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ABSTRACT 

An Artificial Neural Network (ANN) model based on the back-propagation 
technique is trained with a number of variables from experimentally established 
relative permeability curves. The reservoir core input data covers an extensive 
range of porosities and permeabilities from different sandstone lithologies having 
diverse wettabilities. The trained model is then tested with only a couple of 
input variables such as the initial connate water saturation, Swc and the residual 
oil saturation, sor . The developed model outputs, or the predictions define the 
relative permeability end-points and the intersection point to quantify the 
wettability and the shape of the relative permeability curves. A number of 
correlations based on empirical models and network models exist to predict the 
relative permeability curves and the wettability of oil bearing sandstone 
formations from the initial oil and water. Calculations from the ANN model 
were then compared with values calculated from other models currently in wide 
spread use. 
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NOMENCLATURE 
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end-point oil relative permeability at connate water condition, 
end-point water relative permeability at residual oil saturation, 
the relative permeability at intersection of the two curves. 
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INTRODUCTION 

Relative permeability and wettability are the two most important parameters 
in reservoir engineering. They describe the flow of different fluid phases in any 
reservoir and directly relate the distribution of fluid phases present, including the 
recovery of hydrocarbons. Therefore, the relative permeability curves along with 
the wetting preferences of the rock-fluid system define the reservoir flow 
mechanics, and hence the economics of any field development. 

Artificial neural network (ANN) models are designed to emulate human 
information processing capabilities such as knowledge, speech, prediction and 
control. The ability of ANN systems to spontaneously learn from examples, 
reason over inexact and fuzzy data, and provide adequate responses to new 
information not previously seen, has generated increasing acceptance for this 
technology in the engineering and applied sciences, and resulted in numerous 
applications. Artificial neural networks are relatively new to the Geosciences and 
Petroleum Reservoir Engineering (1). This new approach has only been sparsely 
demonstrated in well testing (2), pump card diagnosis (3), well log analysis (4), 
performance of oilfield cements (5) and a few other applications. The use of this 
novel technology is presented towards predicting wettability and relative 
permeability data of hydrocarbon reservoirs. 

RELATIVE PERMEABILITY AND WETTABILITY 

Relative permeability defines the flow of one fluid phase in the presence of 
one or more fluids, the fluid phases being typically oil, water and gas. An 
elegant review of two-phase and three-phase relative permeability has been 
presented by Honarpour, Koederitz and Harvey (6). The relative permeability 
data are used extensively in commercial reservoir simulators to assess the 
reservoir performance or recovery scenarios, prior to full field development. 
The accuracy of the relative permeability curves are of paramount importance in 
terms of both reducing costs and uncertainity of the assessed reservoirs. 
Relative permeability data are conventionally obtained either from core analysis 
or are approximated from a number of conventionally established correlations 
depending on the formation characteristics. 

Wettability describes the relative attraction of one fluid for a solid in the 
presence of other immiscible fluids, and is known to influence a number of other 
important reservoir parameters, including relative permeability. It is the main 
factor responsible for the microscopic fluid distribution in porous media and it 
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determines to a great extent the amount of residual oil saturation and the ability 
of a particular phase to flow. The relative affinity of a rock to a hydrocarbon in 
the presence of water is often described as 'water-wet', 'intermediate', or 'oil­
wet'. Wettability, therefore, influences the overall hydrocarbon recoveries and 
the choice of appropriate improved recovery techniques. 

Measurement and quantification of wettability is the subject of numerous 
research publications, and is reviewed by Anderson in a series of publications 
(7). However, as a general rule, experimentally established by Craig (8), a 
water-wet reservoir system will tend to have the intersection of the oil/water 
relative permeability curves at saturations greater than 50%, with krw@ Sor less 
than 0.3, and an irreducible water saturation (or initial connate water saturation) 
Swc of greater than 20%. An oil-wet system, however, will tend to have the 
intersection point at saturation greater than 50%, with krw @ Sor greater than 0.5 
or approaching 1.0, and a Swc value of usually less than 15%. Wettability in the. 
context of the present work is thus related in terms of the position of the point of 
intersection of the predicted relative permeability curves , i.e. the points Sint and 
kint. 

CORRELATIONS TO PREDICT RELATIVE 
PERMEABILITIES OF RESERVOIRS 

Relative permeability data are usually obtained from laboratory 
investigations on suitable cores. However, this source may be lacking and 
suitable approximations must be derived. These approximations are determined 
for and depend on the process which the reservoir is undergoing. Most relative 
permeability mathematical models may be classified under the following 
categories : capillary models, statistical models, empirical models and network 
models. The advantages and limitations of each of the model are reviewed by 
Honarpour and co-workers (6). 

The correlations for predicting relative permeability data are being 
increasingly used in reservoir simulators due to lack of real data at the start of 
any field development, and the costs incurred in generating such data. Further, 
complications may arise in terms of obtaining representative core data, the 
scaling of the core data to field data, and the accuracy of the ensuing data. 
Three correlations for approximating relative permeability data are often used in 
the industry due to their simplicity and limited input data requirements: Corey 
(9), Naar-Henderson (10) and that of Honarpour et al.(11) (henceforth referred 
to as Honarpour correlation). The Corey approximation is usually good for 
drainage processes, e.g. a gas drive where the saturation of the wetting phase is 
being decreased. The Naar-Henderson approximation is good for imbibition 
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processes, e.g. water drives where the saturation of the wetting phase is 
increasing. Honarpour developed a set· of empirical prediction equations for 
water/oil imbibition relative permeability and gas/oil drainage relative 
permeability from a large number of experimental data. 

The equations developed by Honarpour have not been extensively tested. 
However, most of the tests which have been made indicated that the equations 
are in closer agreement with laboratory data than the predictions of published 
correlations which were used as a basis for comparison. A reservoir engineer 
usually goes through a trial and error process to choose the appropriate relative 
permeability curves to best represent the reservoir system under study. This 
trial and error process is explored further in history matching when the correct 
relative permeability curve is being sought to match the reservoir performance. 

DEVELOPMENT OF THE ARTIFICIAL NEURAL 
NETWORK MODEL 

Artificial neural networks are network models that are based on the neural 
structure of the human brain (12). Maren and co-workers (13) have described 
ANN as computational systems, either hardware or software, which mimic the 
computational abilities of biological systems by using large numbers of simple, 
interconnected artificial neurons. Artificial neurons are simple emulations of 
biological neurons; they take in informat~on from sensor(s) or other artificial 
neurons, perform very simple operations on this data, and pass results on to 
other artificial neurons. Neural networks operate by having their many artificial 
neurons process data in this manner. They use both logical parallelism (for all 
neurons in the same layer), combined with serial operations (as information in 
one layer is transferred to neurons in another layer). 

The main aspect of ANN which makes them different from optimisers, 
conditional simulators, etc., is that they are data driven whereas optimisers etc., 
are model driven. Therefore, Neural networks can yield unbiased answer (or 
prediction). This is of immense advantage in the confidence levels of ANN 
although the same feature can be a disadvantage if data used for training are 
scarce or inaccurate. 

A well defined two-phase relative permeability curve, such as that of 
water/oil (figure 1) can be usually described by the following six parameters: 
Swc• S0 p Sint• kro @ Swc• krw @ S0 f' and kint (as defined in the 
Nomenclature). 
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kint 

0~----~~--------------~----~ o Sint Sor 

Saturation 

Fig. 1. Input and output parameters used in ANN model 

Of these parameters, the connate water saturation (Swc ) and the residual oil 
saturation (S0 r) can be easily obtained from resistivity logs (14), and are thus 
chosen as input parameters to the proposed ANN architecture. The other 
parameters: Sint• kro@ Swc• krw@ Sor• and kint are usually obtained through 
costly experimental work or extensive calculations; hence, they are chosen as 
output from the model. The ANN architecture for the proposed model is shown 
in figure 2. As illustrated by this figure, the network is composed of many 
simple processing elements that are organized into a sequence of layers. These 
are the input layer, the hidden layer, and the output layer. 

The input and output layers, generally, consist of one or more hidden 
layers. There is no direct and precise way of determining the number of hidden 
layers to use and the exact number of neurons to include in each hidden layer. 
Research (15, 16) in this area proved that one or two hidden layers with an 
adequate number of neurons is sufficient to model any solution surface of 
practical interest. The number of hidden neurons is a function of the problem 
complexity, the number of input and output parameters, and the number of 
training cases available. Hence, a trial and error process was used to determine 
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the number of hidden neurons. After trying a number of different configurations 
of hidden neurons, it was found that seven neurons in the hidden layer yielded 
the best results. 

INPUT 
LAYER 

s we__.,. 

HIDDEN 
LAYER 

OUTPUT 
LAYER 

s 
int 

. Krw 

K 
int 

Fig. 2. The architecture of the ANN model-1 

DATA PREPARATION AND NETWORK TRAINING 

The developed ANN model has to be trained to recognize the relationships 
between the input parameters (Swc ) and (S0 r) and the desired output parameters 
Sint• kro @ Swc• krw @ Sor• and kint· These relationships will be stored as 
connection weights between the different neurons. The process of determining 
the weights is called the training or the learning process. In order to train the 
ANN model to produce the desired output, the model has to be trained over the 
full range of the typical input parameters. The Swc and S0 r ranges used are 
between 0.0 and 1.0. Patterns within these ranges are evenly distributed so that 
the training can cover all possible typical load values. If this is not the case, 
training will tend to focus on regions where training patterns are densely 
clustered, and neglect those that are sparsely populated, hence, producing 
inaccurate results. 

The multilayer feedforward network used in this work is trained using the 
backpropagation (BP) paradigm developed by Rumelhart and McVlelland (17). 
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The BP algorithm uses the supervised training technique. In this technique, the 
interlayer connection weights and the processing elements thresholds are first 
initialized to small random values. The network is then presented with a set of 
training patterns, each consisting of an example of the problem to be solved (the 
input) and the desired solution to this problem (the output). In training the 
proposed model, 56 cases covering a wide range of porosities and permeabilities, 
and having diverse wettabilities were used. These data are generated from 
experimentally established relative permeability curves for different sandstone 
lithologies obtained primarily from the published literature, and to a limited 
extent from the local oil companies. Typical examples of the different training 
patterns used as part of the training data set are shown in table 1. These training 
patterns are presented repeatedly to the ANN model, and weights are adjusted by 
small amounts that are dictated by the general delta rule (17) . This adjustment is 
performed after each iteration when the network's computed output is different 
from the desired output. This process continues until weights converge to the 
desired error level or the output reaches an acceptable level. The system of 
equations that provides a generalized description of how the learning process is 
performed by the BP algorithm is described by Simpson (18). 

Table 1. Sample of Training Data Set Used 

Case# Swc Sor kro@ Swc krw® Sor Sint kint 

1 0.40 0.35 0.60 0.06 0.62 0.04 

6 0.23 0.40 0.80 0.42 0.35 0.17 

11 0.06 0.24 0.75 0.32 0.64 0.15 

21 0.15 0.29 1.00 0.40 0.48 0.16 

33 0.24 0.00 0.85 1.00 0.82 0.16 

40 0.19 0.20 0.81 0.40 0.53 0.14 

46 0.18 0.30 0.90 0.34 0.50 0.18 

50 0.00 0.05 1.00 1.00 0.36 0.44 

The training process of this ANN model was performed using the 
NeuroShell™ simulator. After a training period of 3 hours and 20 minutes, the 
network converged to a threshold of 0.01. Having trained the network 
successfully, the next step is to test the network in order to judge its 
performance. 
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NETWORK TESTING AND VALIDATION 

The developed ANN model was tested with six sets of experimentally 
determined relative permeability curves, with a range of wettability 
characteristics. These data set consisted of a wide variation of input and output 
parameters as defined in figure 2, and were not used in the training of the 
model. 

Figures 3 and 4 show the ANN predictions for position of the intersection 
point of the relative permeability curves. The figures also show the actual test 
data and those obtained by the different correlations for the same cases. It is 
evident that ANN gave extremely good predictions for the wettability, which in 
two of the test cases were identical to the model predictions. Statistical analysis 
of the results (see table 2) show that the developed model can predict wettability 
within an average R2 of 0.938 and a mean absolute error of 2.57 %. This means 
that the model can explain 93.8 % of the variability in Sint (used to define 
wettability) of the selected input variables. This compares with the R2 of 0.886 
from the Honarpour correlation; the latter being the best one can obtain from the 
published correlations. The Corey and the Naar-Henderson correlations gave 
rather poor R2 values of 0.015 and 0.024, respectively. 
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Fig. 3. Wettability results 
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Table 2. Statistical Error Comparison for Sint Using ANN Model #1 and Others 

Statistical Parameter 

Mean Absolute Deviations (MAD) 

Mean Squared Error (MSE) 

Mean Absolute Percentage Error 
(MAPE) 

Coefficient of Determination (R2
) 

COREY: Corey's Equation 
HNRPOR: Honarpour Equation 

COREY HNRPOR NAARH ANN 

0.0057 0.0052 0.0044 0.0003 

0.0057 0.0052 0.0044 0.0003 

12.096 12.726 8.836 2.603 

0.847 0.882 0.156 0.951 

NAARH: Naar-Henderson Equation 
ANN: Artificial Neural Network 

The kint as observed in figure 4 gave an average R2 of 0.653 with the 
developed ANN model (fable 3). Although the kint is insignificant in defining 
wettability, it has an importance in defining the overall shape of the relative 
permeability curves. Our results (19) show that kint can be more accurate if the 
developed model was based on four input variables as shown in figure 5, rather 
than the two input variables used. The R2 value of kint then improves to 0.900, 
and the mean absolute error shows a marked improvement from 25 % to 20 % . 
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The four input model, therefore, gives better predictions for the intersection 
relative permeability value. However, incorporation of this model will require 
additional input data, and consequently increased costs. 

Table 3. Statistical Error Comparison for Kmt Using ANN Model #1 and Others 

Statistical Parameter 

Mean Absolute Deviations (MAD) 

Mean Squared Error (MSE) 

Mean Absolute Percentage Error 
(MAPE) 

Coefficient of Determination (R2
) 

COREY: Corey's Equation 
HNRPOR: Honarpour Equation 

s 
we 

Krw 

INPUT 

LAYER 

v__. 

COREY HNRPOR NAARH ANN 

0.0052 0.0012 0.0081 0.0012 

0.0052 0.0012 0.0081 0.0012 

91.670 25.198 191.667 25.267 

0.0034 0.764 0.663 0.653 

NAARH: Naar-Henderson Equation 
ANN: Artificial Neural Network 
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Fig. S. The architecture of the ANN model-2 

The measured end-point relative permeabilities, krw and k.v , are shown in 
figures 6 and 7 with the predictions of the developed ANN model (with two 
inputs) and the chosen correlations. The developed model gave rite good 
predictions for the krw and kro in five out of the six test cases, with R values of 
0.939 and 0.484, respectively. The Corey and the Naac-Henderson correlations 
gave very poor predictions for the end-point relative permeabilitys and were 
considered statistically insignificant for the sandstones tested. This was 
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Fig. 6. End-point water relative permeability results 
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Fig. 7. End-point oil relative permeability results 
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explicable with the Corey equation being suitable for drainage processes (with 
gas drive) while Naar-Henderson being more suited to water drive imbibition 
processes (20}, unlike the two-phase water/oil relative permeability data used in 
the presented training. The Ho narpour correlation, however, gave reasonably 
good predictions for both the end-points, with R2 values of 0.594 and 0.153, 
respectively. Although this is consistent with Honarpour's assertion that their 
model is based on numerous data, it is statistical} y poorer than the predictions of 
the developed ANN model. 

The reasonably good ANN predictions is promising to the overall capability 
of the developed model, given the limitations of the training data set in terms of 
diverse lithologies and wettabilities. Preliminary studies (21) also showed 
improved ANN predictions when the training data were limited to a specific 
formation and field. 

CONCLUSIONS 

Artificial neural networks show promising results in predicting wettabilities 
and end-point relative permeabilities of sandstone formations. The robustness of 
the predictions can be greatly enhanced if the ANN model is trained and tested 
with data from similar lithology and formation characteristics. ANN model 
predictions can be significantly reduce the costs and uncertainties associated in 
obtaining relative permeability data currently used in reservoir simulators. 

As ANN models are data driven, the higher the number of cases involved in 
training, the better the model predictions for wettabilities and relative 
permeabilities.- The best methods to determine the minimum number of hidden 
nodes were found to be by trial and error process, with data quality being of 
utmost importance in the ensuing models. 

ANN models show a far better prediction of the wettability and end-point 
relative permeabilitys than the currently available correlations. This situation is 
primarily due to the ability of the neural networks to recognize both linear and 
non-linear relationships among the different variables which influence wettability 
and relative permeability of hydrocarbon reservoirs. 
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