RECENT BENTHIC FORAMINIFERA FROM THE LOCAL WATER OF QATAR, ARABIAN GULF

By Hind Hitmi Al-Hitmi

Geology Department - Faculty of Science Qatar University - Doha - Qatar, P.O. Box 2713

دراسة الفورامنيفرا القاعية الحديثة في رواسب المياه الإقليمية القطرية

هند هتمي الهتمي

قسم الجيولوجيا - كلية العلوم - جامعة قطر

تم تعريف خمسين نوعاً من الفورامنيفرا من رواسب القاع في المياه الإقليمية القطرية على الجانبين الشرقي والشمالي الشبه جزيرة قطر في الخليج العربي، وقد شملت سبعة أنواع تتبع تحت رتبة Textulariina ونوع واحد يتبع تحت (وهي نادرة التواجد في العينات المدروسة)، واثنين وثلاثين نوعاً تحت رتبة Miliolina وعشرة أنواع تتبع تحت رتبة Rotaliina وقد لوحظ أن Miliolina هي المجموعة الأكثر انتشاراً وتمثل ٩,٥٥٪ من الفورامنيفرا المعرفة، بينما تمثل ARotaliina وعددها أربعة تمثل ٩ , ٥٠٪ من الفورامنيفرا المعرفة، بينما وعشرون عينة موزعة في منطقة يتراوح عمقها بين عدة أمتار قليلة قرب الشاطىء وأكثر من ستة وثلاثين متراً نحو وسط الخليج، وقد نوقشت العلاقة بين توزيع الفورامنيفرا في منطقة الدراسة والعوامل البيئية المؤثرة في هذا التوزيع، كما أجريت مقارنة بين مجموعة الفورامنيفرا المسجلة في هذه الدراسة ومجموعات الفورامنيفرا المسجلة في بعض مناطق الخليج العربي والبحر الأحمر وخليج العقبة.

Key Words: Recent Foraminifera, foraminiferal ecology, Qatar Peninsula.

ABSTRACT

In the present study, fifty species of Foraminifera are identified from the bottom sediments of the local Qatarian waters on the eastern and northern sides of Qatar Peninsula in the Arabian Gulf. These comprise 7 species of Textulariina, one species of Carterinina, 32 species of Miliolina and 10 species of Rotaliina. Miliolina constitutes the most frequent group as it represents 45.9% of the fauna, while Textulariina represents 24.3% and Rotaliina 29.8%. The distribution of the identified species in 24 studied bottom grap samples distributed in an area ranging in depth from few meters near shore to more than 20 fathoms (36m) depth are studied. The ecological factors controlling the distribution of the identified fauna are discussed. A comparison between that fauna and those in some parts of the Arabian Gulf, Red Sea and Gulf of Aqaba is attempted.

INTRODUCTION

The Recent Foraminifera of the Arabian shores were studied previously by many authors. The important studies are those of Said (1949, 1950) on the Red Sea; Houbolt (1957) on the Persian Gulf near Qatar; Murray (1965 a & b, 1966 a, b & c and 1973) on some parts of the Trucial Coast; Bahafzallah (1979) on Jiddah Bay (Red Sea-Saudi Arabia); El-Nakhal (1980 a & b) on the shores of Yemen Arab Republic; Basha (1983) on Jordanian part of Gulf of Aqaba; Anan (1984) on Quseir-Marsa Alam area on Red Sea Coast, Egypt; El-Deeb (1990 & 1992) on United Arab Emirates.

The aim of the present work is to study the Recent benthic Foraminifera on the eastern and northern sides of the Qatar Peninsula. The distribution of this fauna is shown on figure (2). The relations between the prevailing ecological parameters and the distribution of the fauna are discussed. A comparison between this assemblage and those recorded in some surroundings areas are shown, (fig. 5). A triangular plot for the studied samples is given on fig.4.

METHODS OF STUDY

Twenty-four bottom samples have been collected from the area of the local Qatarian waters on the eastern and northern sides of the Qatar Peninsula. These samples were taken along six lines, starting from the shore line towards the deeper waters of the gulf, and covering the area from east Umm Said to north of Al-Ruwais (Fig.1). The study area covers about 100km around the peninsula on the eastern and northern sides. The depth in the study area ranges from a few meters near the shore to more than 36m towards the basin. The studies samples are grap samples and were collected by the Marine Lab. of Qatar University. One-hundred grams of each sample were washed over a set of three sieves (60-120-200 mishes) to study and count their benthonic foraminiferal content. Samples are not stained. Selected species are photographed on the SEM and shown on plates 1-2.

TAXONOMY

The identified 50 foraminiferal species are arranged according to the scheme of Loeblich and Tappan (1988) and shown on Table (1).

DISTRIBUTION OF THE STUDIED FAUNA

The ecological parameters of the souhtern part of the Arabian Gulf was studied by Purser and Seibold (1973). According to these authors, the east area of Qatar Peninsula is a broad, shallow area (depth 10-20 m) studded with numerous

sholas and salt-dome islands. This area is affected by strong north winds and high air temperatures (45°-50°C). The surface salinity in the studied area is about 40 - 50%° or more in the remote lagoons and coastal embayments. The water temperatures can fluctuate between 40°C in summer and 15°C in winter, seasonal variations being less marked in the deeper parts of the basin.

Murray (1973) considered the Persian Gulf as a hypersaline shallow land-locked shelf sea marked by low diversity fauna, and he was of the opinion that it needed to be investigated much more because of its great geological importance.

The foraminiferal contents of 24 bottom sediment samples are studied and shown on fig.2. Percentages of suborders Textulariina, Miliolina and Rotaliina in each of the studied samples are shown on fig.3. A triangular plot for the studied samples is shown on fig.4. The occurrence ratios and comparison between the studied assemblage and those in some parts of the Red Sea and in north Gulf of Aqaba are shown on fig. (5).

The overall distribution of the studied fauna enables the following general observations:

- ☐ The Suborder Miliolina is the main group in this fauna and represents 45.9%, while the Textulariina represents 24.3% and Rotaliina 29.8%.
- The number of species, which reflects the diversity of the fauna varies between three species in sample 502b and 18 species in sample 502.
- The sloping sea floor in the studied area, which is a part of the Arabian Homocline, is characterized by a great variety of marine highs and depressions (Purser, 1973). This great variation in the bathymetry of the basin reflects greatly on the distribution of foraminifera, as in the deeper parts of the basin there are some highs changing it to shallower environment.

The most frequent species are Textularia foliacea (13.5%), Operculina costata (12.2%), Spiroloculina manifesta (9.5%), Ammonia beccarii (8.2%), Triloculina tricarinata (7.2%), Triloculina affinis (6.9%), Textularia sp. (6.3%), Spiroloculina clara (4.2%), Quinqueloculina granulocostata (3.3%), Amphistegina lessonii (3.0%), Textularia lateralis (2.8%), Quinqueloculina plicosa (2.3%) and Peneroplis planatus (2.1%), (fig.5). These thirteen species represent about 81.5% of the identified individuals.

At the genus level, the most frequent genera are Textularia (24.0%), Triloculina (18.4%), Spiroloculina

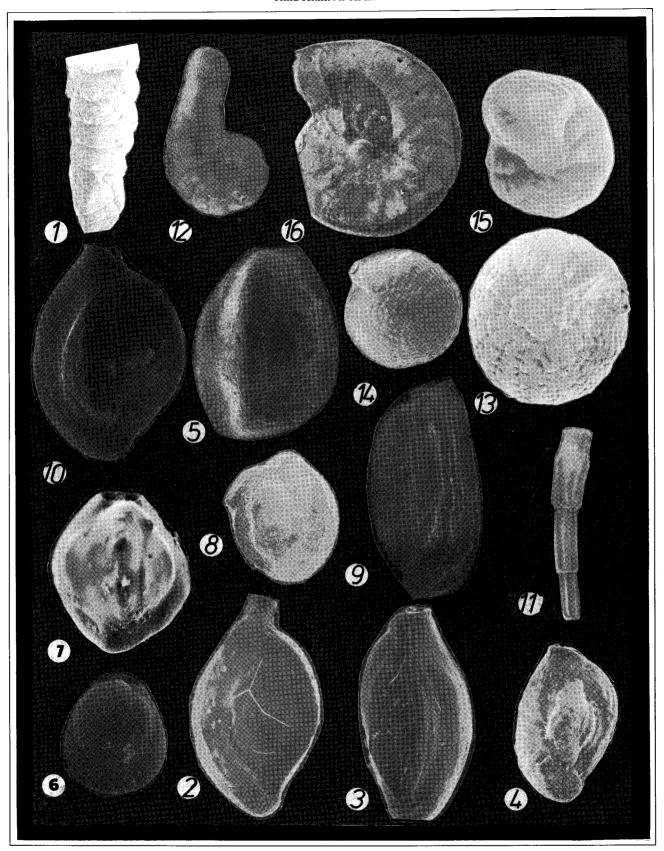


Plate 1: 1. Clavulina angularis d'Orbigny, X100; 2. Spiroloculina manifesta Cushman, X70; 3. Quinqueloculina disparilis d'Orbigny, X100; 4. Quinqueloculina parkeri Brady, 100; 5. Pyrgo anomala (Schlumberger), X150; 6. Pyrgo sp., X150; 7. Triloculina trigonula (Lamarck), X10; 8. Triloculina neoinflata El-Nakhal, X100; 9. Triloculina oblonga (Montagu), X100; 10. Triloculina tricarinata d'Orbigny, X100; 11. Articulina sagra d'Orbigny, X100; 12. Spirolina arietina (Batch,) X100; 13. Ammonia beccarii (Linne), X100; 14. Elphidium crispum Linne, X70; 15. Cribrononion sp., X150; 16. Operculina costata (d'Orbigny), X45.

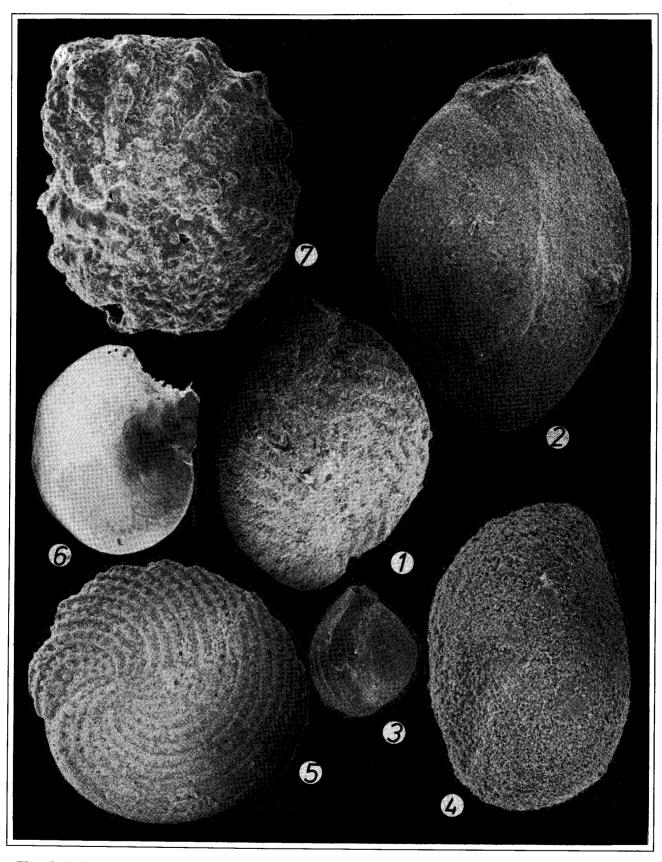


Plate 2: 1. Quinqueloculina philippinensis Parr, X140; 2. Triloculina linneiana d'Orbigny, X200; 3. Triloculina trigonula (Lamarck), X50; 4. Triloculina trihedra Loeblich and Tappan, X150; 5. Peneroplis planatus Fichtel and Moll, X90; 6. Amphistegina lessonii d'Orbginy, X45; 7. Cribrononion frigidum (Cushman), X140.

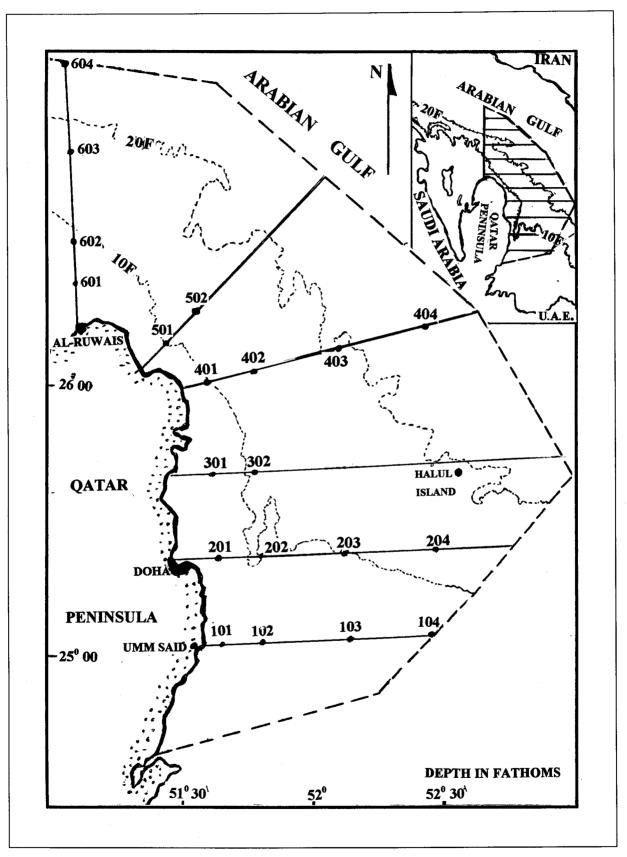


Figure 1: Location Map of the Study Area.

(13.7%), Operculina (12.2%), Quinqueloculina (9.6%), Ammonia (8.2%), Amphistegina (3.0%), Asterigerina (3.0%) and Peneroplis (2.1%), (fig.5). These nine genera represent about 94.2% of the identified individuals.

The areal distribution of the fauna, shows that Textularia foliacea, Spiroloculina manifesta, Ammonia becarii and Elphidium crispum are distributed in different sites of the area. Amphistegina lessonii, Asterigerina simplex, Bolivina sp., Carterina spiculotesta, Gaudryina sp. Cibicides sp, Clavulina angularis, Glomospira sp., Operculina costata and Spiroloculina clara are found only in the northern part of the area, which is deeper and more open to the sea, (fig.2).

The following elements are recorded – mainly-in the shallower parts (in the souhtern part and near shore in the northern part) of the study area: *Peneroplis planatus*, *Quinqueloculina* spp., *Spirolina arietina* and *Triloculina* spp.

The triangular plot for the 24 studied samples (fig.4) shows that it is possible to arrange the different samples in four groups. Each group includes samples from different lines having the same depth. These groups are: (101, 201, 501,601), 102, 202, 302, 302a, 402, 502), (103, 403, 603) and (404,604). These four groups reflect the change in the composition of the foraminiferal assemblages with increasing depth from the shore towards the sea. Some samples are scattered out of this general distribution and may reflect the depth anomalies of the sea floor in the study area. A comparison between this triangular plot and the triangular plots of environments discussed by Murray (1973) shows some similarities with hypersaline lagoons, beaches, mangrove swamps and shallow epicontinental seas.

Comparison of the studied fauna with those in the neighboring areas

A comparison of the studied foraminiferal assemblage with some foraminiferal assemlages in neighbouring areas is shown on fig.5. Of the 50 foraminiferal species identified in the studied area, 16 species were recorded in U.A.E. shores (El.Deeb, 1992). These species were recorded from the shallow shore area of U.A.E. with maximum depth 1.5m, and are recorded with similar ratios in the souhtern shallower part of

the study area. Exceptions are Ammonia beccarii which is slightly more frequent in our area, and Peneroplis planatus which is less frequent, (fig.5). Four deeper species were not recorded by El-Deeb (1992) due to the limited depth range of his samples (all his samples are coastal samples, while our samples are distributed in an area ranging in depth from the shore line to more than 20 fathoms). The similarity with the Red Sea is limited, as only 6 species from our 50 species were recorded by Bahafzallah (1979) from Jiddah Bay (east coast of the Red Sea), Saudi Arabia. On the other side of the Red Sea, in Ousier-Marsa Alam stretch (Egypt), Anan (1984) identifed 50 species of Foraminifera, of these only 9 species are recorded in the deeper parts of our area. These is a great variation in the percentages of the recorded species in the two areas, (fig.5). The ratios of the three main suborders Textulariina-Miliolina - Rotaliina were 2.89-74.52.58 in Quseir-Marsa Alam area, while they are 24.3-45.9-29.8 off Qatar. A comparison with north Gulf of Agaba, which was studied by Basha (1983) reveals that only 11 species are found in common between the two areas. All of these species are recorded in the deeper samples of our area and none of them are Quinqueloculina or Triloculina.

The studies of Murray (1965 a&b, 1966 a,b&c) on shallow waters and hypersaline lagoons and shoal environments in some parts of the Trucial Coast area showed a great similarity with the fauna recorded in the shallower southern samples in our study area, (fig. 2&5).

The genus *Quinqueloculina* and its allied species were the target of detailed studied by Cherif (1973) in northeastern part of the Mediterranean Sea, El-Nakhal (1980) in southeastern Red Sea (Yemen Arab Republic shores) and El-Deeb (1990) in southeastern coast of the Arabian Gulf (U.A.E. shores). El-Deeb (1990) compared the results of these studies and reached the conclusion that there is a great similarity between the frequencies of the quinqueloculine species of the Arabian Gulf area and those of the northeatern part of the Mediterranean Sea, while this similarity is less marked with the fauna of the Red Sea localities. This conclusion is supported in the present study.

		SAMPLE STATIONS																						
FORAMINIFERAL SPECIES	100			L_	200)]		Ŀ	300			400					_	500		600				
	1	2	3	4	1	2	3	4	1	2	2 a	1	2	2 a	3	4	1	2	2 a	2 b	1	2	3	Ł
1- Ammonia beccarii	╁		+	_	-	1		-	 	+	a			ä	<u> </u>	4		_	1	1				Ι.
2- Amphistegina lessonii		 	-														+	1	1	Π	1	+	1	Γ
3- Articulina sagra	 		1		一	_																		Г
4- Asterigerina simplex	┢				┰						_			_				<u> </u>		\Box				Γ
5- Bolivina sp.	1	<u> </u>		_										<u> </u>		4				Τ			\sqcap	Τ.
6- Carterina spiculotesta	<u> </u>	<u> </u>											+			_	+	+		Т				Г
7- Cibicides sp.	t	<u> </u>			_								1					1		Т			+	Γ.
8- Clavulina angularis			Т		Γ												+			Т	<u> </u>			Г
9- Cribrononion frigidium		Г						+	1												Π			Γ
10- Cribrononion sp.		Г			I^-													<u> </u>						Γ
11- Elphidium crispum	1			1				4					+	_		+	+	+	+		+			Г
12- Eponoides barthelotianus	Г							<u> </u>								+				Т			П	
13- Gaudryina sp.	-																			Τ				Γ.
14- Glomospira sp.	 	<u> </u>			\vdash													+		T				Γ
15- Operculina costata		 	1		Γ			1		+			1	+	+				4	.[_	Ī		+	Γ.
16- Peneroplis planatus	4	1		1				<u> </u>	+	<u> </u>	Γ΄			<u> </u>			+	Г	Γ.		1	+	ГЧ	Γ
17- Pyrgo anomala	1	T-L-		Τ –	I^-			1			1								<u> </u>			Γ	+	
18- Pyrgo sp.	1	1	T-		T			T	T			<u> </u>		Ī						T				Γ.
19-Quinqueloculina disparilis			1	T	T				t											Т				Г
20- Q. distorqueta		\vdash		Г		-	 			1	-	+								\top	\sqcap			Γ
21-Q.granulocostata	1	 						1										-			m		+	Γ
22- Q. lata	<u> </u>		1		 																ऻ			Г
23- Q. lamarckiana	Г			Г			<u> </u>									+				1			П	Г
24- Q. parkeri				-1		\vdash	1																	Г
25- Q. philippinensis	Г							+			+										Г			Г
26- Q. plicosa	1							+	-1-											1	Г			Г
27- Q. polygona	T	T	1				+													Т	T	Π		Г
28- Q. rugosa							<u> </u>										+			Т	Ι.	Г		Г
39- Q. subdecorata			4.																	Г		Г		Γ
30- Sigmoilina edwardsi					Γ			+	+		1				+			+		П	Π		+	Γ
31- Spiroloculina manifesta	1		+	+	+	1		+		+	+	+	+		+	+	+	+		Г	1	4	+	Г
32- Spiroloculina clara	Г			1			1			+	4		+		+	+	1	+			1			Г
33- Spirolina arietina	Г	+		1	\vdash		\Box				<u> </u>				Ι-					\vdash				Г
34- Textularia foliacea	1	1	+	\Box	1	1	+		+	+	+	1	\vdash	+			+	+	1	1	+			Γ
35- Textularia lateralis	1	Γ'		Г		1	1		+									1	Г	1				Ι.
36- Textularia rugosa	T	T		T	_			+			1		1					1		⇈				Г
37- Textularia sp.								+			1	+	+	+	+	+	_	4	_	T			+	T.
38- Triloculina affinis	T	T	1	<u> </u>	 			1		1	1		<u> </u>		1	4	+					<u> </u>	+	Ι.
39- T. howchini	1					1	\vdash									_					<u>† </u>			T
40- T. linneiana	T	T		╅	_	┰	\vdash	 	<u> </u>	-		 									1	-		T
41- T. neoinflata	1	\vdash	1		_				 		 	\vdash		\vdash	+	$\vdash \vdash$	_	_		T	厂		\sqcap	T
42- T. oblonga	+		╅	 	<u> </u>	 	 	-	\vdash			 	\vdash	_	T				T	T	T	<u> </u>	М	T
43- T. quadrata	╅	\vdash		—	t^-	\vdash	\vdash	 	 	_		\vdash	-		-		 		 	\top	T			
44- T. reversaformis	 	 	 	+	 	 	 	-		 	 		-		-			 	<u> </u>	+	 		Н	H
45- T. rotundata	 	 		+	_	,	 		t	 	 	ļ	-	\vdash	\vdash			 	\vdash	+	 	+	\vdash	H
46- T. subramulata	1	 	 	-	 	 _	-		-	\vdash	 	 	 	 	 		 	-	1	+	 	┝╧	#	H
47- T. tricarinata	1	 	 .	+	 -	-		 	-	 -		 	<u> </u>	 	┝╌		 -	 	├.	+-	 	\vdash	\vdash	\vdash
48- T. trigonula	+	+	+	╁╧	+	+	\vdash	+	-	+	+	+	┝╧				┝╧	╁	╁	†*	╁	 	┌╧	H
49- T. trihedra	┼	╁	├─	\vdash	-±		├─	-	\vdash	 	-	-	 	 	 	 	 	\vdash	\vdash	+-	 	Η-	\vdash	H
50- T. tubiformis	-	₩	⊢	 	-	₩	├	├		₩	—	土	 -			⊢		ļ	├	+		 	 	╁

Figure 2: Distribution chart of the identified foraminiferal species in the studied area.

STATION	TEXRULIRIINA	MILIOLINA	ROTALIINA	NO.OF SPECIES
101	7.3	88.2	4.5	7
102	46.7	43.3	10.0	4
103	7.7	55.8	36.5	12
104		100		10
201	2.8	97.2		5
202	24.3	35.5	40.2	8
203*	46.7	53.3		5
- 204	13.0	**!= 80. 0	7.0	13 2
301	90.0	8.0	2.0	7
302	32.0	36.0	32.0	8
302a	34.4	46.9	- 18.8	- 13
401	14.3	85.7		6
402	46.7	21.9	31.4	10 3 3 3 3 3 3
402a	6.0	94.0		4
403	10.5	46.2	43.3	8
		2477	469	FF 5 9
501	4.4	77.8	17.8	11
502	37.1	25.8	37.1	18
502a	9.6	7.7	82.7	6
502b*	57.1	28.6	14.3	3
601	13.5	67.6	18.9	8
602*		87.8	12.5	4
603	19.5	29.8	50.7	12
		E de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de la companya de la companya del la companya de la companya del la companya dela companya del la companya del la companya del la companya del la	58.7	1 3 (0)
AVERAGE	24.3	45.9	29.8	
AVERAGE of W.Red Sea (Anan,1984)	2.89	74.52	22.58	·

^{*} samples with few foraminiferal number (less than 20 individuals in the sample).

DEPTH TO 10 F

DEPTH 10-20 F

DEPTH > 20 F.

Figure 3: Percentages of the three foraminifera suborders and number of species in different studied samples.

ACKNOWLEDGEMENT

The author wishes to thank the Department of Oceanography, Qatar University for providing the samples of the present study. Sincere thanks are extended to Prof. Abdel Galil Hewaidy, Al-Azhar University for reading the manuscript and critical discussions.

REFERENCES

- [1] Said, R. (1949). Foraminifera of northern Red Sea. Cushman Foraminiferal Research, Special Publication, No. 26, pp.1-44.
- [2] Said, R. (1950). The distribution of Foraminifera in the northern Red Sea. Contrib. Cushman Found. Foram. Res., No.1, pp.9-29.
- [3] Houbolt, J.J.H.C. (1957). Surface sediments of the Persian Gulf near the Qatar Peninsula. Ph.D. Thesis, University of Utrecht, 113p.
- [4] Murray, J.W. (1965a). The Foraminiferida of the Persian Gulf. Part 1. Rosalina adhaerens sp. Nov. Ann. Mag. Nat. Hist., Ser. 13, No.8, pp. 77-79.
- [5] Murray, J.W. (1965b). The Foraminiferida of the Persian Gulf. 2. The Abu Dhabi Region. Palaeogeography, Palaeoclim, Palaeoecol. V.1, pp. 307-332.
- [6] Murray, J.W. (1966a). The Foraminiferida of the Persian Gulf. 3. The Halat al Bahrani Region. Palaeogeog., Palaeoclim, Palaeoecol., V.2, pp. 59-68.
- [7] Murray, J.W. (1966b). The Foraminiferida of the Persian Gulf. 4. Khor al Bazam. Palaeogeography, Palaeoclim., Palaeoecol., V.2,pp. 153-169.
- [8] Murray, J.W. (1966c). The Foraminiferida of the Persian Gulf. 5. The shelf off the Trucial Coast. Palaeogeog., Palaeoclim., Palaeoecol., V.2, pp. 267-278.
- [9] Murray, J.W. (1973). Distribution and ecology of living benethonic foraminiferids. Heinemann Educational Books, 274 p., London.
- [10] Bahafzallah, A.B.K. (1979). Recent benthic Forminifera from Jeddah Bay, Red Sea (Saudi Arabia). N. Jb. Geol.

- Palaont. Mh.pp-385-395.
- [11] El-Nakhal, H.A. (1980a). Recent Foraminifera from the sea shores of Yemen Arab Republic, Part 1: Genus Quinqueloculina. Jour. Coll.Sci., Univ. Riyadh, V.11, pp.147-170.
- [12] El-Nakhal, H.A. (1980b). Recent Fornubufera from the sea shores of Yemen Arab Republic, Part 2: genus *Triloculina*. Al-Mustansiriyah Jour.Sci., V.5 No.2, pp-147-170, Baghdad.
- [13] Basha, S.H. (1983). Foraminifera and Ostracoda from Holocene sediments in the Jordanian part of the Gulf Aqaba. Dirasat. V.10, No.1, pp.109-129.
- [14] Anan, H.S. (1984). Littoral Recent Foraminifera from the Qusseir-Marsa Alam stretch of the Red SEa Coast, Egypt. Revenue De Paleobiologie, V.3, No.2, pp.235-242.
- [15] El-Deeb, W.Z. (1990). Study on genus *Quinqueloculina* (Foraminifera) from the southeastern coast of the Arabian Gulf (United Arab Emirates). M.E.R.C. Ain Shams Univ., Earth Sci, Ser., V.4, pp-142-151.
- [16] El-Deeb, W.Z (1992). Recent benthonic Foraminifera from the south-eastern coast of the Arabian Gulf, United Arab Emirates. J.Fac. Sci., U.A.E. Univ., V.4, pp. 181-199.
- [17] Loeblich, A.R. and Tappan, H (1988). Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, 970p.
- [18] Purser, B.H. and Seibold, E. (1973). The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. in Purser (Edit.), The Persian Gulf, Springer-Verlag, Berlin, pp.1-9.
- [19] Purser, B.H. (1973). Sedimentation around bathymetric highs in the southern Persian Gulf. In Purser (Edit), The Persian Gulf, Springer-Verlag, Berlin, pp. 157-179.
- [20] Cherif, O.H. (1973). On the classification of the genus *Quinqueloculina* (Foraminifera). N. Jb. Geol. Palaont. Abh. 142, pp. 73-96.

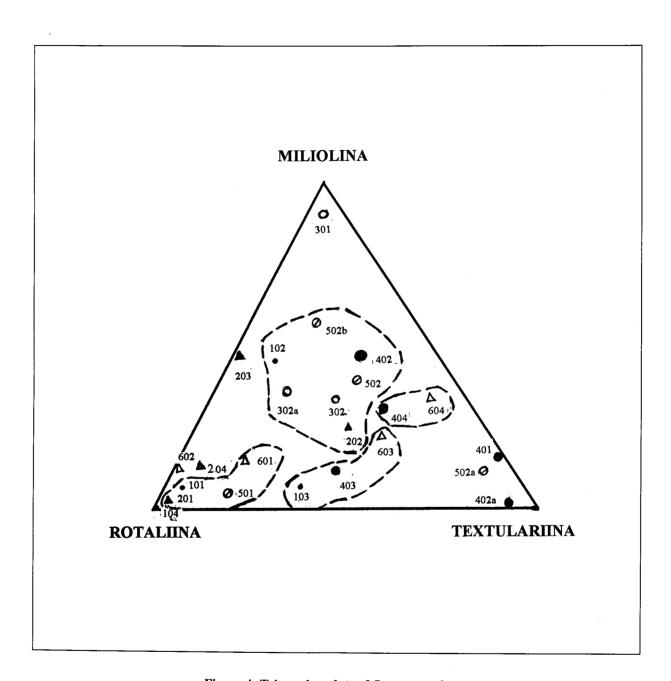


Figure 4: Triangular plots of Qatar samples.

F	Present	U. A. E.	Jiddah Bay	Quseir area	Gulf of Aqaba
FORAMINIFERAL SPECIES	Study	El-Deeb,92	Bahafzallah,79	Anan, 84	Basha,83
1- Ammonia beccarii (Linne)	8.2	5.8	+	1.5	+
2- Amphistegina lessonii DOrbigny	3.0				+
3- Articulina sagra D Orbigny	0.1	0.5			
4- Asterigerina simplex DOrbigny	3.0				+
5- Bolivina sp.	0.3				
6- Carterina spiculotesta (Carter)	0.2			0.15	
7- Cibicides sp.	1.2				
8- Clavulina angularis DOrbigny	0.1	0.6		1.17	+
9- Cribrononion frigidium (Cushman)	0.1	0.2		1.41	
10- Cribrononion sp.	0.2				
11- Elphidium crispum Linne	1.2	0.2		2.19	+
12- Eponoides berthelotianus (DOrbigny)	0.2				
13- Gaudryina sp.	0.1				
14- Glomospira sp.	0.1				
15- Operculina costata (DOrbigny)	12.2				+
16- Peneroplis planatus Fichtel&Moll	2.1	14.2	+	26.67	+
17- Pyrgo anomala (Schlumberger)	0.2	13.4			
18- Pyrgo sp.	0.1				
19- Ouinqueloculina disparilis DOrbigny	0.5	0.2			
20- O. distraueta Cushman	0.3	0.3			
21- O. granulocostata Germeraad	3.3	1.2			
22- O. lata Terquem	0.4	· · · · · · · · · · · · · · · · · · ·			
23- O. lamarckiana DOrbigny	0.5	0.7		1 9	
24- O. parkeri Brady	0.5	1			
25- O. philippinensis Parr	0.3	0.5			
26- O. plicosa Cosia	2.3	0.2			
27- O. polygona DOrbigny	0.5	0.2			
28- O. rugosa DOrbigny	0.5	0.2			
29- O. subdecorata El-Nakhal	0.5	 	<u> </u>		
30- Sigmolina edwardsi (Schlumberger)	12				
31 Spiroloculina manifesta Cushman	9.5	1			+
32- S. clara Cushman	4.2				
33-Spirolina arietina (Batch)	0.5	0.5	+	0.8	+
34-Text. foliacea Heron-Allen & Earland	13.5	0.3		0.19	+
35-T. lateralis Lalicker	2.8	10.3		0.19	
36-T. rugosa (Reuss)	1.4				
37-T. sp.	6.3		 	<u> </u>	
38-Triloculina affinis DOrbigny			+	<u> </u>	
39-T. howchini Schlumberger	6.9 0.2	 	 		<u> </u>
40-T. linneiana DOrbigny		 	 	 	
	0.5	100		 	
41-T. meoinflata El-Nakhal	1.0	0.2	+	 	
42-T. oblonga (Montagu)	0.2	 	T		
43-T. quadrata Colline	0.7	 			
44-T. reversaformis El-Nakhal	0.4	106	 	 	
45-T. rotundata DOrbigny	0.5	0.6	 	 	
46-T. subgranulata Cushman	0.3	1	<u> </u>		
47-T. tricarinata DOrbigny	7.2	 	+	 	
48-T. trigonula (Lamarck)	0.3	 	 	 	
49-T. trihedra Loeblich and Tappan	0.1	 	 	 	11
50-T. tubiformis Yabe & Asano	0.1 50	16	6	9	11

Figure 5: Occurence rations and comparison between the foraminiferal assemblages of the study area and some neighboring areas.

Table 1: The identified foraminiferal species arranged according to the scheme of Loeblich and Tappan (1988)

Suborder	Superfamily	Family	Subfamily	Genus	Species	NO
Textulariina	Ammodiscacea	Ammodiscidae	Ammovertellininae	Glomospira	sp.	1
Dlage&	Reuss	Reuss	Saidova	Rzehak		T
Herouard	1862	1862	1981	1885		T
1896	Verneuilinacae	Verneuilinidae	Verneuilininae	Gaudryina	sp.	2
	Cushman	Cushman	Cushman	DOrbigny		1
	1911	1911	1911	1839		
	Textulariacea	Textulariidae	Textulariinae	Textularia	foliacea	3
	Ehrenberg	Ehrenberg	Ehrenberg	Defrance	lateralis	4
	1838	1838	1838	1824	rugosa	5
	<u> </u>				sp.	6
		Valvulinidae	Valvulininae	Clavulina	angularis	7
	<u> </u>	Barthelin	Barthelin	DOrbigny	1	\vdash
		1880	1880	1826		
Carterinina		Carterinidae		Carterina	spiculotesta	8
Loeblich and		Loeblich and		Brady	spiculoiesia	+
Tappan		Tappan		1884		+
1981	1	1955		1004		┼
	Miliolacea	<u> </u>			100	+-
Miliolina		Spiroloculinidae Wiesner,		Spiroloculina DOrbigny	manifesta	9
Delage & Herouard	Ehrenberg			1826	clara	10
	1839	1920	77		77.	+,,
1896		Hauerinidae	Hauerininae	Quinqueloculina	disparilis	11
		Schwager	Schwager	DOrbigny	distrqueta	12
		1876	1876	1826	granulocostatat	13
					lata	14
	<u></u>				lamarckiana	15
					parkeri	16
					philippinensis	17
					plicosa	18
· · · · · · · · · · · · · · · · · · ·				<u> </u>	polygona	19
					rugosa	20
					subdecorata	21
			Miliolinellinae	Pyrgo	anomala	22
			Vella	Defrance,	sp	23
			1957	1824		
				Triloculina	affinis	24
	7			DOrbigny	howchini	25
				1826	linneiana	26
					neoinflata	27
					oblonga	28
					quadrata	29
					reversaformis	30
					rotundata	31
					subramulata	32
			Ţ.	1	tricarinata	33
					trigonula	34
	,				trihedra	35
		 	 	<u> </u>	tubiformis	36

			Sigmoilnitinae	Sigmoilina	edwardsi	37
			Luczkowska	Schlumberger		
			1974	1887		
			Tubinellinae	Articulina	sagra	38
			Rhumbler	DOrbigny		
			1906	1826		
		Peneroplidae		Peneroplis	planatus	39
		Schultze		de Montfort		
		1854		1808		
				Spirolina	arietina	40
				Lamarck		
				1804		
Rotaliina	Bolivinacea	Bolivinidae		Bolivina	sp.	41
Delage &	Glaessner	Glaessner		DOrbigny		
Herouard,	1937	1937		1839		
1896						
	Discorbacea	Eponididae	Eponidinae	Eponides	barthelotianus	42
	Ehrenberg	Hofker	Hofker	de Montfort	1.1	
	1838	1951	1951	1808		
	Planorbulinacea	Ci`bicididae	Cibicidinae	Cibicides	sp.	43
	Schwager	Cushman	Cushman	de Montfort		
	1877	1927	1927	1808		
	Asterigerinacea	Asterigerinidae		Asterigerina	simplex	44
	d Orbigny	d Orbigny		d Orbigny		
	1839	1839		1839		
		Amphisteginidae		Amphistegina	lessonii	45
		Cushman		d Orbigny		
		1927		1826		
	Rotaliacea	Rotaliidae	Ammoniinae	Ammonia	beccarii	46
	Ehrenberg	Ehrenberg	Saidova	Brunnich		
	1839	1839	1981	1772		
		Elphidiidae	Elphidiinae	Cribrononion	frigidum	47
		Galloway	Galloway	Thalmann	sp.	48
		1933	1933	1947		
				Elphidium	crispum	49
				de Montfort		
				1808		
	Nummulitacea	Nummulitidae		Operculina	costata	50
	de Blainville	de Blainville		d Orbigny		
	1827	1827		1826		