAS   Genome Wide Association Study 

HGP   Human Genome Project 

HT   Hypertension 

IBD   Inflammatory Bowel Disease 

IG   Information Gain  

KI   Kuncheva Index 

KNN   K Nearest Neighbors  

LOOCV  Leave One Out Cross Validation   

MCC   Matthews Correlation Coefficient 



  
   

iv 
 

NB   Naïve Bayes 

NCBI   National Center for Biotechnology Information 

PPM   Paths Towards Personalized Medicine 

QNRF   Qatar National Research Fund 

QNRS   Qatar National Research Strategy 

RA   Rheumatoid Arthritis 

RF   Random Forests  

SNP   Single Nucleotide Polymorphism 

SU   Symmetrical Uncertainty  

SVM   Support Vector Machine 

T1D   Type 1 Diabetes 

T2D   Type 2 Diabetes 

TN   True Negative 

TP   True Positive 

TPR    True Positive Rate  



  
   

1 
 

 

CHAPTER 1: INTRODUCTION  

 

Human Genome 

The Deoxyribonucleic acid (DNA) is a molecule that takes the shape of a double 

helix. Nucleotides are the main building block of the DNA. Each nucleotide is composed 

of a sugar group, a phosphate group and a nitrogen base. There are four different nitrogen 

bases; Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). To form a base pair, two 

nucleotides are bound together. In nature, A pairs with T and G with C. As shown in Figure 

1, the base pairs are chained together to give the DNA its double helix shape. The complete 

set of base pairs is called Genome [1].   

 

 

Figure 1. An illustration of DNA double helix [1] 
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The genome can be divided into two types of regions; coding (genes) and non-

coding. While the former regions occupy around 1% of the genome, they are responsible 

for protein production. The latter are responsible for regulating the protein production [2]. 

In homo sapiens (humans), the genome consists of around 3.2 billion base pairs. The order 

of these base pairs is responsible for making each human unique [3]. 

 

Bioinformatics in Qatar 

In the past few years, there was an increased interest in genomics and 

bioinformatics in Qatar. This section, spotlights these areas of interests in Qatar. 

The Qatar National Research Strategy (QNRS) identifies the grand challenges of 

Qatar and serves as guidelines for investments in research. Since its launch in 2012, the 

strategy clearly identified bioinformatics as one of its goals. One of the goals of the 

Computer Since and Information Technology pillar aims to “Develop a demand-driven 

bioinformatics research program serving both genomics-driven investigations and 

emerging research effort in energy and environment” [4]. 

Qatar Biobank, is a collaborative project between Hamad Medical Corporation and 

the Ministry of Health. The project serves as repository of biological samples of Qatari 

nationals and long term residences. In addition, the project hosts the Qatar Genome 

Program, which aims to develop personalized healthcare through the integration of 

innovative genomics technologies into medical and research practice [5].  
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The Paths Towards Personalized Medicine (PPM) is a research program funded by 

Qatar National Research Fund (QNRF). The program addresses three main challenges. All 

of which implicate the development of bioinformatics technologies [6]. 

 

Motivation 

Studies show that there are differences among humans’ genomes in the order of 

0.1% [7]. These differences are called variations and truly responsible of defining the 

uniqueness of each individual. There are many types of variations which can be 

distinguished based on length, location, being passed to offspring or not, and if it is a 

deletion, insertion, duplication, or rearrangement [8]. However, the focus of this thesis is 

the Single Nucleotide Polymorphism (SNP), as it accounts for 90% of variations [9]. As 

the name implicates, a SNP is an alternation in a single nucleotide in a specific location 

within the genome in at least 1% of a population [10]. Figure 2 shows an illustration of a 

SNP. 

 

 

Figure 2. An illustration of a SNP [11] 
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Since the release of the first human reference genome in 2003 by the Human 

Genome Project (HGP), the cost of genome sequencing has dropped significantly. The 

main reason for this decrease in the cost is the revolutionary sequencing technologies 

developed in the following decade. As a consequence of this, a torrent of raw sequencing 

data became available, making the human genome a fertile field for studies [12]. 

There are wide range of studies and analysis that can be applied to the genome. 

However, the focus of this thesis is the Genome Wide Association Study (GWAS). In a 

GWAS, many variants, most likely SNPs, are investigated to find which of these variants 

are associated with a trait of interest [13]. Because the number of traits that can be 

examined in GWAS is vast, there are several applications for the GWAS. 

If a SNP or SNPs are successfully associated with a disease, these SNPs can be 

used as predictive markers for an individual’s susceptibility to develop the disease. This 

allows proactive actions to be taken in order to prevent, delay, or reduce the effect of that 

disease [14]. Yet another important application is that SNPs can be associated with   

metabolism of drugs, which make these SNPs target for drug therapy [15], and useful in 

personalized medicine applications [16]. Finally, SNPs can be associated with visually 

observed characteristics like height, eye, and hair color and ethnicity, which opens the door 

for applications in DNA forensic [17]. 

The aforementioned useful applications come with challenges, these challenges are 

discussed latter in this chapter. 

 

 

 



  
   

5 
 

Single Nucleotide Polymorphism  

It is worth mentioning that dbSNP, the National Center for Biotechnology 

Information’s (NCBI) SNPs database, as of its build 147, lists around 150 million SNPs in 

the human genome [18]. With this large number of SNPs, testing every individual’s 

genome for all SNPs would be expensive. For that reason, a SNPs microarray is used to 

test the genome for a predefined set of SNPs, and rather than sequencing the whole genome, 

only the values of these predefined SNPs are reported. The selection of these predefined 

SNPs is based on the possibility of these SNPs to carry the most information about patterns 

of genetics variations [19]. For example, the Affymetrix SNP 6.0 lists around 900k SNPs 

[20]. 

There are multiple criteria for SNPs classification, a common criterion is the 

number of alleles. Each allele, is an observed variant at the SNP location.  In a bi-allelic 

SNP, there are two different variants alternating among the population. In contrary, in a 

multi-allelic SNP there are three or more variants alternating among the population [21]. 

Bi-allelic SNPs are the most common SNPs observed in human genome [22]. Figure 3 

shows a toy example of bi-allelic and multi-allelic SNPs.  

 

 

Figure 3. Toy example of bi-allelic and multi-allelic SNPs 
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Problem Statement  

There is a set of individuals’ SNPs samples. These samples can be divided into two 

groups. The first group has samples that are known to have a specific trait or disease and 

called “Cases”. While the second group has samples that known to be free of that specific 

trait or disease, and called “Controls”.  The goal is to design a machine learning technique 

that can classify an unknown sample to either group.       

Such machine learning technique faces several challenges. Firstly, due to the large 

number of features (SNPs), a dimensionality reduction phase is required. The goal of the 

dimensionality reduction phase is to select or extract the most informative features. 

Secondly, the number of samples is small when compared to the number of features. 

Thirdly, features are correlated. This is  due to the fact that multiple SNPs are working in 

coordination to manifest complex diseases [23], this challenge must be addressed either in 

the dimensionality reduction phase or classification phase. Finally, samples are incomplete; 

this requires either to adapt techniques that can tolerate such missing data or to introduce 

an additional phase to fill the missing data properly. 
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Research Objectives  

The overall objective of this thesis is to design machine learning techniques suitable 

for the SNPs data that can classify an unknown sample to one of the classes in a binary 

classification problem. However, the focus of this thesis is the dimensionality reduction of 

the SNPs data. The objectives of this thesis are shown in the following. 

• Conduct a literature review on the existing machine learning techniques 

for the SNPs data, while focusing on the dimensionality reduction methods 

presented in the literature. The literature review will be used to identify 

gaps, current challenges, and serves as guidance for the proposed solution.  

• Investigate the existing dimensionality reduction techniques for SNPs 

data, and evaluate unused techniques. 

•  Propose dimensionality reduction techniques that aim to reduce the 

number of selected features and the time required to select these features. 

• Design machine learning techniques for SNPs data. The designed 

techniques should include codifying, imputation, dimensionality 

reduction, and classifiers training and testing.    

•  Evaluate the existing and proposed dimensionality reduction techniques, 

using two different classifiers and multiple datasets. 
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Research Contributions 

The main contributions of this thesis are shown in the following. 

• A literature review is conducted. For each of the selected studies, the 

addressed challenges, main idea, used dataset, and the achieved 

performance are presented. The changes in the addressed challenges over 

time were discussed, and a comparison between the reviewed studies is 

presented.  

• Symmetrical Uncertainty (SU) is used in the baseline as it was performing 

well in the literature, and Conditional Entropy (CE) is evaluated as it was 

never used.   

•  The main contribution of this thesis is a feature scoring scheme that is 

suitable for categorical features. The proposed scheme is based on that 

specific value within a feature might be useful in predicting specific class 

labels, while other values are not. In this context, each group of similar 

values within a feature are considered a region. For each region, a score 

that is ranging from zero to one is computed and a class label is assigned. 

A positive score means that the region is more informative for one of the 

class labels in a binary classification problem.  

• Complete machine learning techniques are designed, and three features 

ranking techniques are proposed based on the proposed scoring scheme.  

• The proposed solutions and the existing methods are evaluated with 

Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) 
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classifiers on seven different datasets. The proposed solutions reduced the 

computational time for feature selection and the number of selected 

features when compared to the baseline.  

 

   Thesis Structure 

Chapter 2 presents a formal definition of the problem. In Chapter 3, a literature 

review of existing machine learning techniques for SNPs data is provided. In addition, a 

comparison between the reviewed methods is presented. In Chapter 4, the dataset 

preprocessing, baseline and the proposed methods are described in details. While Chapter 

5 presents the experimental results, the conclusion and future work are provided in Chapter 

6.   

 

 

 

 

 

 

 

 

 

 



  
   

10 
 

CHAPTER 2: FORMAL PROBLEM DEFINITION  

  Problem Description  

m SNPs, {s1, s2, s3, …, sm} for n individuals are given. The existential status of a 

specific trait for these individuals is known. Individuals with the trait are known as cases, 

while individuals without the trait are known as controls. The goal is to learn from the 

given SNPs to be able to identify to which of these two groups, cases and controls, an 

unseen individual belongs to. However, the number of SNPs is vast and some values of 

some SNPs for some individuals are not provided. In additions, it is known that multiple 

SNPs may play a role in the existence of the trait. Moreover, multiple SNPs may play the 

same role in the existence of the trait.      

From the machine learning point of view, each SNP is a feature, and each 

individual’s given values of the all SNPs is a sample.  The learner that should learn from 

the given samples is the classifier. The existential status of the trait in the given samples 

are the targets or classes. The complete set of samples and targets is the dataset. Because 

there are two classes, and each sample can only be assigned one class label, the problem is 

a binary classification problem.  

To design a proper machine learning solution for the given problem, several 

questions must be addressed first, like how to measure the effectiveness of the solution? 

And how to deal with the missing data? These questions and more are investigated in the 

following sections.   
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Preprocessing 

In most cases, the obtained raw datasets are not suitable for classification tasks. 

Thus, some preprocessing steps might be required to transform the obtained dataset to a 

suitable format. These steps are described in the following. 

Quality Control 

Quality control, is the process of cleaning the dataset from noisy data. One method 

is to remove samples that fails to satisfy some criteria. Another method, is to remove 

samples that show unusual behavior compared to the samples within the same class, such 

samples are called outliers.  Some common examples of the used criteria are percentage of 

the missing values in the sample or the feature.   

 

    Imputation 

Imputation, is the process of filling the missing values in the dataset. One method 

is to replace the missing value with the most common value in the feature within the same 

class. Another method, is to replace the missing value with the most common value in the 

samples that share similar factors with sample where the value is missing. It is worth 

mentioning that some classifiers can tolerate missing values in the dataset.      

 

   Codifying  

Most classifiers require their input to be numerical. Codifying is the process of 

converting the values of a feature or class labels from text format to numerical format. 

Some common examples of the used codifying strategies are binary codifying and one-hot 

encoding. Some codifying strategies might increase the dimensionality of the data.    
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Classification Performance Metrics  

Several solutions can be applied to the given problem, and it is important to find 

which of these solutions is the best. One way is the measure how good the used classifier 

is performing. Several metrics can be used for that purpose; however, most of these metrics 

are derived from the confusion matrix [25] which shown in Figure 4. The terminology used 

in the confusion matrix is described in the following: 

• Condition Positives (P): The number samples have the trait. 

• Condition Negatives (N): The number of samples does not have the trait. 

• True Positives (TP): The number of samples predicted to have the trait, and 

in fact they have the trait.  

• True Negatives (TN): The number of samples predicted to not have the trait, 

and in fact they do not have the trait. 

• False Positives (FP): The number of samples predicted to have the trait, and 

in fact they do not have the trait. 

• False Negatives (FN): The number of samples predicted to not have the trait, 

and in fact they have the trait.  

 

 

Figure 4. Confusion Matrix 
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   Accuracy  

The classification accuracy is used to find the percentage of samples that were 

correctly classified by the classifier. The following equation shows how the accuracy can 

be derived from the confusion matrix: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1) 

The accuracy; however, can be misleading, specifically when the dataset is 

unbalanced.  For example, consider a dataset with 100 samples where 95 samples do not 

have the trait and 5 samples have the trait. A classifier that classifies any given sample as 

not having the trait, will achieve a 95 percent of accuracy.  For that reason, additional 

metrics are required to assess the performance of the classifier.  

Sensitivity and Specificity  

The sensitivity is used to measure the ability of the classifier to correctly classify 

samples with the trait. While specificity, is used to measure the classifier ability to correctly 

classify samples without the trait. Both measures must be considered together, as 

considering one of them alone can also be misleading.  The following equations show how 

the sensitivity and specificity can be derived from the confusion matrix:  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3) 
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Area Under the ROC Curve  

Some classifiers are capable of producing probability scores for the classified 

samples. The user can set a threshold T, and the sample is classified into one of the classes 

if the probability score is above the threshold, and to another, if the probability score is 

below the threshold. All previous metrics assess the classifier for a single threshold. In the 

ROC curve [26], the True Positive Rate (TPR) versus the False Positive Rate (FPR) are 

plotted while varying the threshold. The ROC curve allows the user to visualize how the 

classifier is performing under multiple thresholds, which also allow the user to select the 

most appropriate threshold. The area under the ROC curve (AUROC / AUC) is a one 

number measure that can summarize the overall performance of the classifier, and make it 

easier to compare with other classifiers.  The following equations show how TPR and FPR 

can be derived from the confusion matrix: 

       

𝑇𝑃𝑅 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

 

𝐹𝑃𝑅 = 𝐹𝑎𝑙𝑙𝑜𝑢𝑡 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(5) 
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Dimensionality Reduction  

The number of SNPs that the classifier should learn from is large. In addition, it is 

known that most of these SNPs are nonrelevant to the trait under investigation. Thus, for 

the given m SNPs, {s1, s2, s3, …, sm}, the goal is to find the subset S of the most informative 

SNPs. This problem is called the feature selection problem, which is the focus of this thesis. 

Reducing the number of the selected features, brings four main benefits to the 

classification task [27]: 

• By selecting fewer number of features, the data required for the 

classification task will be less. 

• Fewer number of features, make the interpretation of the classifier 

outcomes easier. 

• Less computational cost to train the classifier. 

• The classification accuracy is increased.  

 

The simplest way to find the subset S, is to try every possible subset. However, due 

to the large number of SNPs, this method is intractable. The authors in [28], classified the 

problem as NP-hard optimization problem, which means that there is no known solution 

that can find the optimal subset in a reasonable amount of time. Therefore, the feature 

selection methods that found in the literature can only find near-optimal solutions.  

To precisely define the optimal solution, three criteria are defined, which will be 

used later to differentiate among the feature selection methods. For any feature selection 

method M that finds a subset S’, the three criteria are: 
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• Accuracy (A): the classification accuracy achieved by using the subset S’, 

as shown in the following equation: 

Select S’ ∈ {s1, s2, …, sm}, to maximize (A)   (6) 

• Time (T): the time required to find the subset S’, as shown in the following 

equation: 

Select S’ ∈ {s1, s2, …, sm}, to minimize (T)    (7) 

• The number of SNPs (K): the number of SNPs in the subset S’, as shown in 

the following equation: 

Select S’ ∈ {s1, s2, …, sm}, to minimize (K)    (8) 

 

In [28], the feature selection methods are categorized into three categories; filter 

methods, wrapper methods and embedded methods; each of these categories are described 

in the following sections. 

Filter Methods 

The filter methods work independently from the classifier. Relevancy scores are 

computed between each feature and the class labels. Based on these scores, the features are 

ranked and higher-scoring features are selected. These methods are fast, because the feature 

selection is performed only one time. However, in most of these methods, each feature is 

considered alone, which can miss the possible interactions among features. In addition, the 

selected subset may not be suitable for the used classifier.   
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Wrapper Methods  

In the wrapper methods, multiple subsets are found by a predefined search function. 

Each of these subsets, are evaluated, and the best subset is then selected. The evaluation of 

each subset is done by training and testing a given classifier. Thus, feature selection is said 

to be wrapped around the classifier. The main advantage of such methods is that the 

selected subset is tailored for the used classifier, which is also a disadvantage in some 

sense. In addition, these methods can capture the interactions among features. However, 

the time complexity of these methods is very high, and there is a high risk of overfitting.       

Embedded Methods 

Like the wrapper methods; however, the internal parameters of the classifier are 

embedded in the predefined search function. These methods can capture the interactions 

among features and less computationally intensive than the wrapper methods.   

Cross-Validation 

The designed machine learning solution must be evaluated with unseen samples. 

The simplest way to do this, is to split the dataset into train and test splits. If parameters 

tuning is required, a development split is used. This is possible if the obtained dataset is 

large enough. If the dataset is not large enough, cross-validation (CV) [53] can be used, 

which allow the model to be tested on the whole dataset. In N-fold CV, the dataset is split 

into N equal size splits, and the evaluation of the solution is done N times (folds). In each 

time, N-1 splits are used for training and one split for testing. The results from all folds are 

then averaged to obtain the overall result.  If the dataset is very small, leave-one-out CV 

(LOOCV) can be used where the number of splits is equal to the number of samples in the 

dataset.      
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CHAPTER 3: LITERATURE REVIEW  

Overview 

The goal of the literature review is to investigate the existing methods in the 

literature that address the dimensionality reduction problem for the SNPs data. The 

dimensionality reduction problem is one part of a larger problem. In fact, the literature was 

searched for studies that harness machine learning to predict the existence status of a given 

disease based on SNPs data. From these studies, the dimensionality reduction part is 

extracted and reviewed.      

As shown in Figure 5, The selected studies are grouped based on the type of the 

used dimensionality reduction technique, as defined in Chapter 2. For each study, the 

addressed challenge, main idea, used dataset, and the achieved performance, are presented. 

It is worth noting that the performance can be expressed in terms of classification 

performance metrics or by the computational cost and time.  

 

 

Figure 5. Literature Review outline 
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Filter Methods 

Before the work presented in [29], there were some efforts to investigate the 

problem; however, these efforts were relying on selecting one SNP to address the problem. 

The work in [29], was the oldest observed study that incorporated multiple SNPs, following 

the fact that multiple SNPs might play a role in the manifestation of complex diseases. The 

authors, thus, ranked the features based on information gain (IG) and the top features are 

selected and fed to a classifier, one feature at a time. The idea is to reduce the uncertainty 

about the class labels, by accumulating features with high information gain.  The method 

is applied to 332 samples (158 controls and 174 breast cancer cases) each genotyped for 

245 SNPs. Multiple classifiers are used with the top selected features. The used classifiers 

are: Naïve Bayes (NB), decision tree, and linear SVM. The best achieved accuracy was 

69% using the top 3 features with linear SVM. It is important to note that no imputation 

strategy was implemented. For the NB classifier, the data is used as it is, while for SVM 

and decision tree, only complete samples (74 controls and 63 breast cancer cases) were 

used. The paper proved that incorporating multiple SNPs is better than relying on a single 

SNP. 

Similarly, the authors in [30, 31, 32] applied IG to two different datasets and 

evaluated multiple classifiers. On one dataset, decision tree was the best when compared 

to SVM, decision rules and KNN. While on the other dataset, decision rules were the best. 

This shows that the performance of the same filter method might vary across datasets even 

when used with the same classifier.  

In [34], the authors suggested that ranking features using one metric might 

introduce some bias. Thus, they ranked the features using two metrics and the overall rank 
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of the feature, is the average of its ranks in both measures.  The idea is that each ranking 

method will reduce the bias introduced by the other method. The idea was evaluated by 

ranking the features using IG and chi-squared. The method was tested with multiple 

classifiers; NB, linear and non-linear SVM, and decision tree, and compared to wrapper 

based methods of the same classifiers. The experiments showed that the proposed methods 

achieved comparable AUCs to the wrapper based methods. The best achieved AUC was 

using NB. However, in the wrapper based methods, 8 features only were required, while 

in the proposed method 12 features were required. The proposed method reduced the 

computational cost when compared to the wrapper based methods; however, with a slight 

increase in the number of required features.   

With the increased number of SNPs, applying wrapper and embedded methods 

became impractical. In [37], relieff filter was used with a dataset of 300k features. The 

motivation was that relieff was never used with such large dataset and it can tolerate 

missing values. In relieff, a random sample is selected and the nearest neighbor from each 

class is found. The values of each feature in the three samples are investigated. If the feature 

can distinguish between the two classes, its weight is increased, and decreased otherwise. 

The top features produced by relieff are fed to multiple classifiers, one feature at a time. 

The subset achieved the best accuracy is selected.  The highest achieved AUC was 0.73 

with logistic regression using 10 features, and outperformed NB and SVM. Additionally, 

the time required to rank the features was 4400 seconds. 

To address the problem of selecting redundant features in the filter methods, the 

authors in [41] applied the fast correlation based filter (FCBF) to 17000 samples genotyped 

for 500k SNPs. The algorithm of FCBF is performed in two phases. In the first, the SU is 



  
   

21 
 

computed between each feature and the class labels, the top N features are selected. In the 

second, the SU among all selected features is computed, the features that have approximate 

markov blanket are removed. The average AUC achieved by the model was 0.86, while the 

average number of features was 253. 

In [43], the authors combined grammatical evolution (GE) and association rule 

mining (ARM) to select the least number of features that can predict all other features.  In 

an iterative approach, random association rules are generated. The generated rules are 

assessed using the Apriori algorithm. The best features are selected and used to generate 

new generation. The algorithm stops when a specific number of generations is reached. 

The selected features are fed to a two-layer feed forward neural network. The algorithm 

achieved 90% of accuracy on a dataset with 111 samples.  

 

Wrapper Methods 

The authors in [30, 31, 32] presented two wrapper methods; forward selection with 

backtracking (FS-BT) and backward elimination with backtracking (BE-BT). The main 

goal is to overcome the limitations of some previous works that use only one SNP.  In the 

FS-BT, each feature is used alone to train a specific classifier. The feature achieved the 

highest accuracy is selected as the first feature. Each unselected feature, is combined with 

the first feature separately, and used to train the classifier. The combination achieved the 

best accuracy is selected, if the backtracking is not enabled. If enabled, all possible 

combinations are considered, which increase the complexity of the algorithm. The 

algorithm stops when the accuracy starts to drop.  In BE-BT, the algorithm starts with a 

classifier that is trained with all features. Each feature is removed separately, and the rest 
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features are used to train a classifier. The remaining subset that achieved the highest 

accuracy is selected, if the backtracking is not enabled. If enabled, all possible subsets are 

considered. The algorithm stops when there is no increase in the accuracy is achieved. Both 

methods were tested with multiple classifiers on two different datasets. In general, the BE-

BT performed better when combined with decision tree and decision rules. Interestingly, 

similar performance observed if the backtracking is enabled or not.  

In [33], the authors argued that the current methods in the literature can only find 

relevant features, and multiple redundant features might be selected. To address the 

problem, they proposed the supervised recursive feature addition (SRFA) method which 

tries to select relevant but independent features. In SRFA, to select a feature, the features 

are ranked based on their classification accuracy, using a specific classifier, and the top 

feature is selected. To select the subsequent features, each unselected feature is combined 

with the selected features and used to train the same classifier. The features in the subsets 

that achieved the best accuracy are elected as candidates features. Based on the spearman 

correlation coefficient, the feature that is the least statistically similar to the already 

selected features, is selected. The algorithm stops when there is no improvement in the 

accuracy. The method was tested with two datasets; the first with 31 SNPs and the second 

with 2300 SNPs. In addition, the performance of the method was investigated when 

different classifiers are used; one for feature selection and another for classification. While 

the best accuracy achieved by the method was on the second dataset using the same 

classifier, it was not the case in the first dataset.  

In [33], the problem of selecting redundant features was addressed, while in [35] 

the robustness of the selected features was addressed. In [39], a solution that aims to 
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address both problems is presented. In the bag of NB (BoNB) method, N bootstrapped 

datasets are generated from the training dataset. For each generated dataset, a NB classifier 

is trained using each feature separately, and the Matthews correlation coefficient (MCC) is 

recorded for each SNP.  For each NB classifier, the features are ranked based on the MCC 

and added one feature at a time. Each time a feature is added, the features that are correlated 

with the selected feature are removed from the ranked list.  To classify a sample, all NB 

classifiers are used and the resulting predictions are averaged, to produce a weighed 

prediction. The method is applied to 5000 samples genotyped for 500k SNPs.  The 

experiments showed that the method is performing better than a single NB classifier and 

can be compared to other methods in the literature in terms of AUC.  

The work presented in [40] is aiming to reduce the computational cost of wrapper 

methods. To that end, two techniques were used. The first is to use regularized least squares 

(RLS) classifier. RLS is similar to SVM it terms of its outcomes. However, it can reduce 

the computational cost through some matrix algebra optimization. The second is to 

parallelize the code to work on 4 CPU cores. The method is applied to 3300 samples 

genotyped for 500k SNPs. The highest achieved AUC was 0.9 using 21 features, more 

importantly, the algorithm required only 5 minutes to run.        

 

Embedded Methods 

In [30, 31, 32], the authors observed a difference in the performance between a 

decision tree classifier and its equivalent decision rules. They also observed that not all 

features are used in the decision rules. Thus, they proposed an iterative rule based feature 

selection (RFS). In each iteration, a decision tree classifier is trained and converted to 
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decision rules, the features are not used by the rules are eliminated. The remaining features 

are used again to train new decision tree classifier.  The algorithm stops when all features 

used to train the decision tree classifier are used by the rules.    

To avoid selecting redundant features, the work presented in [33] embedded the 

weights of the SVM in the learning process and used a statistical measure to select non-

redundant features. In the proposed algorithm; the support vector based recursive feature 

addition (SVRFA), the first selected feature, is the feature that has the minimum squared 

weights vector when used alone to train a SVM classifier. Each unselected feature is 

combined with the already selected feature and used to train a SVM classifier. The 

unselected features within the subsets achieved the lowest squared weights vector is elected 

as candidates features. The feature that is the least statistically similar to the already 

selected features is selected. The method was tested with two datasets; the first with 31 

SNPs and the second with 2300 SNPs, and was the best on the first dataset.   

In [35], the authors are concerned with stability and robustness of the feature 

selection methods. They suggested that in the older methods, a small change in the dataset 

might cause a big difference in the selected features, which affects the reproducibility and 

the validation of the selected features. Thus, to ensure the robustness of the selected 

features, multiple bootstraps are generated from the original dataset. Each bootstrap is 10% 

different from the original dataset.  In addition, a SVM recursive feature elimination (RFE) 

is applied to each bootstrap.  RFE starts with the full features set, on each iteration the least 

important feature is eliminated. The importance of a feature is measured by its absolute 

weight in the separating hyperplane of SVM. Each bootstrap produces different ranking 

for the features. To aggregate the produced ranking, two methods are used. The first is to 
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average the ranking of all bootstraps. The second is to average the ranking of all bootstraps; 

however, each ranking is given a weight based on the AUC achieved by the bootstrap. The 

method was applied to four datasets, and the proposed method achieved a 30 % increase in 

robustness based on the Kuncheva index (KI) and 15% increase in the AUC, when 

compared to a SVM RFE without bootstrapping.  

In [36], the authors argued that the current methods in the literature can be used 

with datasets where the number of features is in the thousands; however, the effectiveness 

of these methods for datasets where the number of features is in the100 thousands, is not 

validated. On the other hand, random forests (RF) are showing excellent performance in 

other tasks like pattern recognition. Using RF; however, with large number of features is 

impractical.  Thus, to reduce the computational cost of RF, the authors generated one 

million trees and the gini importance of each feature in these trees is averaged. The features 

are then ranked based on the gini importance and fed to a RF classifier by adding one 

feature at a time. The subset achieved the highest classification accuracy is selected. The 

method was tested with a dataset with over 100k features and achieved minimum 

classification error of 8.5% using 84 features.   

The nearest shrunken centroid is a classification method that is useful for large-

scale datasets where the features are continuous. SNPs values; however, are categorical. In 

[38], a modified version of the method that is suitable for categorical features is presented.  

The presented algorithm is performed in two phases; feature selection and classification.  

In the first phase, three distribution vectors are computed for each SNP; overall and one 

for each class. The Euclidian distance between the distribution vectors of each class and 

the overall vector is computed. If the both computed distances are lower than a given 
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threshold, the feature is dropped. In the second phase, for each class, a centroid is 

computed, which consists of the most frequent value of each SNP within the class. To 

classify an unknown sample, the distance between the sample SNPs and the centroid of 

each feature is computed. The nearest class is predicted as the sample class. The method 

was applied to a dataset with 3500 samples genotyped for 500k SNPs. The experiment 

showed that the method achieved 87% of classification accuracy using 221 features. 

To address the same problem in [36], the authors in [42] applied a feature selection 

phase before feeding the features to the RF. In the feature selection phase, N random forests 

are generated. In each tree, a shadow SNP that has no predictive power is inserted. The 

importance of each SNP in all tress is measured by averaging the gini importance.  The 

Wilcoxon signed rank test was used to compare the importance of the real SNPs and the 

shadow SNP. All real SNPs with p-value below a threshold are selected.  Chi-squared test 

is then applied to the selected SNPs, and the SNPs are divided into two groups; high 

informative and weak informative. When building the RF for classification, SNPs from 

both groups are selected with specific percentages. The proposed method is applied to two 

datasets and achieved an average of 90% of classification accuracy. The method 

outperformed other RF methods in the literature.   
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Comparison 

In this Section, the reviewed studies are compared. The comparison is presented in 

Table 1, while the comparison criteria are shown in the following: 

1. Type of the methods presented in the study: filter (F), wrapper (W), 

embedded (E)  

2. The Number of real datasets used in the study.  

3. Number of samples in the real dataset, if multiple datasets are used, then the 

average number is reported. 

4. The number of SNPs in the dataset, if multiple datasets are used, then the 

average number of SNPs is reported.  

5. Classifiers: a list of the used classifiers: SVM (S), NB (N), RF (R), decision 

tree (D), decision rules (DR), KNN (K), RLS, Others (O) 

6. Is cross-validation used: Yes or No? 

7. Is an imputation method reported: Yes or No? 

8. Is the classification accuracy reported: Yes or No?  

9. Is sensitivity and specificity reported: Yes or No? 

10. Is the AUC reported: Yes or No? 

11. Is the paper concerned about the computational cost: Yes or No? 

 

 

 

 



  
   

28 
 

Table 1 

Comparison of the Reviewed Papers 

Criterion 

Reference 

29 30,31,32 33 34 35 36 37 38 39 40 41 42 43 

1 F F, W, E W, E F E W F E W W F E F 

2 1 2 2 1 4 1 1 1 1 1 7 2 1 

3 332 155 1074 109 204 146 1411 3492 4901 3382 2428 452 111 

4 245 28 1165 42 4797 116K 500k 500k 500k 500k 500k 390k 42 

5 S, N, D S, D, DR, K S, K, O S, N, D S R S, N, O O N RLS O R, O O 

6 Y Y Y Y N N Y Y N N Y Y N 

7 N N N Y N N N N N N Y N N 

8 Y Y Y N N Y N Y N N N Y Y 

9 Y Y N Y Y N Y N N N Y N N 

10 N N N Y Y N Y N Y Y Y Y N 

11 N N N N N Y Y N N Y Y Y N 
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Discussion 

While conducting the literature review, it was observed that the addressed 

challenges, main concerns, and used classifiers in the reviewed studies are varying over 

time. These observations guided some of the choices in the proposed solutions in this 

thesis.  

In the early reviewed studies [29-32], the main motivation was the fact that multiple 

SNPs are working in coordination to manifest complex diseases. The research studies 

pursuit this fact by incorporating machine learning methods because of its ability to deal 

with uncertainty. However, predicting the existential status of a given disease was not 

enough to quench the researchers’ thirst; it was also important to identify which of these 

SNPs is related to the given disease. This challenge was merely addressed by ranking the 

features using statistical measures or searching for the subset that gives the best 

classification accuracy in a hill climbing fashion. While multiple classifiers were tested, 

SVM and decision trees were the best, and KNN was the least successful. Given that the 

number of samples and SNPs is in the hundreds or less, the computational cost of the 

methods was not an issue.    

When the number of SNPs and samples became in the thousands [33-35], two main 

challenges faced the previous methods. The first challenge is that many redundant features 

might be selected, which was addressed by considering the statistical similarity between 

the selected SNPs, or ranking the features using multiple metrics. The second challenge is 

that small changes in the dataset lead to selecting different SNPs, which was addressed by 

using bootstrapping techniques and assessing the robustness of the selected features. In 
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addition to SVM and decision tree, NB was showing a comparable performance, and the 

doubts about KNN were confirmed.  

SNPs microarrays were introduced and the number of SNPs became in the hundred 

thousand [36-42]. Computational cost became an issue, and some studies [36,37,40,41,42] 

were mainly concerned about it. The issue was addressed by advanced multi-stage filters, 

preceding RF with a feature selection stage, and code parallelism. Other studies [38,39], 

were concerned about selecting robust independent features, and tailoring well-known 

algorithms for SNPs data. SVM and NB were still performing well. Decision tree; however, 

was replaced by RF, and KNN was never appeared. 

In the context of the literature review, the following choices were made: 

• The proposed solution should be in filter form to overcome the 

computational cost issue. However; redundant features should be taken into 

account.  

• SU will be used as the baseline because it performed well in the reviewed 

studies.   

• CE will be investigated because it was never used for the same purpose.   

• SVM is selected because it was the most used classifier and performed well 

in multiple studies.  

• KNN is selected because it was not used in the more recent studies.  
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CHAPTER 4: RESEARCH METHODOLOGY 

In this Chapter, the methodology of the proposed solution is presented. This 

includes a description of the used dataset in terms of the number of samples and SNPs for 

the cases and controls, and the transformations that were applied to it. In addition, the 

quality control criteria, performed imputation, and codifying strategy were discussed. 

Moreover, the theories behind the dimensionality reductions in the baseline and the used 

classifiers, are explained. Finally, the proposed scoring scheme and features ranking 

methods are explained in details. For each, an algorithm is given, and an example whenever 

applicable. Figure 6 shows an overview of the methodology.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Methodology Overview 
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Dataset 

The dataset used in this thesis is the Wellcome Trust Case Control Consortium 

(WTCCC1) dataset [24]. The dataset contains around 14000 cases for seven diseases and 

around 1500 controls genotyped for 500k SNPs using the Affymetrix 500k microarray [44].  

Table 2 shows the details of the dataset. 

 

Table 2 

Dataset Details 

Dataset 

Number 

of samples 

Number 

of features 

Number 

of classes 

1958 British Birth Cohort samples (Controls) 1504 500,568 1 

Bipolar Disorder (BD) samples 1998 500,568 1 

Coronary Artery Disease (CAD) samples 1998 500,568 1 

Inflammatory Bowel Disease (IBD) samples 2005 500,568 1 

Hypertension (HT) samples 2001 500,568 1 

Rheumatoid arthritis (RA) samples 1999 500,568 1 

Type 1 Diabetes (T1D) samples 2000 500,568 1 

Type 2 Diabetes (T2D) samples 1999 500,568 1 
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Dataset Preprocessing 

This Section describes how the dataset was transformed to be suitable for the Scikit-

Learn [45] machine learning library. 

Transformation 

The obtained dataset consists of eight directories. Each directory corresponds to 

one class in Table 2, and contains 23 files. Each file, contains the genotyping of SNPs in a 

specific chromosome for all samples in the class. The size of the dataset was 253 GB. 

Figure 7 shows a snapshot of one of the files. The files were in TAB delimited format and 

the order of the columns was: SNP ID, SAMPLE ID, SNP VALUE, CONFIDENCE. It is 

important to note that the NN SNP value represents a missing value.  

After exploring the files, a lot of redundancy was observed. The ID of each sample 

was repeated a number of times equal to the number of SNPs. In addition, the ID of each 

SNP was repeated a number of times equal to the number of samples. The following 

transformations were applied to each class files.  

• Samples IDs and SNPs IDs are extracted and kept in separate files. 

• The SNPs values of each sample are appended in one row. The order of the 

rows is the same as in the samples IDs file, while the order of the SNPs is 

the same as the order in the SNPs IDs file. 

 

 

Figure 7. Snapshot of one of the files 
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After applying the transformations, SNPs values of each class were combined in 

one TAB delimited file. Each row contains the values of all SNPs of one sample, while 

each column contains the values of one SNP for all samples in the class. It is worth noting 

that the confidence value was not maintained, because it will not be used in the 

classification task. The size of the dataset was reduced to 17.8 GB.  

 

Quality Control 

The original paper of the dataset [24] excluded some samples from the study, these 

samples were excluded. In addition, samples and SNPs with more than 20% of missing 

data were also excluded. Specifically, 804 samples and 31,216 SNPs were excluded. 

 

Imputation 

After applying quality control, the observed percentage of missing values in the 

dataset was 0.81. These missing values were replaced with the most frequent value in the 

same SNP. In other words, if sample X from class Y has a missing value of the SNP Z. The 

missing value is replaced with the most frequent value of SNP Z in all samples in class Y.         

   

Codifying 

As shown in Figure 7, each SNP value is represented in two letters. There are four 

possible letters A, C, T, and G. Thus, there are 16 possible combinations.  Each of these 

combinations and the corresponded numerical value are shown in Table 3. 

 

 



  
   

35 
 

Table 3 

Codifying Strategy  

SNP Value  Numerical Value SNP Value Numerical Value 

AA 1 CA 9 

AG 2 CG 10 

AC 3 CC 11 

AT 4 CT 12 

GA 5 TA 13 

GG 6 TG 14 

GC 7 TC 15 

GT 8 TT 16 

      

 

Merging and Class Labels Generation 

The problem is formulated as a binary classification problem. To generate datasets 

suitable for the binary classification problem and compatible with Scikit-Learn library, the 

following steps were applied. 

• The control samples were merged with each of diseases samples in Table 

2. The resulting of this is seven files; one for each disease. 

• For each file, a separate file is generated for the class labels. In each file, 

the controls samples assigned the class -1 while the disease samples 

assigned the class 1.  
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Baseline 

 This section describes the dimensionality reduction techniques and the classifiers 

used in the baseline. It is worth noting that the both used dimensionality reduction 

techniques are filter methods and based on information theory measures.  

 

Dimensionality Reduction 

Symmetrical Uncertainty 

The first selected dimensionality reduction technique for the baseline is ranking 

features based on SU [46]. SU was selected because it was part of a method presented in 

[41] that achieved high classification accuracy on the WTCCC1 dataset.  The SU between 

two variables X and Y, is a value in the range [0,1], where 0 indicates that the two variables 

are completely independent, and 1 indicates that one variable can be completely predicated 

by the other variable. In fact, the SU is built on top of the Mutual Information (MI), which 

can be described as the reduction in entropy of a variable, achieved by knowing another 

variable [46].   The SU of two variables X and Y is given by the following equation, where 

MI is the mutual information and H is the entropy.   

 

𝑆𝑈(𝑋, 𝑌) = 2 [
𝑀𝐼(𝑋, 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
] (9) 

 

Conditional Entropy 

The second selected dimensionality reduction technique for the baseline is ranking 

features based on CE [47]. The reason behind the selection of CE is that, up to the author’s 
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knowledge, it was never used as feature ranking method with SNPs data in classification 

problems. The CE of variable Y given the variable X, can be described as the amount of 

information required to describe the variable Y knowing the variable X.  

Classifiers 

Two classifiers were used in the baseline, which are described in the following. 

K-Nearest Neighbors 

In the KNN classifier [48], training samples are represented as points in the space. 

To classify a test sample Z, the Euclidean distances between the test sample and all training 

samples are computed. The most frequent class in the K nearest training samples is 

predicted as the class of the sample Z. In Figure 8, the unknown sample is assigned the 

class A based on K equal to four. Several K values were tested on a small subset and eleven 

was the best. Thus, in this thesis, K is equal to eleven because      

 

 

 

 

 

 

 

Figure 8. Toy example of KNN [49]  
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Support Vector Machine 

In SVM [50], the goal is to find an optimal hyperplane the separates the two classes 

of the training samples. A test sample is assigned a class based on its relative position to 

the separating hyperplane.  An optimal hyperplane, as shown in Figure 9, is the hyperplane 

that correctly separates all training samples to its either sides, and correctly categorize all 

the training examples. In addition, the optimal hyperplane, should maximize the margins 

with nearest training samples of both classes. The nearest training samples to the 

hyperplane are called the support vectors, while the shape of the hyperplane is called the 

kernel, which can be linear, polynomial or other basic functions.  Figure 9 shows a toy 

example of linear SVM with three support vectors. In this thesis, a linear kernel is used and 

the default parameters values of the LinearSVC classifier in the Scikit-Learn library are 

used. The values of these parameters are; penalty parameter C=1, loss function 

loss=squared_hinge, penalization norm penalty=l2, solve the dual optimization problem 

dual=True, tolerance for stopping criteria tol=1e-4, no class weights are used 

class_weight=None, and the algorithm is set to maximum 1000 iterations max_iter=1000. 

 

 

Figure 9. Toy example of linear SVM [51] 
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Proposed Scoring Scheme 

The hypothesis behind the proposed scoring scheme is that specific values within a 

feature might be useful in predicting specific class labels, while other values are not. In this 

context, each group of similar values within a feature are considered a region as shown in 

Figure 10. It is clear from the toy example shown in Figure 10 that whenever the value of 

feature 1 is A, the corresponded class label is almost 1 in all samples. While whenever the 

value of the feature is C, the corresponded class label is always zero. However, samples 

with the value A, are more frequent than samples with value C. Thus, the proposed scoring 

scheme must consider the usefulness of the region, and the region's significance within the 

feature. It is important to note that the scoring scheme only computes scores and assign 

class labels for the regions, and further steps are still required to select the best features. 

The following describes the proposed scoring scheme for one feature, while a pseudo code 

of the scheme is presented in Algorithm 1.   

 For each region, a score that is ranging from zero to one is computed and a class 

label is assigned. The assigned class, is the class that the region is useful for.  A positive 

score means that the region is more informative for one of the class labels in a binary 

classification problem. The higher the score the more informative the region for a specific 

class label. Each region’s score is normalized to the length of the region within the feature. 

 

 

Figure 10. Toy example of regions 
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Algorithm 1 Pseudo code of the scoring scheme 

Input 

Vector V of the values of one feature, categorical values 

Vector T of the class label of each sample, class label can be 0 or 1 

Output 

Vector O of tuples, each tuple in the form (n, s, c), where n is the region 

name, s the score of the region, and c is the assigned class label.  

1: UniqueValues ← FindUniqueValues (V) 

2: Regions ← new list, O ← new list 

3: for each UniqueValue u ∈ UniqueValues do 

4:   Temp ← FindClassLabels (u, T) 

5:   add (Regions, (u, Temp)) 

6: end for  

7: for each Region r (value, labels) ∈ Regions do 

8:   ClassZeroCount ← Count (0, r (labels)) 

9:   ClassOneCount ← Count (1, r (labels)) 

10:   MaxCount ← max (ClassZeroCount, ClassOneCount) 

11:   MinCount ← min (ClassZeroCount, ClassOneCount) 

12:   s ← (MaxCount – MinCount) / length (V)  

13:   c ← FindMostFreqClass (r (labels)) 

14:   add (O, (r (value), s, c)) 

15: end for  
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In Algorithm 1, in line 1, the unique values within the feature are found. In lines 3-

6, the correspondent class labels for each unique value are found and stored in the array 

Regions. Lines 7-15 are repeated for each region in Regions array.   In lines 8-9, the 

frequency of each class label in the region is computed. The class label with maximum 

frequency, and the class label with the minimum frequency are identified in lines 10-11. In 

line 12, the score of the region is computed by subtracting the frequency of the class with 

minimum occurrences from the frequency of the class with maximum occurrences. The 

result of the subtraction is divided by the length of the feature vector. In line 13, the class 

of the max frequency is assigned as the class label of the region.    

The perfect region based on the scoring scheme, is the region that contains only one 

of the class labels in its correspondent class labels. In other words, whenever the region 

value is observed within the feature, the class label of the sample will always be the same. 

This indicates that the region is useful for identifying samples from a specific class label. 

Figure 11 shows how the toy example in Figure 10 is scored. 

 

 

Figure 11. Example of the scoring scheme 
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Feature Ranking Method 1 

After the scoring scheme is applied to all features, the first proposed heuristic to 

rank the features, is to sum the scores of all regions within each feature, and rank the 

features in descending order based on the summed score. The top N features are then 

selected and fed to a classifier by adding one feature at a time and the accuracy of the 

classifier is recorded.  

The rationale behind this method is that the perfect feature will achieve a summed 

score of 1, while the worst feature will achieve a summed score of zero. When the summed 

score of a feature is 1, the regions within this feature can perfectly distinguish between the 

class labels.  In other words, within each region, there is only one class label. Figure 12 

shows how the total score for the example in Figure 10 is computed, while the pseudo code 

of the method is given in Algorithm 2.  

 

 

Figure 12. Example of method 1 
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Algorithm 2 Pseudo code of method 1 

Input 

Vector F of tuples, each tuple in the form (fid, (s1, s2, … si)), where fid is the 

feature id and s1 to si are the scores of the regions in the feature. 

N the number of the top features to be retrieved. 

Output Vector O of N ids 

1: TotalScores ← new list, O ← new list 

3: for each Feature (fid, (s1, s2, … si)) f ∈ F do 

4:   add (TotalScores, (fid, sum (s1, s2, … si))) 

5: end for  

6: SortedTotalScores ← SortDescending (TotalScores) 

7: for each SortedTotalScore (fid, TotalScore) s ∈ SortedTotalScores do 

8:   add (O, fid) 

9:   if length (O) == N 

10:    Break 

11: end for  
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Feature Ranking Method 2 

There is a predefined set of values that a feature can take on the problem under 

investigation of this thesis. Therefore, the second proposed heuristic, is to select the 

features that contain the highest scoring region for each possible region. The selected 

features are then sorted in descending order based on the score of the highest scoring region 

within each feature. The selected features are then fed to classifier one feature at time and 

the accuracy is recorded.  It is worth mentioning that this method selects a number of 

features that is less than or equal to the number of possible values of the features. 

In method 1, the values of the features that achieved the highest total scores are not 

investigated. In the top N selected features, some of the possible values might never appear. 

Thus, the rationale of method 2 is to consider the significance of each possible value.  

There are two reasons behind why method 2 may select features less than the 

number of possible values. The first, some possible values may never appear in the dataset. 

The second, the same feature may contain more than one highest scoring region.    

The pseudo code of method 2 is given in Algorithm 3.  The presented algorithm 

scans the entire scored features only once. A naïve implementation may scan the entire 

scored features more than that. In line 3, the dictionary is initialized with empty tuples. The 

first entry of each tuple will hold a score of region, while the second entry of each tuple 

will hold a feature id.    
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Algorithm 3 Pseudo code of method 2 

Input 

Vector F of tuples, each tuple in the form (fid, (s1, s2, … si), (r1, r2, … ri)), 

where fid is the feature id and s1 to si are the scores of the regions in the 

feature, and r1 to ri are the names of the regions 

Vector P of all possible values of the features. 

Output Vector O of N ids where N <= length of (P) 

1: HighestScoringRegions   ← new dictionary, O ← new list 

2: for each PossibleValue p ∈ P do 

3:   HighestScoringRegions [p] ← (ϕ, ϕ) 

4: end for  

5: for each Feature (fid, (s1, s2, … si), (r1, r2, … ri)) f ∈ F do 

6:   for i repetitions do 

7:    if HighestScoringRegions [ri] [0] < si 

8:     HighestScoringRegions [ri] [0] = si 

9:     HighestScoringRegions [ri] [1] = fid 

10:   end for 

11: end for 

12: SortedRegionsScores ← SortDescending (HighestScoringRegions) 

13: for each SortedRegionsScore (s, fid) sr ∈ SortedRegionsScores do 

14:   add (O, sr [1]) 

15: end for  
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Feature Ranking Method 3 

The problem is formulated as a binary classification problem. This means that the 

class label assigned to any region can only be one of two classes. However, within the same 

feature, multiple regions might be assigned the same class label. Thus, the third proposed 

heuristic is to sum the scores of all regions within the same feature that assigned the same 

class label. The result of this, is that two scores are computed for each feature; one for each 

class label.  After that, the features are ranked in descending order based on the computed 

score of each class label within the feature in two separate lists. From each list, the top N 

features are selected and fed to a classifier one feature from each list at a time, and the 

classification accuracy is recorded.  

In method 1 and method 2, the class assigned to the regions were not taken into 

account. This may result in an unbalanced selection of features. In other words, it could be 

possible that most of the selected features contain high scoring regions for one class only. 

Thus, the rationale behind method 3 is to ensure balanced selection of features for each 

class label. Figure 13 shows how the score for each class label is computed for the example 

in Figure 10, while the pseudo code of the method is given in Algorithm 4. 

 

 

Figure 13. Example of method 3 
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Algorithm 4 Pseudo code of method 3 

Input 

Vector F of tuples, each tuple in the form (fid, (s1, s2, … si), (c1, c2, … ci)), 

where fid is the feature id and s1 to si are the scores of the regions in the 

feature, and c1 to ci are the class labels assigned to the regions. 

N the number of top the features to be retrieved. 

Output Vector O of N ids  

1: ClassOneScores, ClassZeroScores, O ← new dictionary 

2: for each Feature (fid, (s1, s2, … si), (c1, c2, … ci)) f ∈ F do 

3:   ClassOneScores [fid] ← SumScores (1, (s1, … si), (c1, … ci)) 

4:   ClassZeroScores [fid] ← SumScores (0, (s1, … si), (c1, … ci)) 

5: end for 

6: SortedClassOneScores ← SortDescending (SortedClassOneScores) 

7: SortedClassZeroScores ← SortDescending (SortedClassZeroScores) 

8: Counter ← 1 

9: while length (O) < N do  

10:   add (O, SortedClassZeroScores [Counter]) 

11:   if length (O) == N 

12:    Break 

13:   add (O, SortedClassOneScores [Counter]) 

14:   Counter++ 

15: end while 
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CHAPTER 5: EXPERIMENTAL RESULTS 

 

Experiments Setup  

As mentioned in Chapter 4, there are seven sub-datasets generated from the 

obtained WTCCC1 dataset. Each of these sub-datasets is suitable for binary classification. 

It is important to note that all experiments were conducted on RAAD [52] high 

performance computing platform. For each of the seven sub-datasets, 10 experiments were 

conducted. For each experiment, a job was submitted to RAAD. Each job used 16 CPUs 

and 24 GB of memory. Each sub-dataset was split with 75 percent for train and 25 percent 

for testing.  Table 4 shows the details of each of the 10 experiments. 

In each experiment, the highest achieved classification accuracy, the number of 

features required to achieve this accuracy, and the time required to rank the features are 

recorded. For the baseline and method 1 experiments, the top 600 features are selected and 

fed to the classifier one feature at a time. For method 2 experiments, the features selected 

by the method are fed to the classifier one feature at a time based on the ranking produced 

by the method. For method 3 experiments, the top 300 features are selected from each list 

and fed to a classifier two features at a time. In all experiments, the accuracy achieved at 

each step is plotted against the number of used features.        
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Table 4 

Experiments Details 

 Experiment #  Dimensionality Reduction  Classifier  

Baseline 

 

1 SU KNN 

2 SU SVM 

3 CE KNN 

4 CE SVM 

Method 1  

5 Method 1 KNN 

6 Method 1 SVM 

Method 2 

7 Method 2 KNN 

8 Method 2 SVM 

Method 3  

9 Method 3 KNN 

10 Method 3 SVM 
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Results 

In Table 5, the average of the results of each experiment on the seven sub-datasets 

are shown. It is important to note that the computed averages are for the maximum achieved 

accuracy, the number of features required to achieve that accuracy, and the time required 

to rank the features.  While Tables 6 – 10 show the detailed results of each method, Figures 

14 – 33 show the plots of the experiments 

 

Table 5 

Average of Maximum Accuracy, Number of Features and Running Time of the Baseline 

and the Proposed Methods 

Dimensionality Reduction  Classifier  Accuracy  # Features Time (Sec) 

SU KNN 81.1 128 

4042 

SU SVM 87.7 553 

CE KNN 81.0 54 

2497 

CE SVM 87.8 414 

Method 1  KNN 80.2 57 

1464 

Method 1 SVM 86.7 229 

Method 2 KNN 77.9 11 

1514 

Method 2 SVM 78.6 10 

Method 3 KNN 80.3 30 

1494 

Method 3 SVM 86.8 218 
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Table 6 

The Maximum Accuracy, Number of Features and Running Time of Symmetrical Uncertainty 

  

 

 

 

 Symmetrical Uncertainty   

 KNN SVM  

 Max Accuracy  Number of Features  Max Accuracy Number of Features Time(s) 

BD 79.7 76 88.8 573 4009 

CAD 84.3 117 88.9 454 4002 

IBD 79.5 87 86.1 599 4008 

HT 72.6 20 81.1 568 4048 

RA 90.6 48 95.2 503 4022 

T1D 84.1 393 90.8 594 4088 

T2D 77.5 155 83.5 583 4123 
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Table 7 

The Maximum Accuracy, Number of Features and Running Time of Conditional Entropy 

  

 

 

 

 

 

 

 

 

 

 

 Conditional Entropy    

 KNN SVM  

 Max Accuracy  Number of Features  Max Accuracy Number of Features Time(s) 

BD 79.3 32 89.9 547 2549 

CAD 82.4 58 88.4 267 2458 

IBD 79.3 8 84.9 449 2461 

HT 75.6 135 83.1 494 2485 

RA 89.6 41 95.6 336 2490 

T1D 84.1 63 90.1 494 2515 

T2D 76.8 42 82.9 315 2522 
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Table 8 

The Maximum Accuracy, Number of Features and Running Time of Feature Ranking Method 1 

 

 

 

 

 

 

 

 

 

 

 

 Method 1     

 KNN SVM  

 Max Accuracy  Number of Features  Max Accuracy Number of Features Time(s) 

BD 81 74 87 359 1472 

CAD 84.2 19 85.6 26 1445 

IBD 73.5 113 84.5 325 1447 

HT 73.6 54 83.1 221 1473 

RA 89.3 11 93.5 107 1458 

T1D 81.8 109 89.8 308 1466 

T2D 78.3 22 83.6 261 1488 
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Table 9 

The Maximum Accuracy, Number of Features and Running Time of Feature Ranking Method 2 

 

 

 

 

 

 

 

 

 

 

 

 Method 2     

 KNN SVM  

 Max Accuracy  Number of Features  Max Accuracy Number of Features Time(s) 

BD 80.4 12 86.6 10 1501 

CAD 83.1 12 82.6 13 1509 

IBD 70.7 7 69.7 5 1491 

HT 71.3 14 71.3 11 1544 

RA 87.9 15 87.3 11 1526 

T1D 78.4 12 77 13 1500 

T2D 73.5 6 76.2 13 1530 
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Table 10 

The Maximum Accuracy, Number of Features and Running Time of Feature Ranking Method 3 

 

 

 

 

 

 

 

 

 

 

 

 

 Method 3     

 KNN SVM  

 Max Accuracy  Number of Features  Max Accuracy Number of Features Time(s) 

BD 81.3 16 88.3 118 1483 

CAD 82.7 20 85.7 173 1465 

IBD 74.2 23 85.5 320 1471 

HT 74.1 24 82.4 245 1523 

RA 89.6 11 93.5 107 1514 

T1D 81.8 109 89.8 308 1494 

T2D 78.6 7 82.9 257 1512 
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Figure 14. Plots of SU with KNN 
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Figure 15. Plots of SU with KNN (cont) 
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Figure 16. Plots of SU with SVM 
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The results show that SU is always performing better in terms of accuracy when 

used with SVM, the differences are between 5% and 10%. However, the average number 

of features used by KNN is less.  

 

 

Figure 17. Plots of SU with SVM (cont) 
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Figure 18. Plots of CE with KNN 
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Figure 19. Plots of CE with KNN (cont) 
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Figure 20. Plots of CE with SVM 
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Similar to SU, the results show that CE is performing better with SVM. However, 

CE requires less average number of features and less average running time when compared 

to SU.  
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Figure 21. Plots of CE with SVM (cont) 
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Figure 22. Plots of Method 1 with KNN 



  
   

65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA 

T1D 

T2D 

Figure 23. Plots of Method 1 with KNN (cont) 
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Figure 24. Plots of Method 1 with SVM 
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The results show that Method 1 is achieving comparable average accuracy to CE 

and SU when used with SVM. However, method 1 requires less average number of features 

and less average running time when compared to SU and CE.  

 

Figure 25. Plots of Method 1 with SVM (cont) 
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Figure 26. Plots of Method 2 with KNN 
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Figure 27. Plots of Method 2 with KNN (cont) 
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Figure 28. Plots of Method 2 with SVM 
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The results show that Method 2 is achieving lower average accuracy when 

compared to CE, SU and method 1. However, when method 2 is used, SVM and KNN are 

achieving comparable average accuracy. 

Figure 29. Plots of Method 2 with SVM (cont) 
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Figure 30. Plots of Method 3 with KNN 



  
   

73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RA 

T1D 

T2D 

Figure 31. Plots of Method 3 with KNN (cont) 
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Figure 32. Plots of Method 3 with SVM 
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The results show that Method 3 is achieving comparable average accuracy and 

average running time when compared to method 1. However, method 3 requires less 

average number of features. 

 

Figure 33. Plots of Method 3 with SVM (cont) 
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Discussion 

The results show that the highest classification accuracy of 87.8 is achieved when 

CE is used with SVM. The number of features required to reach this accuracy is 414, and 

the time required to rank the features is 2497 seconds. A comparable classification 

accuracy is achieved when SU is used with SVM; however, with a larger number of 

features and almost double of the time is required to rank the features. This clearly shows 

that CE is better than the SU when the used classifier is SVM for SNPs data.  

When comparing the proposed ranking methods, methods 1 and 3 achieved 

comparable result, with method 3 being slightly better. Method 2; however, achieved 

degraded results in terms of classification accuracy. This degraded performance can be 

justified by the limited number of features the method can select. 

The results also show that method 3 and CE are achieving comparable classification 

accuracy. However, method 3 reduced the number of required features and the time 

required to rank the features by 47 percent and 40 percent respectively. The reduction in 

the number of required features, can be justified by that when the features are ranked based 

on the CE, the ranking is only based on the relevancy of the features. This means that some 

of the selected relevant features might be redundant. In method 3; however, the features 

are ranked in two lists, the features in each list are specifically useful for one of the classes. 

When the features are selected, one feature from each list is added at a time, which reduce 

the chances of selecting redundant features.          

In general, the results show that SVM is performing better than KNN regardless of 

the used dimensionality reduction technique. This can be justified by that in KNN, samples 

with more similar feature values are assumed to have similar classes, and the model lacks 
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the sense of discriminating between classes.   In addition, this conforms to the results of 

some of the older reviewed studies [30-33], and justifies the absence of KNN in the more 

recent reviewed studies [34-43].   
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

Overview 

In this thesis, the problem of predicting the existence status of a trait in individuals 

from their genome-wide genotyping of SNPs, is investigated. The problem is formally 

defined and the various aspects of the problem are described. The methods exist in the 

literature to solve the problem are reviewed, and a comparison between these methods is 

presented. In addition, CE is used to rank features, which is up to the author’s knowledge, 

was never used in similar context. Moreover, three feature ranking methods are proposed. 

The proposed methods applied to WTCCC1 dataset and one of the methods outperformed 

the strong baseline in terms of the number of features required and the time required to 

rank the features.  

During the literature review, it was observed that most of the creative work was 

focused on the features selection part, and the classification part was limited to the use of 

existing models. In addition, with the increase of the number of SNPs, the complexity of 

the proposed methods was also increased.  

Achievements 

The existing feature ranking methods are either requiring one stage or multiple 

stages to rank features. The former methods only concerned about finding the relevant 

features. The latter methods; however, are higher in complexity and can find relevant 

features and remove redundant features. This raises the need for new low-complexity 

methods that can detect both relevant and redundant features. In this thesis, three feature 

ranking methods were presented based on the proposed scoring scheme. Method 3 reduced 
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the execution time of feature selection and the number of features required to achieve 

similar accuracy in the baseline by 40% and 47% respectively. In addition, method 3 

showed how such low-complexity methods can be developed by simply embedding a 

mechanism that can discriminate to which class label the feature is useful for.   

Limitations 

While the proposed methods reduced the number of selected features and the 

computational time compared to the baseline, the classification accuracy was not improved. 

In addition, method 2 achieved low classification accuracy, which can be due to the limited 

number of features that the method can select.     

Future Work 

The literature review presented in this thesis was mainly concerned about the 

solutions that use machine learning techniques to address the problem. A potential future 

work, is to investigate how the problem is addressed using statistical methods. The benefit 

of this is that solutions that combine techniques form both areas can be proposed.    

The solution presented in [41] is based on SU and achieved high classification 

accuracy on the WTCCC1 dataset. In this thesis, the experiments show that the CE and 

methods 1 and 3 are achieving better performance than SU.  A potential future work is to 

reproduce the work in [41]; however, using CE and methods 1 and 3.  

The proposed feature ranking method 2 has limitation by design. The method can 

only select the highest scoring feature per region. Thus, a potential future work is to 

produce an enhanced version of method 2. The enhancement shall increase the number of 

selected features per region.  
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Finally, SVM and KNN are the only classifiers that used in this thesis. A potential 

future work is to evaluate the proposed methods with other classifiers.  In addition, 

convolutional neural networks (CNNs) have revolutionized many learning tasks, 

specifically in the image classification area. One of the main advantages of CNN, is that it 

can be accelerated using GPUs and reconfigurable hardware. A solution that harness CNN 

to address the problem is under investigation by the author of this thesis.  
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