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ABSTRACT 

A new model reference adaptive control scheme, suitable for linear multivariable 
discrete time systems, is proposed. A set of parameter adaptation algorithms are 
developed based on the validity of perfect matching between the model and the plant, 
and on the availability of complete state vector. Arrangements for linear state error 
feedback, and time varying adaptive loop gains are made in the proposed scheme. It 
is shown that the scheme with such arrangements offers increased rate of decay of 
adaptive system errors towards the origin of the error space. A problem of on-line 
matl'ix inversion, encountered in implementing the proposed adaptation algorithms, 
is solved by modifying the structure of one of the adaptive controllers. 

1. INTRODUCTION 

The plant of a Model Reference Adaptive Control (MRAC) system can be 
controlled in two ways: (i) by a set of controllers linked to each of the plant 
parameters which are assumed to be accessible for direct adjustment, (ii) by a 
set of controllers connected externally to the plant. The second approach has 
more applications since it does not require the accessibility of plant parameters. 

The MRAC system is, further, classified mostly into two configurations: series­
parallel and parallel. In the first configuration the model is necessarily to be a 
hardware, circuits formed by discrete components. 
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This configuration is employed in the design of externa. controllers for single­

input single output plants [Udink Ten Kate, 1978] .. This design approach is 
restricted to plants having no numerator dynamics and requires the estimated 
maximum value of one of the plant parameters. In the· parallel configuration of 
the MRAC system, the model can be another physical system, perhaps a prototype 
of the plant. This configuration has also been considered in the formulation of 

parameter adaptation laws for direct controllers in multi-input system [Sebakhy 
1976]. Adaptation by direct controllers is not always possible since the state 
variable representation of the plant may result in matrices having elements as 
functions of more than one parameter of the plant. Sebakhy's method, if extended 
for the design of external controllers leads to a problem of on-line matrix 
inversion, and requires the maximum values of the elements of input distribution 
matrix of the plant. 

In the above referred works, and in many others, the parameter adaptation 
algorithms employ certain time· invariant gain matrices. Though the convergence 
of the algorithms has been ensured, high overshoots and large settling times have 
been observed in parameter adaptive responses. It has been shown that these 
undesirable effects can be minimized by employing time varying gain matrices 
(matrix gain sequence) [Subbayyan and Nagarajan 1978]. Such a scheme results 
in a more flexible adaptive control system than the one employing time invariant 
gain matrices in the adaptive loops. 

This paper considers the above mentioned desirable features of gain 
sequences in the adaptive loops, and proposes a new, asymptotically stable MRAC 
scheme for multivariable, discrete time systems. The proposed scheme is 
suitable for parallel configuration of MRAC system with external controllers, and 
it does not assume any a priori knowledge of the bounds on plant parameters. 
A set of parameter adaptation algorithms are developed, based on the validity of 

perfect matching between the model and the plant, and on the availability of 
complete state vector. The application of perfect matching conditions requires 
on-line inversion of a matr.iA equals to the number of inputs of the plant. This 
undesirable requirement is circumvented by modifying the structure of one of 
the adaptive controllers. A set of loop gain sequences is employed in the scheme, 
and a method for choosing an optimum set of such gain sequences is presented. 
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The scheme also utilises a linear state error feedback. It is shown that additional 
improvement in the rate of decay of adaptive system errors is achieved by proper 
selection of the state error feedback matrix. The effectiveness of the proposed 
scheme is illustrated by an example. 

2. PROBLEM STATEMENT 

A linear m input, nth order plant, for which a set of adaptive controllers are 
to be defmed, is described by the dynamical equation where ~ and BP are, 
respectively (nxn),and (nxm) unknown plant matrices. xP (k) is assumed to be 
accessible for precise measurement. 

X (k+l) = A X (k ) + B u (k ) 
p p p p p (1) 

The linear m input, nth order completely controllable model, whose state 
variable responses due to a reference input llu. (k) are the desired state variable 
responses of the plant, is described by. 

X (k+l) = A X (k) + B u (k) 
m m m m m (2) 

where ~ and Bm are appropriately dimensioned known model matrices. 

The plant input ~ (k) is controlled by a set of controllers, and is defined as 

u ( k ) = Q ( k + 1 ) [ u ( k ) + F T ( k + 1 ) x ( I< ) + pTe ( k ) (3) 
p m P 

where 

Q {k+ 1) and F(k+ 1) are, respectively, (mxm) 
and (nxm) dimensioned adaptive controllers. 
e(k) is the (nx 1) state error vector such that 

e(k) = X (k) m 
X (k) 

p 
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and P is a known (nxm) constant matrix. 

The problem of MRAC system is to modify on-line the elements of Q(k+ 1) 
and F(k+ 1) based on a set of parameter adaptation algorithms, to achieve 

Lt e(\"-) = 0 (5) 

k ) 00 

Lt F~': - F(k) Q·'· .. Q(k) ] = 0 (6) 

k ) 00 

F* and Q* are the correct controller matrices, (unknown) which when 
incorporated in the adaptive system, perfectly match "'I (k) with "m (m) 

THE ERROR MODEL 

The dynamics of state error is obtained from equation (1) to (4) as 

e(k+l) = [ A - B PT ] e(k) 
m m + A - A - B FT(k+l) 

m p m 

B Q- 1
(k+1) - B] u (k) 

m p p 
(7) 

In order to achieve the requirements given in equations (5) and (6), the plant 
and the model are asumed to satisfy the conditions of perfect matching [Chan 
1973, Narendra and Kudva 1974]. 

·'· r A = A B <F .. 
p m m 

(8) 

·'· -1 
B = B (Q") 

p m (9) 
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The conditions of perfect matching require the existances of (Q*) -t. Q(k) has 
to be non singular for all k. Substitution of equations (8) and (9) in equation (7) 
leads to. 

e(k+l) = [A - B P1] e(k) + m m B e1
(k+t) z(k) m 

where the (mx (n+m)) parameter alignment error matrix 

z 1 (k) 

z
2 

(k) 
X (k) 

p 

z (k) = = f = n+m 

zf(k) 
u (k) 

p 

(10) 

(12) 

It is noted that the error model represented by equation (10) is different from 
that of model reference system reported earlier [Sebakhy 1976] which does not 
use state error feedback. The matrix Pin equation (10) can be freely chosen so 
that the eigenvalues of [~ - Bm pT ] are placed at any desired locations in the 
z-plane. The dynamics of the state error e(k) are thus controlled by this 

eigenvalue assignnient. 

3. TilE ADAJ.YfATION ALGORITHMS 

The proposed adaptation algorithms are derived using the gradient estimation 
procedure. Let J ( 9 ) be a quadratic index defined as 9 ( k ) as 

J(e) = Tr [ a1 (k) e(k) ] (13) 

-283-



A Model Reference Adaptive Control Scheme with External Controllers 

The' gradient matrix' of the index J(6) is obtained by [Graupe, 1976]. 

v J(e) = 
a J(e) 

d 9(k) 
= 2 e (k) (14) 

Since 6(k) is unknown, 'V J(6) cannot be computed. However, an estimate of 
gradient matrix is determined by computing an estimate on 6(k). 

Defining 

5(k) = e(k) - [A - B PT] e(k-1) 
m m (15) 

equation (10) is written as 

5 (k) = (16) 

An estimate on 6(k), denoted by 6(k), is then derived from equation (16) as 

9r (k) = + T ex (k) (B ) 5(k) z (k-1) 
m 

where ex (k) > 0 is a scalar function ofz(k-1), and 

(B +) = [ B T B ]-l 
m m m 

is the (mxn) left pseudo inverse of Bm. 

B T 
m 

Equation (17), substituted in (14), yields an estimate on 'V J (6) as 

"J(e) = 2 ex (k) z (k) 5 T (k) (B +) T 
m 

(17) 

(18) 

(19) 

The estimated gradient matrix 'V J (6) is now employed in the gradient estimation 
approach [Mendel1974] to form an algorithm for modifying the elements of 6(k). 
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The algorithm is of the form 

9 ( k + 1 ) = 9 ( k) - 2 o( ( k) R ( k) () [ z ( k- 1 ) s T ( k) ( B +) T] (20) 
m 

where R(k) is a (f Xm) matrix gain sequence with itse elements rij(k) > 0, i = 1, 
2, ... f, j = 1 ,2 ... m, and the symbol - stands for the "element by element matrix 
product" operator [Carroll, 1974]. 

The required parameter adaptation algorithms are, then, derived from 
equations (11) and (20) as 

F(k+1) = F(k) + 2 o< (k) R (k) () [x (k-1) sT(k) (B +)TJ 
1 p m 

(21) 

(Q- 1 (k+l) ) T = (Q- 1 (k) ) T - 2 0( (k) R
2 

(k) 

(22) 

where Ri(k) and R2 (k) are, respectively, (nx m) and (mxm) dimensioned matrix 
gain sequences such that 

R(k) = (23) 

A correct choice of the scalar OC (k) and the gain sequences, R1 (k) and R2(k), 

of equations (21) and (22) can yteld an asymptotically stable MRAC scheme 
with increased rate of decay of adaptive system errors towards the origin of the 
error space. 
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4. ASYMPTOTIC STABILITY OF THE MRAC SCHEME 

Lyapunov's direct method is employed to ensure the asymptotic stability of 
the developed MRAC scheme. A candidate for the Lyapunov function, V(k), is 
considered as 

V(k) = Tr [ ~T (k) [ 9(k) 0 e(k) ] ] 

where RT(k) is the "element by element inverse matrix" such that 

A 
R(k) @ R(k) = E 

and all elements of E are unity 

The first forward differen.ce b. V(k) is obtained as 

b. V(k) = Tr [ RT (k+l) [ e(k+l) 0 e(k+l) J 

- ~T (k) [9(k) G) 9(k) J ] 

= g(k) + h(k) 

where 

g(k) = Tr [ [ ~T(k+l)- RT(k)] [ e(k+l) ''· e(k+l)] ] 

h(k) = Tr [ [ ~R(k) [ e(k+l) 0 e(k+l) 

- 9(k) 0 9(k)]] ] 
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The rate of convergence of 9(k) towards zero is related to the rate with which 
V(k) goes to zero. Hence it is advantageous if h(k) and g(k) are made individually 
negative definite for all k. 

g(k) is made negative definite for all9(k+ 1) * 0 by constraining the elements 
of R(k) as rij(k) < rij (k+ 1). 

Defining 

p(k) = (B +) s(k) 
m 

= 9(k) z(k-1) 

and using equation (20) in (28) 

h(k) = Tr [ 4 a (k) RT (k) [a (k) R(k) 0 R(k) ® 

[ z ( k- 1 ) p T ( k) ] 0 [ z ( k -1 ) p T ( k) ] - R ( k) @ [ z ( k -1 ) 

pT(k)] @ 9(k)] ] 

(29) 

(30) 

Employing the properties of element by element matrix product in sequence 
as listed in Appendix A, equation (30) is simplified to [Riyadh Al-Salman, 1981]. 

h(k) = Tr [ 4a (k) [a (k) RT(k) [ z(k-1) 

0 z ( k- 1 ) ] - v ] [ p T ( k ) @ p T ( k ) ] ] (31) 

when the scalar weightage oc (k) is selected as 

a (k) ~ (32) 
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and, when all elements of R (k) are negative definite as long as 
p(k) = OT(k) z(k-1) =F 0. 
Thus h(k) and g(k) are individually negative definite, and V(k) becomes a 
Lyapunov function. 

The situation when p(k) = 0 is considered in the Appendix B, and the proposed 
MRAC scheme is proved to be asymptotically stable in (O , e) space when 

( i ) (Am - BmPT) has its eigenvalues within unit circle. 
( ii ) (Am , Bm) is a completely controllable pair, and 
( iii ) urn (k) is sufficiently general. 

5. ALGORITHMS WITH OPTIMUM WEIGHT AGES 

Without loss of information regarding asymptotic stability of the proposC'd 
MRAC scheme, h(k) may be considered of having m differPnt wPightages <Xi (k), 

i =1,2, ... m. Equation (31) can be rewritten with thesP wPightages as 

where 

m 2 
h(k) = 4 :2,. [a. (k) 

• 1 J 
j= 

m 
= :2. 

j =1 

h. (k) 
J 

r:(k) [z(k-1) 0 z(k-1)] p~(k) 
J J 

- cx.(k) p~(k)] 
J J 

Rj(k) is the jth column of R(k), and 

Pj is the jth element of p(k) 
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Minimization of hj(k) with respect to aj (k) offers a set of optimum weightages 

;': 
a 

. (k) = ----------­
J 

2r~(k) [ z(k-1) 0 z(k-1)] 
J 

, J=1, 2 ••• m (34) 

The parameter adaptation algorithms, equations (21) and (22) are, then, 
expressed as 

Q-l (k+1) = Q- 1 (k) - [ R (k) D(k) ] T 
2 

@ [(B +) s(k) uT(k-1)] 
m p 

where R1 (k) and R2(k) are as in equation (23), and 

(36) 

D(k) = 2 diag ( a
1 

,.,(k), a/(k), ... «~(k) (37) 

The parameter adaptation algorithm with optimum scalar weightage can be 
readily derived in the same lines as those indicated in [Riyadh 1985]. 

These algorithms are obtained as 

F(k+l) = F(k) + f; (k) [ R
1 
(k)] @ [x (k-1) s T (k) (B+) T ] (38) 

p m 
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where 

5 T (k) 5 (k) 
·'· a "(k) = (40) 

2 5T(k) T(k) 5(k) 

T(k) = diag [ t1 (k) t2 (k) t ( k)] ... 
n 

and 

t. (k) = 
I 

f 2 
2: z.(k-1) r .. (k) 
j=1 J I J (41) 

6. IMPLEMENTATION OF THE ADAPI'ATION ALGORITHMS 

Equations 21 and 22 with proper weightages suggested in Section 5 offer an 
asymptotically stable MRAC scheme. Implementation of equation 21 for 
modifying the adaptive controller F(k) is easy. But modifying the elements of 
Q(k) requires D.. Q(k) which is to be computed from equation Defining the first 
forward difference of Q-1 (k) as 

~ Q- 1 (k) = 2 a (k) R T (k) G 
2 

then 

and 

b. Q(k) = [ Q- 1 (k) +b.Q- 1 (k) ]- 1 - Q(k) 

(42) 

(43) 

(44) 

= Q(k)' [ (I+ Q(k) b.Q-
1

(k) )- 1 -I] (45) 
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Equation 43 or 45, along with 42 can be implemented for modifying Q(k). 
However, such an implementation requires additional on-line computation due 
to inversion of a matrix of (mxm) dimension. This problem can be circumuented 
by considering Fig. 1(a), ~(k), of Fig. 1 (a) is evaluated as 

1\ 1\ 

u (k) = u (k) + W(k) u (k) 
p p p 

= [ 1- W(k) ] - 1 u (k) 
p 

If W ( k ) is selected as 

W(k)" = [ I - Q- 1 (k) ] 

then 
1\ 

u (k) = Q(k) u (k) 
p p 

which is the required control signal to be injected into the plant. 

(46) 

(47) 

(48) 

(49) 

Hence, a modification of the structure and location of Q(k) in the adaptive 
loop solves the problem of on- line matrix inversion. Fig. 1(b), show the MRAC 
scheme with the proposed modification of the adaptive controller Q(k) . 
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Fig. (t .a) : A Suggested Modification to Solve the Inverse Problem. 
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Fig. (t.b) The Proposed MRAC Scheme With External Controllers. 
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ILLUSTRATIVE EXAMPLE 

The following example illustrates the application of the algorithms developed 
in this paper. 

Let the model matrices be 

~= [0.6 0.16 ] 

0.5 0.62 

The model has the poles at 0.893 and 0.327. 

The input um(k) is a sequence of rectangular pulses switching between -1 
and + 1 with a frequency corresponding to 2 sample periods. 

For the purpose of simulation, the plant matrices are considered as 

~= [0.36 

0.5 

0.08] 

0.02 

The controller matrices at the start of adaptation are assumed to be 

T ( 0) = [0 0] Q(0)=1 

(a) Equations 21 and 22 for improved convergence, 38 and 39 for optimum 
convergence with scalar weightages and optimum convergence with matrix 
weightages (equations 35 and 36) are employed for parameter adaptation. 

The following fixed gain matrix and matrix gain sequences are used in the 
algorithms 

(1) RT { k) 

{2) RT { k) 

(3) RT { k) 

[ 0.002 0.00027 0.0044 ] 

[ 0.11 0.032 0.4 ] 

RT { k) + kHT k = 0, 1, 2, ... 
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Where 

[ 0.003252 0.000605 0.006127] 

(4) pT = [ 0.0 0.0 ) , so that the eigenvalues of 

are placed at (0.893, 0.327 ) 

(b) The same example is again considered but with the following state error 
feedback matrix 

pT = [ 0.54 0.29 ] , so that the eigenvalues of 

[~- bm pT) are placed at (0.4 , 0.0) far from the respective poles of model. 

A computer program obtainable from authors (on request) is utilised for 
simulation and its flow chart is as given in Fig.2. 

Tabes 1 and 2 compare the responses of controller parameters and the 
responses of adaptive system errors at k = 1000. It can be verified from both 
tables that the algorithm for optimum convergence with matrix gain sequences 
is offering fastest response. 

The adaptive responses of the controller parameters, and the responses of 
adaptive system errors with matrix weightage are presented in Fig. 3 through 
Fig. 6. The responses utilizing the gains as given above are indicated, respectively, 
as 1, 2 and 3 in the figures. The figures indicate that the degree of stability of 
the adaptive scheme is appreciable when the scheme employs matrix gain 
sequences and linear state error feedback. 
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REPLACE PRESENT 
VALUES BY UPDATED 
VA LUES 

COMPUTE R { k l 
IF NEEDED 

COMPUTE INPUTS 

START 

SE;T INITIAL CONDITIONS 
INITIAL STATES 0 f PLANT, 
INPUTS, 
NO. OF INTERACTIONS K, 
GAINS RL, RH,R{Kl 

CHOOSE ONE GAIN MATRIX 
1. GAIN MATRIX AS RL 
2 GAIN MATRIX AS RH 
3. MATRIX GAIN SEQUENCE Rl kJ 

CHOOSE ONE ALGORilHM 
1.ALGORITHM WITH IMPROVED CONVERGENCE • 
2. ._ FOR OPTIMUM CONVERGENCE SCALAR 

WEIGHTAGE . 
FOR OPTIMUM MATRIX 
WEIGHTAGE . 

UPDATE THE CONTROLLERS PARAMETER 

PRIN 
CONTROLLERS PARAMETERS 
SUM SQUARE STATE ERROR, 
SUM SQUARE PARAMETERS ALii'llMENT ERROR 

NO 

Fig. (2) Fl.owchart of simulation program . 
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Fig. (3) Adaptive responses of controller parameters 
(Optimum convergence with matrix weightage. P = 0 ). 
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Fig. (5) - Adaptive responses of controller parameters 
(Optimum convergence with matrix weightage. P * 0 ). 
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7. CONCLUSION 

A new model reference adaptive control (MRAC) scheme is proposed in this 
work and a set of parameter adaptation algorithms are developed. The algorithms 
introduce certain matrix gain sequences ( R(k) D(k) ) in the adaptive loops 
resulting in an increased rate of decay of parameter alignment error, O(k). The 
elements of R(k) are to be monotonically increasing functions of k with their 
maximum values less than unity, and can be selected independent of each other. 
The elements of D(k) are nonlinear functions of signals measured from the 
adaptive system. Another feature of the developed ~RAC scheme is the possibility 
of controlling the dynamics of state error by the matrix P. Proper selection of 
the elements of P leads to additional improvement in the structure of one of the 
controllers is suggested to solve the problem of on-line matrix inversion 
encountered in the implementation of the scheme. Though the proposed scheme 
demands more on-line computations due to the introduction of P. D(k) and R(k), 
it promises an improved degree of stability in (8, e) space. 
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APPENDIX A 

The following properties of element by element matrix product are use in 

simplifying equation (30). 

( i) Tr [A ( B0. C) ] = Tr ( ( A 0 BT ) C ] (A.l) 

(ii) A0A= E (A.2) 

(iii) (xyT) 0 (xyT) = (x Q x) (yT 0 yT) (A.3) 

( iv) Tr [ E ( xxT A) 0 A) ] = Tr ( ( ATx) (xTA)] (A.4) 

(v) Tr [ xxT] = Tr ( ( XT 0 xT)] (A.S) 

where the matrices A, B,C and E, and vectors x, y and v are appropriately 
dimensioned; all the elements of E and v are unity; ~. the element by element 
inverse of A, exists when A has no zero element. 

APPENDIX B 

The state error feedback matrix P is chosen such that (Am - BmP~ has its 
eigenvalues within the unit circle in the complex plane. 

When 
T p(k) =a (k) z(k- 1) = o (B.l) 

it can be shown, from equation (10), that [Sebakhy, 1976). 

Lt e(k) = Lt [x (k) - x (k) ] = 0 
p m (13.2) 

k -> 00 k --> iOO 

Let 8 (k) and t3 (k) be the submatrices of9 be the submatrices of 6 (k) such that 

(B.3) 
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Employing equations (3), (12) and (8.3) in equation (B.1) 

6T(k) X (k-1) + ~T(k) [ Q(k) p [ u (k-1) + FT(k) x (k-1) 
m p 

(8.4) 

From equation (8.2), equation (8.4) is written as 

[ ~T(k) Q(k)] u (k-1) = 0 
m 

When the pair (~ , 8m) is completely (8.5) 

controllable, and the input ~(k) is sufficiently general, equation (8.5) results in 
[Kudva and Narendra 1974] 

~ T (k) Q(k) = 0 
(8.6) 

and 

(8.7) 

Since Q(k) is non-singular for all k, equations (8.6) and (B. 7) reduce to 

8(k) = 0 
(8.8) 
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